The Session Capture and Replay Paradigm
for Asynchronous Collaboration
Nelson R. Manohar and Atul Prakash

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122, USA.

E-mail: {nelsonr,aprakash}@eecs.umich.edu

In this paper, we describe a paradigm and its associated collaboration artifact to allow flexible
support for asynchronous collaboration. Under this paradigm, a user session with an application’s
user interface is encapsulated into a data artifact, referred to as a session object. Users collaborate
by annotating, by modifying, and by a back-and-forth exchange of these session objects. Each
session object is composed of several data streams that encapsulate audio annotations and user
interactions with the application. The replay of a session object is accomplished by dispatching
these data streams to the application for re-execution. Re-execution of these streams is kept
synchronized to maintain faithfulness to the original recording. The basic mechanisms allow a
participant who misses a session with an application to catch up on the activities that occurred
during the session. This paper presents the paradigm, its applications, its design, and our
preliminary experience with its use.

Introduction

Many approaches to computer supported collaboration have been centered
around synchronous collaboration [4, 5, 9]. In synchronous collaboration,
users of a multi-user application first find a common time and then work in a
WYSIWIS (What You See Is What I See) collaborative session. However, a
synchronous mode of collaboration can often be too imposing on the schedule
of the participants. It requires that users be able to find a common time to
work together but, in many cases, that is not easy.

Several systems for the support of asynchronous collaboration provide ways

——
Data Resources Data >~ =
Resources Refs - Refs ReplayAble
ReplayAble Application

Application
\J

Interactions
Audio

Figure 1. Capture and replay of an interactive session.

3

¥ ol -

Object Audio

Data Updates
Session Interactions
Object)
Session

(a) (b)

to model the interactions among users and the evolution of collaboration repos-
itories [7, 10, 14]. In this paper, we present a complimentary paradigm for
asynchronous collaboration that allows users to record and replay an interac-
tive session with an application. We refer to this paradigm as WYSNIWIST
(What You See Now, Is What I Saw Then) [11]. The paradigm introduces an
associated data artifact, the session object, used to capture the collaborative
session. Figure 1 shows a high level view of the capture and replay of an in-
teractive session with an application. During the capture of the session, user
interactions with the application, audio annotations, and resource references
(e.g., fonts, files, environment) are recorded into a session object (Figure la).
The replay of the session uses the data stored in the session object to recreate
the look and feel of the original session (Figure 1b).

The rest of the paper is organized as follows. First, we illustrate some
applications of the paradigm. Next, we present the goals of our design. Then,
we describe how session objects are modeled. Next, we discuss the design
issues in building a system to support the paradigm. Then, we describe the
implementation of a prototype. Finally, we discuss our experiences in the use
of the paradigm and present some concluding remarks.

Examples

The next examples illustrate how different asynchronous collaboration scenar-
ios could benefit from both the paradigm and its artifact.

Using the paradigm to support synchronous collaboration

Our work was originally motivated by the UARC! project, a collaboratory ex-
periment among domain scientists in a wide-area network [3]. The domain
of research among the scientists is space science. From the use of the cur-
rent version of the UARC system over the past year, it has become clear that

!Upper Atmospheric Research Collaboratory

all domain scientists are not always able to be present at all times on their
workstations to observe the data arriving from the various remote instruments.
One reason is that the scientists are often working from different time-zones —
the geographical distribution of scientists spans from Denmark to California.
Secondly, because the space phenomena being observed are often not well-
understood, it is not known apriori when interesting data will be observed.
Providing support for some form of session capture and for allowing scientists
to exchange annotated session recordings should facilitate both asynchronous
and synchronous collaboration among them.

Using the artifact as an exchangeable document part

Consider a code walkthrough. It consists of a reader, a moderator, a clerk, and
several reviewers. Often, reviewers have different areas of expertise. In fact,
most of the time, a synchronous collaboration of reviewers with disjoint areas
of expertise is both unnecessary and, in some cases, impractical. The feasibility
of a synchronous collaboration approach was shown in the ICICLE system [2].
Although, there are some benefits to holding such a meeting, providing an
asynchronous collaboration mode also seems appropriate.

