Classes:
Relationships Among

Objects

Atul Prakash
Background readings: Chapters 8-11 (Downey)

Real-VWorld

® Relationships:

® Parent-child relationships among
members of a species

® Friends relationship among users on
Facebook

® Students who part of the same team

® City-city relationship for a flight network

In the above cases, two objects of the same class have a relationship
with each other

Multiple Classes

® A program will often use multiple classes

® E.g.:.for handling data in IMDB, classes could
be

® Movie,Actor, User, Review, Ratings, ...
® In Java, each class will be in its own .java file:

® Movie.java,Actor.java, User.java,
Review.java, Ratings.java, etc.

Relationships among objects
from multiple classes

® C(Classes: Student, Course, ® Classes: Movie,Actor,
Professor, Classroom User, Review
® Student <-> Course ® Movie <-> Actor
® Professor <-> Course ® User <-> Review

® Course <-> Classroom ® Movie <-> Review

Types of Relationships

® One-to-one: Patient <-> Patient Record

® One-to-many or many-to-one: Person
(Mom) <-> Person (child)

® A mom can have | or more children
® Many-to-many: Student <-> Course
® A student can take many courses

® A course can be taken by many students

One-to-one
relationships

® One-to-one relation among objects A and
B

® One way to represent it both ways:
® A contains a reference to B

® B contains a reference to A

Patient A PatientRecords B

Example

® Patient and PatientRecord

bl 1 Patient public class PatientRecords {
pu ISPEVSEZ Sgriﬁg njhe' private String doctor;

: S . rivate Patient p;
private String socialsecuritnumber; 2 S

private PatientRecords pr;
public PatientRecords(String doctor) {

public Patient(String name, String s) { this.doctor = doctor:
this.name = name; D = ﬁull' ’
this.socialsecuritnumber = s; 3 ’
pr = null;

¥ public void setPatient(Patient p) {
. . . . this.p = p;

public void setPatientRecords(PatientRecords r) { 1 BSE
this.pr = r; }

}

One-to-many relations

® Use an array or a list. For now, we will use
an array, so we get practice with them,
though lists are a better choice

Person owner; ltem x
Person a /
ltem[] myitems; —>
\ Person owner; ltem y
int numltems; \~Person owner; Item z

myitems contains [X, Y, z, null, null, ...]

. owner for X, y,and z contains a
numltems is 3

Initializing an array

® |nitialize in the constructor
® myitems = new ltem[MAXITEMS];

® Creates an empty array of pointers to
items

® Each pointer is initialized to empty,
indicated by a value of null by Java.

Using an array to store
items

® Operations: ® One design: Maintain the
following invariants

® adding an item owned
® Slots containing the

® removing an owned items are at the
item: no longer beginning of the array
owned

® Unused slots at the

® The array will contain end
the items owned, but
which slots contain the
Good: [x,Y,z * * *], numltems = 3

i ?
ltems Bad: [*, %, *, ¥, Z, *], numltems =3

* is don’t care. Good to set it to null.

Adding an item

® Simply add at the end
® items[numltems] = newitem;

® Why it works? Because of the invariant on
the last slide

Initial: [x,y,z,* *, *], numltems = 3
Adding w results in:

[%,Y; Z, W, ¥], numltems = 4

Removing an item

The item being removed can be anywhere
in the array

Need to find it first by scanning the array

Then, to maintain the invariant, you need to
shift the following elements to the left by |

Finally, decrement numltems

Initial: [x,y,z,* *, *], numltems = 3
To delete y, first find its position, which is |. Deleting with k = | results in

Final: [x,z, *, *, *], numltems = 2

Shifting elements

® Example: deleting item at position k

for (int i = k; 1 < size-1; i++) {
items[i] = items[i+1];

}
numItems--; // IMPORTANT. Re-establish invariant

items[numItems] = null; // OPTIONAL. Good to do so.

Initial: [x,y, z,*,* *], numltems = 3
Deleting with k = | results in

[x,z, * *, *], numltems = 2

Creating Relationships

® One way: create records, link them

public class Main {

public static void main(String[] args) {
Patient a = new Patient("Joe", "123-45-6789");
PatientRecords b = new PatientRecords("dr. evans");

a.setPatientRecords(b); // patient has a link to its record
b.setPatient(a); // record has a 1link to its patient

Patient a PatientRecords b

Problem

Desired invariant: two-way relationship

® Should not be possible for a user of these
two classes to violate the above.
Unfortunately, it is possible to do so.

Patient a = new Patient(...);

PatientRecords b = new PatientRecords("dr. evans");
a.setPatientRecords(b); // patient has a 1ink to its record
// no link created from b to a

Better Solution

® The method that adds one relationship also
adds the opposite relationship.

PatientRecords code Patient code
public void setPatient(Patient patient) { public void setPatientRecords(PatientRecords r) {
if (patient != p) { if (rl=pr) {
this.p = patient; this.pr = r;
patient.setPatientRecords(this); r.setPatient(this);
3 }
ks ks

Invariant is maintained irrespective of whether setPatient or
setPatientRecords is called

Question

® Why are the if checks important? What
happens if you omit them?

PatientRecords code Patient code
public void setPatient(Patient patient) { public void setPatientRecords(PatientRecords r) {
if (patient !'= p) { if (r 1= pr) {
this.p = patient; this.pr = r;
patient.setPatientRecords(this); r.setPatient(this);
ks ks

Another Example

® (Class: Student

® Relationship: students can team up.A
student can be in the same team as another
student.

® One solution: Each student objects contains
a list or array containing its team members

® Student[] teamMembers;

Reflect on the Design

® Information in the
current design is S| |<——| S3

duplicated 5 X

® |f 4 students are in a
team, they have

basically the same | |
list. Updates must
occur in 4 objects §2 |«—| 4

Can we avoid duplication? Right now, we need to remember to
update in multiple places to maintain the team invariant

Solution

Introduce another class to
hold the relationship

® A Student object can

Team T
maintains
list of students

contain a link to its Team

object / \

e ATeam object that contains T‘—|

links to all the team

members in one array

Now, the list of team
members is in one place.
Updates are easier

54

What did we do?

® When information is duplicated in multiple
objects, consolidate it one object

® Have all the objects share a single copy of
that object by maintaining a link to it

® This is called introducing indirection. Rather
than storing the information directly in
multiple places, store it once and refer to it
indirectly via a link

Summary

® Objects can have ® Avoid data duplication. If
relationships among information is duplicated
themselves in multiple places,

introduce

® Use pointers or links for

that ® an additional class to
hold the data in one
® Enforce invariants if links place

are bi-directional
e Existing objects point
to the object from
new class

