Design considerations in choosing
operations for building groupware
systems

Atul Prakash
Michael J. Knister

Software Systems Research Laboratory
Department of Electrical Engineering and
Computer Science
University of Michigan, Ann Arbor, MI 48109-2122
Phone: (313) 763-1585
Email: aprakash@eecs.umich.edu,
mknister@eecs.umich.edu

Abstract

We have implemented a prototype toolkit, called
DistEdit, for building interactive group editors in
distributed environments. The toolkit allows differ-
ent editors (e.g., vi, Emacs) to be used in the same
group session. Based on our experience in building
the toolkit, we report here some design solutions
that are commonly used in single-user editors, but
may not necessarily be appropriate in group editors.
Furthermore, design of group editors requires a bet-
ter understanding of the semantics of editing opera-
tions than in the corresponding single-user editors.
These semantics are useful for providing a variety
of services, such as undo, concurrency control, and
selective replay. Finally, we point out that imple-
menting high-level actions is much more complex
in group editors than in single-user editors because
high-level actions may need to be implemented as a
transaction to guarantee correct user-level seman-
tics. This position paper i1s presented in the con-
text of text editors; however, many of the ideas
presented here also apply to other types of group
editors.

Introduction

One difficulty in building collaboration systems is
that they require solutions to problems in dis-
tributed concurrency control, fault-tolerance, user-
interfaces, psychology, human factors, and software
design [1]. The goal of our DistEdit project [3] is to

remove most of the concerns of distributed concur-
rency control and fault tolerance by providing a li-
brary of primitives that can be used to build collab-
oration tools. The library of primitives can be used
to add collaboration support to editors without hav-
ing to deal with distributed systems issues, such as
communication protocols and fault-tolerance.

The current version of the DistEdit toolkit pro-
vides support for concurrent updates. To keep re-
sponse time low, any update 1s performed locally
first and then broadcast to other sites. It is well
known that concurrent updates can lead to incon-
sistencies in the buffer state at various sites [2]. We
are using an efficient locking-based solution which
requires locks to be acquired only at the start of an
insert/delete but not during an insert/delete. So,
if the user starts to insert a sequence of characters,
there is a slight network delay in acquiring a lock
prior to the insert of the first character, but after
that, inserts proceed at the speed of the local editor.
Another reasonable alternative would have been to
use a somewhat more complex scheme suggested in
[2], which does not require locks.

In the following sections, we discuss some of the
implementation issues that arose during our work.

Choice of document-modifying
primitives

The issue of choosing a set of document-modifying
primitives i1s not as critical in single-user editors as
in group editors. In single-user editors, whether to
treat an operation as a primitive or as a sequence of
other more primitive operations is dictated primar-
ily by efficiency concerns. For instance, in a single-
user editor, an IndentParagraph operation may be
treated as a primitive operation rather than com-
posed as a sequence of InsertChar and DeleteChar
operations if it is simpler and more efficient to in-
dent a paragraph by direct access to the document
buffer than by calling InsertChar and DeleteChar
operations on the buffer. In a group editor, on the
other hand, there are many other factors that need
to be considered:

e Every editor built using the toolkit has to be
prepared to support all the primitives. Thus,
if 1t is expected that the toolkit will be used
in a heterogeneous environment, with differ-
ent users using different editors in the same
group session, all the editors need to have rou-
tines mapping the primitives to updates on
the buffer. Thus, if IndentParagraph 1s made



a primitive in an environment where both wvi
and Emacs are expected to be used, both ed-
itors need to have support for implementing
the command. Clearly, the amount of work re-
quired in implementing the editors can be large
if the number of primitives is large and hetero-
geneity is to be supported.

e Undos are much more complex in a group edi-
tor [4] than in a single-user editor. In particu-
lar, the ability to reverse operations and rese-
quence them is needed for all the primitive op-
erations. It is much easier to provide this capa-
bility if the set of primitive operations is small
and of well-defined semantics. Thus, from the
point of view of undo, it may be better to map
the IndentParagraph operation to a sequence of
smaller primitives for which such a capability
is already provided.

e Even if undo is not supported in a group ed-
itor, there may be reasons to keep the primi-
tives restricted to a small set. For instance, if
a scheme such as that in [2] is used to ensure
consistency, functions similar to Transpose are
required to reorder a pair of operations. Defin-
ing such functions is much easier if the set of
primitives is small and has clear semantics.

e Communication requirements and processing
requirement will generally go down if a com-
plex operation is made a primitive opera-
tion, rather than mapped to a sequence of
smaller primitives. For instance, 1t is proba-
bly cheaper to transmit InsertParagraph com-
mand rather than the sequence of InsertChar
and DeleteChar operations it might map to.

In general, the tradeoffs in choosing the set of
primitives is a complex one in group editors, dic-
tated not only by efficiency concerns, but also by
ease of implementation of undo and supporting het-
erogeneity.