Under our paradigm, the reader role becomes a baseline recording. Each
reviewer independently walkthroughs over the code. Reviewers work asyn-
chronously and edit, splice, and annotate segments of the baseline recording
with their interactions and annotations.

It is well known that code walkthroughs are not only used for detecting
errors. Indeed, they are also intended to share knowledge and to bring people
on-board. Since a recorded walkthrough session captures both actions as well
as annotations, and it can be replayed at any time, the session object therefore
becomes on-line, live documentation of system validation.

Goals

The following are our goals in designing a system that makes an effective use
of the paradigm:

e The replay of a session object must be consistent with the original session.
This translates to the need to provide a synchronized replay of the data
streams and to the need to maintain a consistent view of referenced
resource inputs.

e Paradigm users must be able to successfully collaborate. That is, users
must be able to successtully manipulate the artifacts in ways that capture
and lead to collaboration. As has been the experience with the use of
email for collaboration among a group, we expect that the users will need
features such as the ability to exchange, edit, browse, and interact with

session recordings. Some of the features above are similar to those found
in the VCR metaphor.

o It is desirable for users to be able to statically browse of session con-
tents for events of interest. For instance, a user-interface analyst might
be interested in browsing through the recording to determine when a
particular command was typed or when the mouse was dragged.

Finally, the following conditions are assumed to maintain the determinism of
the replay: the application performs deterministic computations; the state and
events that affect the computation can be captured; and the same application
is used for record and replay.

Modeling of Session Objects

The session object encapsulates all the information needed to replay a record-
ing and is the building block of this paradigm. The session object is composed
of multiple stream objects, such as the streams for audio and window events.
Each stream is composed of sequences of data elements, where data elements
represent the lowest-level of granularity at which events are captured. For au-
dio, data elements correspond to audio frames. For window stream, the data
elements typically correspond to events such as MouseDowN, MouseUP,
etc. Each object class provides functionality which is used to build services for
its parent object class in the hierarchy. Figure 2 shows the correspondence of
the abstraction layers and the object hierarchy.

The SESSION ABSTRACTION LAYER provides services for the management
of multiple streams. For example, it provides inter-stream synchronization ser-
vices. The next layer, the STREAM ABSTRACTION LAYER provides per-stream
management services. For example, it provides adaptive stream scheduling ser-
vices to adapt to each stream’s performance requirements. Its services distin-
guish between two classes of streams: annotation and functional streams. An
annotation stream contains annotation events. A functional stream updates
the state of the application. The window stream (W) is typically a functional
stream, whereas the audio stream is usually an annotation stream. The fol-
lowing layer, the SEQUENCE ABSTRACTION LAYER provides efficient sequence-
based access to data element objects. This layer groups low-level events into
logical units that must be executed as an atomic unit. Consider the following
two window events, MOUSEDOWN immediately followed by a MoOUSEUP. In
this case, this layer abstracts these as FE; = (MouseDown MouseUp), that
is, a MOUSECLICK sequence. The DATA ELEMENT ABSTRACTION LAYER, the
lowest layer, provides transparent access to data element objects. These data
elements can reside in local disk, remote repositories or be already in mem-
ory. Regardless, this layer provides transparent access services to the sequence
abstraction layer.

Session -
Multiple Stream

Management

Streams
Per-Stream
Management
Stream Semantic
Representation

| Data Access

ences

1

o
2
@
m
@
3
[

Figure 2. The object hierarchy (a) and corresponding abstraction layers (b).

Design

Session objects are similar to video recordings. Both are composed of temporal
multimedia streams, both can be used for describing processes, and in both
recorded segments can be edited, copied, and exchanged to fit user needs.
With the help of the VCR metaphor we hope to facilitate the discussion of the
features of the paradigm.

