
Classes:
Relationships Among

Objects
Atul Prakash

Background readings: Chapters 8-11 (Downey)

Real-World
• Relationships:

• Parent-child relationships among
members of a species

• Friends relationship among users on
Facebook

• Students who part of the same team

• City-city relationship for a flight network

In the above cases, two objects of the same class have a relationship
with each other

Multiple Classes

• A program will often use multiple classes

• E.g.: for handling data in IMDB, classes could
be

• Movie, Actor, User, Review, Ratings, ...

• In Java, each class will be in its own .java file:

• Movie.java, Actor.java, User.java,
Review.java, Ratings.java, etc.

Relationships among objects
from multiple classes

• Classes: Student, Course,
Professor, Classroom

• Student <-> Course

• Professor <-> Course

• Course <-> Classroom

• Classes: Movie, Actor,
User, Review

• Movie <-> Actor

• User <-> Review

• Movie <-> Review

Types of Relationships

• One-to-one: Patient <-> Patient Record

• One-to-many or many-to-one: Person
(Mom) <-> Person (child)

• A mom can have 1 or more children

• Many-to-many: Student <-> Course

• A student can take many courses

• A course can be taken by many students

One-to-one
relationships

• One-to-one relation among objects A and
B

• One way to represent it both ways:

• A contains a reference to B

• B contains a reference to A

Patient A PatientRecords B
pr

p

Example
• Patient and PatientRecord

public class Patient {
	 private String name;
	 private String socialsecuritnumber;
	
	 private PatientRecords pr;
	
	 public Patient(String name, String s) {
	 	 this.name = name;
	 	 this.socialsecuritnumber = s;
	 	 pr = null;
	 }

	 public void setPatientRecords(PatientRecords r) {
	 	 this.pr = r;
	 }
}

public class PatientRecords {
	 private String doctor;
	 private Patient p;
	
	
	
	 public PatientRecords(String doctor) {
	 	 this.doctor = doctor;
	 	 p = null;
	 }

	 public void setPatient(Patient p) {
	 	 this.p = p;
	 }
}

One-to-many relations
• Use an array or a list. For now, we will use

an array, so we get practice with them,
though lists are a better choice

Person a

Item[] myitems;

Person owner;

Person owner;

Person owner;int numItems;

Item x

Item y

Item z

myitems contains [x, y, z, null, null, ...]
numItems is 3

owner for x, y, and z contains a

Person owner;

Initializing an array

• Initialize in the constructor

• myitems = new Item[MAXITEMS];

• Creates an empty array of pointers to
items

• Each pointer is initialized to empty,
indicated by a value of null by Java.

Using an array to store
items

• Operations:

• adding an item owned

• removing an owned
item: no longer
owned

• The array will contain
the items owned, but
which slots contain the
items?

• One design: Maintain the
following invariants

• Slots containing the
items are at the
beginning of the array

• Unused slots at the
end

Good: [x, y, z, *, *, *], numItems = 3
Bad: [*, x, *, y, z, *], numItems = 3

* is don’t care. Good to set it to null.

Adding an item

• Simply add at the end

• items[numItems] = newitem;

• Why it works? Because of the invariant on
the last slide

Initial: [x, y, z, *, *, *], numItems = 3

Adding w results in:

 [x,y, z, w, *], numItems = 4

Removing an item
• The item being removed can be anywhere

in the array

• Need to find it first by scanning the array

• Then, to maintain the invariant, you need to
shift the following elements to the left by 1

• Finally, decrement numItems

Initial: [x, y, z, *, *, *], numItems = 3

To delete y, first find its position, which is 1. Deleting with k = 1 results in

Final: [x,z, *, *, *], numItems = 2

Shifting elements

• Example: deleting item at position k

	 for (int i = k; i < size-1; i++) {
	 	 	 items[i] = items[i+1];
	 	 }
	 	 numItems--; // IMPORTANT. Re-establish invariant
 items[numItems] = null; // OPTIONAL. Good to do so.

Initial: [x, y, z, *, *, *], numItems = 3

Deleting with k = 1 results in

 [x,z, *, *, *], numItems = 2

Creating Relationships
• One way: create records, link them

Patient a PatientRecords b
pr

p

public class Main {

	 public static void main(String[] args) {
	 	 Patient a = new Patient("Joe", "123-45-6789");
	 	 PatientRecords b = new PatientRecords("dr. evans");
	 	 a.setPatientRecords(b); // patient has a link to its record
	 	 b.setPatient(a);	 // record has a link to its patient
	 }
}

Problem

• Should not be possible for a user of these
two classes to violate the above.
Unfortunately, it is possible to do so.

	 	 Patient a = new Patient(...);
	 	 PatientRecords b = new PatientRecords("dr. evans");
	 	 a.setPatientRecords(b); // patient has a link to its record
 // no link created from b to a

Desired invariant: two-way relationship

Better Solution

• The method that adds one relationship also
adds the opposite relationship.

	 public void setPatient(Patient patient) {
	 	 if (patient != p) {
	 	 	 this.p = patient;
	 	 	 patient.setPatientRecords(this);
	 	 }
	 }

	 public void setPatientRecords(PatientRecords r) {
	 	 if (r != pr) {
	 	 	 this.pr = r;
	 	 	 r.setPatient(this);
	 	 }
	 }	

PatientRecords code Patient code

Invariant is maintained irrespective of whether setPatient or
setPatientRecords is called

Question

• Why are the if checks important? What
happens if you omit them?

	 public void setPatient(Patient patient) {
	 	 if (patient != p) {
	 	 	 this.p = patient;
	 	 	 patient.setPatientRecords(this);
	 	 }
	 }

	 public void setPatientRecords(PatientRecords r) {
	 	 if (r != pr) {
	 	 	 this.pr = r;
	 	 	 r.setPatient(this);
	 	 }
	 }	

PatientRecords code Patient code

Another Example

• Class: Student

• Relationship: students can team up. A
student can be in the same team as another
student.

• One solution: Each student objects contains
a list or array containing its team members

• Student[] teamMembers;

Reflect on the Design
• Information in the

current design is
duplicated

• If 4 students are in a
team, they have
basically the same
list. Updates must
occur in 4 objects

Can we avoid duplication? Right now, we need to remember to
update in multiple places to maintain the team invariant

S1

S2

S3

S4

Solution
• Introduce another class to

hold the relationship

• A Student object can
contain a link to its Team
object

• A Team object that contains
links to all the team
members in one array

• Now, the list of team
members is in one place.
Updates are easier

S1 S2 S3

Team T1
maintains

list of students

S4

What did we do?

• When information is duplicated in multiple
objects, consolidate it one object

• Have all the objects share a single copy of
that object by maintaining a link to it

• This is called introducing indirection. Rather
than storing the information directly in
multiple places, store it once and refer to it
indirectly via a link

Summary
• Objects can have

relationships among
themselves

• Use pointers or links for
that

• Enforce invariants if links
are bi-directional

• Avoid data duplication. If
information is duplicated
in multiple places,
introduce

• an additional class to
hold the data in one
place

• Existing objects point
to the object from
new class

