
Queues and Stacks
Atul Prakash

Downey: Chapter 15 and 16

Queues

• Queues occur in real life a lot.

• Queues at checkout

• Queues in banks

• In software systems:

• Queue of requests at a web servers

Properties of Queues

• Queue is a FIFO data structure. First-in-
first-out. Basic operations:

• enqueue(element): add element to the
end of the queue

• dequeue() -> returns the element from
the front of the queue, removing it

• isEmpty() -> returns true if queue empty

• Some queues provide additional
operations, such as peeking at the front

Wrapping Lists to
Create Queues

• Can use lists as the underlying structure.

• Create empty queue

• boolean Q.isEmpty(): true if queue is empty

• Q.enqueue(T elem): add element at the end of
the list

• T Q.dequeue(): remove element from the front
of the list and returns it.

Design Outline

List a;

isEmpty() {
 if a.size() == 0 return true;
 else return false;
}

enqueue(T element) {
 a.add(element);
}

dequeue() {
 T result = a.get(0);
 a.remove(result);
 return result;
}

Queue() {
 a = new List()
}

What we just did
List a;

isEmpty() {
 if a.size() == 0 return true;
 else return false;
}

enqueue(T element) {
 a.add(element);
}

dequeue() {
 T result = a.get(0);
 a.remove(result);
 return result;
}

Queue() {
 a = new List()
}

T data[];

size() {

}

add(T element)
{

}

remove() {

T get(int i) {

}

List.java

Queue.java

Discussion

• Lists can do everything that queues can

• So, why implement a queue class? Why not
directly use lists?

Wrapping

• We created lists by using an array and
providing functions such as add(), remove(),
get(), size(), etc.

• We created queues by using lists as the
starting point

• We are sometimes restricting functionality
by doing this, but also making the data
structure safer and easier to use for the
intended task

Queue using ArrayList a
(pseudo-code)

• enqueue(o): same as a.add(o)

• a.dequeue(): three steps using ArrayList API

• result = a.get(0)

• a.remove(0) or a.remove(result),
depending on the interface of arraylist a

• return result

Performance using
Array-based Lists

• enqueue operation:

• a[size] = element; size++. Performance: O(1)

• But, if array fills up, expensive. all n elements have to be copied to a new, larger
array. Cost: O(n) in copying.

• Think about if you double every time array fills up, what is the average cost per
insertion? Suppose array size is 100.

• First 100 insertions are cheap (constant time). Next one costs 100
operations. Then, the next 100 will be cheap. Next one costs 200. Then, the
next 200 will be cheap, next one costs 400, etc.

• One expensive operation makes subsequent ones cheap. Average
performance per insert is at most one element copy + one element
update. It is still constant time.

deque Operation

• save A[0], shift all elements left, and
decrement size

• Have to shift everything to the left.

• Cost: O(size)

Overall Cost

• With array-based lists, adding elements at
the end and removing from the front:

• Enqueue: O(n) worst-case. O(1): average

• Dequeue: O(n)

Mini-exercise
• Create a stack by wrapping a list. Three

operations:

• isEmpty()

• push(T element): push an element on top
of the stack

• T pop(): remove and return the top
element from the stack

• Just need to give pseudo-code of Stack.java

Discussion

• Stacks: What is the cost of push and pop()
in terms of big-Oh?

• Queues: The cost of dequeue is O(n) and
the cost of enqueue is O(1). Can we make
them both O(1)?

Making Queues
Efficient

• Yes, we can make both operations O(1)

• Using arrays with a data structure called
circular queues

• Using linked lists (more on that later)

Circular Queues: Basic
Idea

• Right now, our implementation is as
follows:

• Arrays used to implement lists

• Lists used to implement queues

• It turns out that we can implement queues
directly on top of arrays more efficiently.

Circular queue

Keep a head pointer to the the front of the queue.
Tail pointer to the next empty slot.

Best to imagine the array to be CIRCULAR.
Position 0 follows 17.

Insertion

We added 15 to the queue. tail advances. Basic
code (without error checking for full queue)

A[tail] = elem;
tail = (tail + 1) % size.

Deletion

head advances on deletion. Basic code without error checking
for empty queue:

result = A[head];
head = (head + 1) mod size;
return result

Wrap around

After some deletions and insertions, we can get
the above situation.

Queue: 4, 5, 8, …., 12.
Arithmetic on head/tail must be mod 18

Inserts after wrap-
around

Queue: 4, 5, 8, 4… 11, 12, 13

Empty Queue
What happens when we dequeue the last element

from the queue?

Empty queue situation

Rule: (head == tail) means the queue is empty.

Initialization of a circular queue:
head = 0; tail = 0

would be a reasonable choice.

Full Queue

• What happens on adding to the following
queue?

Use the last slot?

• head will become same as tail.

• How do we know whether the queue is full
or empty?

Note

• If the queue contains values, we can't really
use the values to determine whether the
queue is empty or full.

Equivalent queues

10 30 40

There is always some value in "empty" slots in the array.

Avoiding the trap

• Always leave one slot empty. This is a full
circular queue

Rule: if (tail + 1) mod size equals head, then the
queue is full.

Cost of insertion/
deletion

• Insertion cost: add at tail, advance tail.
O(1). (assuming no overflow allowed).

• Deletion cost: remove from head, advance
head. O(1).

Discussion

• Circular queues, as described, are of
bounded size, limited by array size.

• What if we wanted unbounded-length
queues?