Semantics of Primitive Opera-
tions

In group editors, knowing the semantics of primi-
tive operations is more crucial than in single-user
editors. Knowing the semantics of the operations is
helpful in following services:

o Implementing undo in a group environment [4].

o Handling concurrency [2].

o Triggers for nolification/awareness: A user
may be interested in receiving notifications
when certain parts of the document change. In
such a case, semantics of the operation need to
indicate the part of the document the operation
affects.

e Integration of divergent document paths: If a
document is being edited by two or more users
simultaneously from geographically separated
sites, it may be desirable to allow editing to go
on despite network partitions and then merge
the changes later when the sites get connected.
Merging the changes requires handling conflicts
if some changes were carried out on overlapping
regions of the document. For instance, consider
two users, who have to work on the same docu-
ment but run into a network partition. Assume
that each user has a copy of the document. If
one user, doing grammar correction, has in-
serted a word in a paragraph in his copy of
the document and another user, doing organi-
zational changes, had moved that paragraph to
a different place in the document, typical merge
tools will fail to merge the changes. However,
with if a history list of the operations carried
out 1s kept at each site, a merged version can
be created that has the paragraph moved to the
new location and has the word inserted in the
moved paragraph by merging the operations in
the history lists. Such operation-based merg-
ing can only be carried out if semantics of the
operations (in this case, the copy and insert
operations) are well-understood.

e Recording and selective replay of a group ses-
ston. Users who miss a real-time conference
may wish to replay portions of it selectively.

We are trying to come up with a formal charac-
terization of the semantics of operations in a group
environment that would support above types of ser-
vices. Some of the attributes we believe will be im-
portant in the characterization are:

e Inverse of an operation. Also, if an operation
1s not reversible, it is useful to know that so
that the user can be appropriately warned or
the document state checkpointed.

e Resequencing of operations. Ability to rese-
quence operations is needed for ensuring con-
sistency in some protocols [2] and also for im-
plementing undo [4].

e A mapping from an operation to the region it
affects in the document.



e type of operation: mode-altering, update, nav-
igation, or access control.

e Computational requirements of an operation
and its inverse. For instance, if an operation is
known to take a long time, user can be warned
about it, state of the document can be check-
pointed prior to that operation, etc. Also, if
an operation is known to be computationally
expensive, it may be desirable to execute it at
only one site and transmit the results to other
sites, rather than executing the operation at all
the sites.

e Effect of an operation on display areas.

The above attributes have to be provided by an
application to a toolkit because they vary from
application to application. The following features
can be provided by a toolkit in an application-
independent way:

e Storage of operations in a history list; a history
list could be useful for implementing undo, re-
playing a session, etc.

e With each operation, tags could be stored, such
as time of the operation, user who carried out
the operation, project name, region affected,
etc. These tags could be useful for implement-
ing selective history replay and selective undo.

e Support for compound operations. For imple-
menting undo of a compound operation, for in-
stance, additional information may be needed
in the history list to identify the set of primi-
tive operations that compose a compound op-
eration.

Notion of Transactions

Editors often provide high-level operations that
map to a sequence of lower-level operations.
Whether these high-level operations are treated as
a single atomic action or not is an issue that is
present only in a minor way in single-user editors
but becomes a much more important issue in group
editors. In single-user editors, treating a group of
simple operations as one larger, user-level operation
is important primarily for implementing undo —
upon an undo, typically user would like to undo all
the changes associated with a single user-level op-
eration, rather than undoing changes partially. An
example of such a user-level operation is the search-
replace command that replaces occurrences of one
string by another string throughout the document.

In a group editor, the issue is important not only
for the purpose of undo, but also when the operation
is being carried out. A real example we faced is in
handling search-replace command in Emacs. In the
single-editor version of Emacs, the search-replace is
implemented as a Lisp function that searches for the
specified string, stores its position and replaces the
string at that position with a new string and then
starts the search from the stored position added to
the length of the replacement string. The function
assumes that after the replace, the cursor has moved
to the end of the replaced string. In the DistEdit-
based Emacs, this algorithm can fail in two ways.
One, the replace may fail if someone else holds a
lock on the string to be replaced. Second, even if the
replace succeeds, position of the string may change
due to intervening updates from other sites. So, the
algorithm would start searching from a wrong place
in the document. A way to avoid the problem would
be to treat the search-replace as a atomic action.

An example of an operation that may be useful
to implement as a transaction is the IndentPara-
graph operation. One may get undesirable effects
if another user is allowed to carry out updates to
a paragraph during the execution of IndentPara-
graph. One strategy for implementing an operation
as a transaction i1s to determine all the locks the
operation needs, acquire them, and then carry out
the operation. This raises several implementation
issues that also occur in databases, such as what to
do if all the locks cannot be acquired, how to handle
prolonged transactions, etc.

Summary

We have pointed out that the factors used in choos-
ing the primitives in a group editor are very different
than in a single-user editor. We believe that know-
ing the semantics of the primitives is crucial for a
variety of reasons, such as implementing undo, con-
currency control, supporting disjoint work during
network partitions, and providing numerous other
services. We are currently working on developing
a formalization of the semantics for operations in
a group environment. We have also identified the
need for treating a user-level operation as a transac-
tion even though it might map to multiple primitive
operations. We are exploring the best way to imple-
ment transactions in interactive groupware systems.

References

[1] Ellis, C.A., Gibbs, S.J., and Rein, G.L. Group-



ware: Some Issues and Experiences. Commu-

nications of the ACM(January 1991), 38-58
Ellis, C.A. and Gibbs, S.J. Concurrency Con-

trol in Groupware Systems, in Proceedings of
the ACM SIGMOD ’89 Conference on the
Management of Data (Seattle, Washington,
May 1989), ACM Press, pp. 399-407.

Knister, M. and Prakash, A. DistEdit: A
Distributed Toolkit for Supporting Multiple
Group Editors, in Proceedings of the Third
Conference on Computer-Supported Coopera-
tive Work, Los Angeles, California, October
1990, pp. 343-355.

Prakash, A. and Knister, M.. Undoing Ac-
tions in Collaborative Work. Proceedings of
the Fourth Conference on Computer-Supported
Cooperative Work, Oct. 31-November 4, 1992,
Toronto.