Recording a Session

A session with an application can be modeled as interactions with the appli-
cation and its data resources. To capture the session, we record these interac-
tions. To increase its information content, we also simultaneously record voice
annotations. For each of these streams, a per-stream sampling module is pro-
vided to efficiently record the events. In capturing interactions, we considered
the following issues. Interactions could be captured by means of recording
either (1) user-level operations over the application, (2) window events, or (3)
display updates. User-level operations (e.g., OPEN, PRINT, QUIT commands)
are at a more abstract level than window events, but require extensive work
in making existing applications replayable. Furthermore, certain operations
such as gestures using mouse movements are typically not captured. Both ap-
proaches (2) and (3) allow capturing of mouse-movements used for gesturing or
for indicating hesitation on the use of a feature of the application. We however
decided to record window events, rather than display updates. While the use
of display updates is application-independent and requires less sophisticated
synchronization schemes, it has the disadvantages of a larger session object
size, the inability to query the contents of a session object, and the inability
to interact with a session object — features of collaborative interest which are
possible with the use of window events. Although we are currently exploring
approach (2) (window events), we feel, however, that a complete system would
give the user the option to also record display updates.

Stream
Server

Figure 3. Storage representation of recorded sessions.

Replay support using approach (2) requires capturing the state of the appli-
cation. We require that the application provides functions to record and reset
its state. To record a session, the toolkit calls back the application to tell it
to capture its state. Resource references (e.g., environment, files etc.) must
also be faithfully reproduced during replay. This problem is addressed in the
Section on Replaying a Session.

Each stream is represented as a tuple containing the stream’s initial state
and its events. For example, the initial state of the window stream contains the
state of every object of every window. This is accomplished by periodically
sending a write message to the root parent object of every window in the
display hierarchy. We use 5; to denote the state checkpoint at time t.

Storage and Access of Sessions

Session objects are persistent objects and must be stored on disk. However,
in order to be exchanged and be used over time, we need to provide: (1) an
editable representation for them and (2) efficient access to them.

To address (1), we opted for a file-based representation for session objects,
as shown in Fig. 3. A session object is stored as a directory S. To illustrate
this representation, suppose that S consists of a window stream (W), an au-
dio stream (A), and a shared video stream (V). It is composed of a session
header file H, a measurements file M containing the data needed to support
synchronized replay of the session, a header file for each stream (W, A, V'), and
a resource directory R. Each stream maps to a file. However, the stream data
may be stored directly in the header file (as for W), indirectly as references to
persistent objects (as for A), or as proxy references to shared objects (as for
V).

Streams typically have different access requirements. To address (2), the use
of this file-based representation allowed us to tailor access strategies to each
stream’s requirements. To amortize read access costs, we used prefetching of
events. To amortize write access costs, we used buffering of events. These

Window Audio

Dispatch
Thread

Playback
| Thread
Playback
Thread

Prefetch Effort = 4 Frames

Execute

| Schedule 3
”””” Producer
Thread
Put

-
Queue Stream Playback
(a) Repository Thread

Figure 4. Thread models for replay of the window event stream (a) and for the replay of
the continuous audio stream (b).

Consumer
Thread

|
I

. | Prefetch
Wait Penalty

Playback
Thread

(b)

techniques were optimized so as to balance the overhead for disk-accesses vs.
the available time for stream-execution. Note that access and execution tasks
execute and compete for the same resources within the same cpuU.

Replaying a Session
To ensure a faithful replay, we addressed the following questions:

o Is there need for synchronization? Yes. Early on, our experiments showed
that both streams (audio and window) had different susceptibilities to
load conditions and that their rate of progress was dependent on the
current load. Therefore, the ability to dynamically adjust the speed of
replay of streams is desirable.

o How to synchronize different streams? We decided to test several different
protocols for synchronizing audio and window streams. Two way proto-
cols, which maintain relative synchronization between the two streams at
the cost of their occasional re-synching, led to audio discontinuities, and
were deemed untolerable by users. Consequently, we designed a one-way
inter-stream synchronization scheme that synchronized slave streams to
a master stream. The scheduling of events from a slave (window) stream
was periodically adjusted to synchronize to its master (audio) stream.

o Is an adaptive synchronization protocol needed? Yes. The variances due
to CPU availability, DMA access, thread overheads, disk access, reliability
of timing services, etc., affected the scheduling of both window and audio
streams. Our results in [12] showed that an adaptive protocol that at-
tempts to compensate for varying load generally performs better across
all load conditions.

Streams execute as cooperating thread tasks in a single cPU. The infras-
tructure provides two generic thread models. Figure 4(a) shows the thread

model used to replay window events. On the average, during the sampling
of the window stream, between 10 to 30 window events per second are gener-
ated by the user. However, during replay, these events must now be produced
and consumed by the application itself. Therefore, a producer and consumer
thread pair is used. The producer thread prefetches events from disk and puts
them in the shared queue at intervals determined by the differences between
event time-stamps as well as the protocol used for multi-stream synchroniza-
tion. The consumer thread gets events from the shared queue and dispatches
them to the window system for event replay. Figure 4(b) shows the thread
model used to replay audio frames on the NEXTs. Read access for the audio
stream relies on a parametrized disk-prefetching of audio frames.

The replay also introduces problems with the handling of resource references
(e.g., fonts, files, devices, etc.) during the recording of a session. On the replay
platform, referenced resources may be unavailable and, even worse, if available,
may not be in the same functional state. To address the unavailability problem,
resource references are classified as being public or private. Public resources
are assumed to be widely available across platforms. Private resources need to
be made available to replay platforms. To address the state problem, resource
references are also classified as being stateful or stateless. Stateless resources
are made available only when classified as private resources. Stateful resources
must be available under a consistent state to replay platforms. A session
recording also contains a resource requirements list and a resource shipping
list. The resource requirements list indicates which resources are referenced by
a session. The resource shipping list indicates which, how, and where resources
referenced by a session should be accessed. These lists are provided at replay
time to ensure a correct replay of the recording.

Editing of Sessions

The editing problem comprises recording new streams over a baseline record-
ing, copying and pasting stream segments, extending a session with additional
interactions and annotations, and the like. However, the editing problem is a
difficult one and remains open. We are currently exploring some preliminary
approaches to this problem.

On a VCR, streams are functionally independent and editing is typically done
on a per-stream basis. We take a similar approach. However, in the case of
session recordings, editing can only be done between well-defined points across
all streams. Suppose that we want to dub-over a segment of the window stream.
Conceptually, this is equivalent to replace some stream segment modeled by
some events [¢;, .., €i45] With a new set of events [el,..,el]. However, we
must address the following two constraints. First, editing must preserve the
synchronization that exists between streams. Secondly, since streams are not
stateless — events have to be executed in the correct state — editing must
preserve correctness of replay.

Editing Sessions Expanding Sessions

stream_a2

session_a

stream_c2

Sieam &

session_c

N

session_b

()Y (

session_a)

Figure 5. Editing (a) and expanding (b) session objects.

To maintain the correspondence that exists between streams, editing must
be performed with identical sampling and synchronization schemes as in the
original recording. To ensure correctness of replay, a stateless execution bound-
ary is needed. One strategy is to allow only editing to start from a state check-
point. The efficiency of this editing strategy depends on how apart the state
checkpoints are from each other. Note, however, that if the replay is based on
display updates instead (previously discussed in the Section on Replaying a
Session), editing of a session becomes much simpler since the streams are now
stateless.

Figure 5 shows two of the potential ways of editing sessions. Figure Ha
models editing of a session through concatenating of previously recorded ses-
sion segments, s,, s, and s.. Figure 5b models a session s, that extends a
previously recorded session s, with additional interactions and annotations.

Browsing a Session

Use of the VCR metaphor seems appropriate for doing simple sequential search
of a recording. A VCR has two modes of forward search: fast forward and fast
replay. A VCR easily performs any of these operations because it is based on a
stateless model. In our case, streams are associated with a state but we show
next how these operations can still be done efficiently. Say we want to fast
forward from a current event ¢; to event e,. We can not just randomly index
to that event because: (1) event e,, may have some causal dependency with a
previous event in the sequence; (2) event e, may not provide a clean execution
boundary across all streams.

There are two solutions to these problems: (a) replay all events in the se-
quence < €;,...,e, >, but at a faster (perhaps variable) rate or (b) jump to
the last state checkpoint S; prior to e, and then apply the sequence of events
Si+ < €, ..., €, >. Solution (a) (i.e., fast replay) is reasonable when the for-
ward distance is small. Solution (b) (i.e., restartable replay) is appropriate
when the forward distance is large. Note that in general, variable speed re-
play relies on strong synchronization support, requiring the scaling of the rate
at which events are to be dispatched while maintaining the relative synchro-
nization between streams (or requiring the disabling of replay of some of the
streams such as audio).

Backward replay can be implemented if every event has an inverse or undo
operator. For many streams (e.g., discrete streams), the ability to execute the
stream in backward order is likely to be difficult. In such cases, backward
replay may have limited or no feasibility.

Interacting with Sessions

Interactions with a recorded session can be performed at two granularities:
(1) between recorded sessions and (2) within a recorded session. Suppose
that session s; results in the drawing of a layout and session s; results in the
formatting and printing of a layout. A user may wish to replay session sq,
add some final touches to the layout, and then print it by means of session s,.
This is an example of between-type interactions. Interactions within a session
are possible through the use of the resource reference list. In this case, users
parametrize and modify resources referenced to by a session to fit their needs
and requirements (e.g., printing a different file than that printed in the original
recording by replacing the file resource).

Other Features

Users, such as interface analysts, may want to browse a session recording for
interesting events.

Static browsing of the session contents is a feature that does not have a
simple match in the VCR model. Consider a window stream segment corre-
sponding to having a user click on a window, position the cursor and then
start typing the word “The”. Such a content can be potentially abstracted
from the window stream without having to replay the session. Knowledge dis-
covery tools can be created to examine and peruse repositories of these digital
recordings.

Users also need a way to efficiently exchange session objects. Resources
referenced by a session must be faithfully forwarded or equivalenced during
replay. Mailing of a session S (recall example in Fig. 3) reduces to the prob-
lem of mailing of directories. The mailing of a shared stream, such as V, is
straightforward, by means of using relative referencing to the repository R.
The resource reference lists and resource shipping lists are used here to ship
resources.

Implementation

We implemented an object-oriented prototype toolkit for NEX'T workstations
under the Mach Operating System. The toolkit provides the REPLAYABLE
object class. The REPLAYABLE class provides applications with transpar-
ent access to the infrastructure services. A MACDRAW-like object oriented

ol RbR: Replay by Re-execution Controller

Ended @

(-« i RecDuration Logical Tive Tive NowIs

B m:35 A m:35

(‘Im.erfaceTxack
(" AudioTeack | (Infa InUse Fause

m——=w O |>|0]|m]

16384 SoundFileSize hytes

Replaved entry #[16]

Figure 6. View of the REPLAYABLE application controller.

drawing application and a text editor application were retrofitted with the
toolkit. REPLAYABLE applications access paradigm features through menus
and windows added to the application. The session controller window pro-
vided by the prototype to each REPLAYABLE application is shown in Fig. 6.
The infrastructure allow applications to: (1) re-execute window events (e.g.,
gesturing, typing, moving windows), (2) record voice-annotations, (3) provide
synchronized replay of these streams, and (4) to replay selected streams.

The infrastructure provides a logical time system (LTS) to support time-
stamping of events. It also provides efficient, disk-based, read and write of
streams. Finally, it provides per-stream scheduling and inter-stream synchro-
nization protocols to support faithful replay of streams.

The prototype currently supports two streams: a discrete stream (i.e., win-
dow events) and a continuous stream (i.e., audio). Each stream is dispatched
to a separate processor. The window event stream is dispatched to the CPU —
which is subject to arbitrary load conditions. The audio stream is dispatched to
the DSP — assumed to be dedicated. These components (application, streams,
DSP, CPU, infrastructure services, disk, and data paths) are shown in Fig. 7.
Side (a) shows the record-time view and side (b) shows the replay-time view
of the prototype.

We designed an adaptive synchronization protocol that attempts to: (1)
maintain statistical control over inter-stream asynchrony, and (2) update a
weighted history forecast formulation to determine the presence of a significant
trend in the asynchrony history. The adaptive behavior of the protocol works
as follows. If the current asynchrony is large enough, the past asynchrony
history is examined to determine the presence of a trend in the asynchrony.
If such a trend exists, the window stream schedule is either compressed or
expanded — thus increasing or decreasing the relative replay speed of the
window stream, respectively.

Replay Able Application

Replay Able Application

Figure 7. Application model for record (a) and replay (b) of window and audio streams.

Experience

Our experience with the prototype shows several results. The duration of
most recorded sessions tends to be of the order of a few minutes, typically
2 to 4 minutes in our experience. While users tolerated some inter-stream
asynchrony — up to 1 or even 2 seconds was acceptable — most users did not
tolerate audio discontinuities. We found that our adaptive synchronization
protocol [12] provided acceptable performance across all load conditions. The
maximum magnitude of the asynchrony |maw,sy..| was bounded across all load
conditions to the duration of an audio frame (2 seconds).

Maintaining data as separate streams was a good design choice for record,
storage, and access. Both streams had substantially different characteristics.
The window stream had a 10 : 1 compression ratio. The stream had a variable
event density between 10 to 30 events per second. For the audio stream it
was possible to achieve a 2 : 1 compression ratio but only by the use of the
audio-specific compression software. We found that to handle access overheads
for the audio stream, it was best to amortize the overhead over several frames.
The access overheads of the prototype averaged about 2%.

There are basically three important parameters that determine access over-
heads for the audio stream: (1) the audio frame size; (2) the number of audio
frames that are written to disk at one time during recording; and (3) the num-
ber of audio frames that are prefetched from disk at one time during playback.
We summarize the appropriate values found for these parameters next. Au-
dio frame sizes of 16 KB were found to work best on our platform. Since
the NEXTs use threads to dispatchs audio frames, using smaller frame sizes
made thread scheduling overheads appreciable, so as to affect the quality of
audio playback. Using much larger values did not cause significant additional
improvements in performance. Writing 2 frames at a time (32 KB of data) to
the disk at a time led to the best amortization of the disk penalty hit during
recordings. Prefetching 4 frames at a time (64 KB of data) was found to give
the best amortization of the disk penalty hit during playback.

Experience with the prototype also made us aware of the potential for the
following further uses of the paradigm.

Using the paradigm to capture collaboration content

In a recently funded NSF project, we plan to support the type of collaboration
that occurs between a radiologist and a doctor over radiographs to diagnose
a patient’s medical problem. Doctors and radiologists often have very busy
schedules. So the ability to collaborate asynchronously is needed. We would
like a radiologist or a doctor to be able to record a session in which they
are interacting with one or more images, pointing to specific areas of interest,
using audio to explain their understanding or raise questions about regions of
interest in the images, and adding text or graphical annotations. They can
collaborate by exchanging such recordings. Such digital, high resolution session
recordings will not only help to capture radiologists’ diagnostic conclusions,
but also their diagnostic process. This is important because in many instances
how the diagnosis was reached is as important as the diagnosis itself.

Using the artifact for process analysis

Consider the task of building a user interface using a graphical interface builder.
By recording the GUI building session, we obtain both: 1) an active document
that captures the rationale of why the objects were placed in a given arrange-
ment; and 2) a tutorial that shows and reconstructs the resulting layout and
connections. A collection or library of such active artifacts has reuse and
knowledge-capture value to organizations. Therefore, means to modify, inter-
act, and browse these session artifacts are needed. This can be regarded as
a digital library of process descriptions — active artifacts. By supplying own
context data to a generic artifact, users may be able to transform a generic
process description to a process instance.

Using the artifact as an active process description

Consider the use of tutorials. Tutorials typically illustrate how to perform
a task — i.e., a process instance. One step further to tutorials is the idea
of process capture. The goal of process capture is encapsulate the use and
description of a task. Unlike tutorial documents, the paradigm’s artifact allows
one to encapsulate an active — rather than passive — description of a process.
That is, rather than just illustrating a task, the session artifact re-executes the
task and thus leaves the underlying application in a state that allows its user
to continue interacting with the application.

Related Work

Our work is related to work in interface replayers and pseudo-servers, collaboration-
aware systems, conversation systems, and multimedia replay systems.

Interface replayers, such as the commercially available WATCHME and MACRO-
MIND, work at the display server level, intercepting and recording updates to
a display server. Since updates from all applications in the server are cap-
tured, all application’s updates can be re-displayed, as opposed to just those
from some specific application. However, these approaches are limited to re-
producing and maintaining the external look of the interface. Consequently,
interactions with a previously recorded session, are not possible.

X pseudo-servers such as SHAREDX and XTV [1] intercept events sent by
applications being shared to the window server. These systems are primarily
targeted for synchronous work. However, if these events are recorded and the
state of the window server captured, this approach, in principle, allows the
events to be replayed for specific applications. While our approach does not
need to reconstruct the interface, these approaches must reconstruct it using
low-level updates. Furthermore, replay is limited to only those events that go
through the Window Server.

Our approach is based on the an exchange and refinement of a work-in-
progress by group members. Several other systems also support this paradigm,
such as CONVERSATIONBUILDER [8] and STRUDEL [15]. These systems work
by first defining a shared object and then formalizing a protocol that defines
and limits the transactions that modify this object. In both cases, the shared
object is an argumentative tree. In these systems, interactions are usually in
reference to some data artifacts. Our paradigm introduces a new data artifact,
which can be used to enrich intra-task descriptions on these systems.

Collaborative writing systems such as QUILT [6] and PREP [13] support
the idea of allowing users to work asynchronously through annotations added
to a document. Our approach builds on those ideas, but in our case, the
artifact being annotated is a software-based recording of interactions with an
application. Annotations can be made by gesturing (e.g., telepointing), text,
and audio.

Conclusion

In this paper, we presented a new paradigm and its associated collaboration
artifact for the support of asynchronous collaboration. The paradigm and
its underlying synchronization infrastructure allow users to capture and re-
execute interactive sessions with an application into data artifacts, i.e., the
session objects. Unlike other data artifacts, session objects are active objects.
Session objects can be manipulated, replayed, interacted with, and analyzed
to fit the needs of collaborators. Sessions objects are represented by temporal

streams, kept synchronized during the replay of the session. Furthermore,
this new data artifact introduced by the paradigm can also be used to enrich
the artifact-base of existing collaboration systems, so as to capture intra-task
descriptions in both asynchronous and synchronous collaborative systems.

Our goals for the near future are: 1) provide implementations to edit and
browse session objects; and 2) obtaining user feedback to prioritize the design
and implementation of new features.

Acknowledgements

We would like to thank all the UARC project members, in particular, Hyong Shim and Amit
Mathur. This work has been supported in part by the University of Michigan’s Rackham
Merit Fellowship for Under-Represented Minorities and by the National Science Foundation
under Cooperative Agreement TRI-9216848.

References

[1] H.M. Abdel-Wahab, S. Guan, and J. Nievergelt. Shared workspaces for group collab-
oration: An experiment using Internet and Unix inter-process communication. [EEE
Communications Magazine, pages 10-16, Nov. 1988.

[2] L. Brothers, V. Sembugamoorthy, and M. Muller. ICICLE: Groupware for code in-
spection. In Proceedings of the Second Conference on Computer-Supported Cooperative

Work, pages 169-181, October 1990.

[3] R. Clauer and et. al. UARC: A prototype upper atmostpheric research collaboratory.
FOS Trans. American Geophys. Union, 267(74), 1993.

[4] C. Ellis, S.J. Gibbs, and G. Rein. Design and use of a group editor. In G. Cockton, ed-
itor, Engineering for Human-Computer Interaction, pages 13-25. North-Holland, Am-
sterdam, September 1988.

[6] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences. Com-
munications of the ACM, pages 38-51, January 1991.

[6] R.Fish, R. Kraut, M. Leland, and M. Cohen. Quilt: A collaborative tool for cooperative
writing. In Proceedings of ACM SIGOIS Conference, pages 30-37, 1988.

[7] V. Goldberg, M. Safran, and E. Shapiro. Active Mail: A framework for implementing
groupware. In Proceedings of the Fourth Conference on Computer-Supported Coopera-
tive Work, pages 75-83, Toronto, Canada, October 1992.

[8] S. Kaplan, W. Tolone, D. Bogia, and C. Bignoli. Flexible, active support for col-
laborative work with ConversationBuilder. In Proceedings of the Fourth Conference
on Computer-Supported Cooperative Work, pages 378-385, Toronto, Canada, October
1992.

[9] M. Knister and A. Prakash. DistEdit: A distributed toolkit for supporting multiple
group editors. In Proceedings of the Third Conference on Computer-Supported Cooper-
ative Work, pages 343-355, Los Angeles, California, October 1990.

[10] T. Malone, K. R. Grant, and et. al. ObjectLens: Intelligent information sharing sys-
tems. Communications of the ACM, pages 390-402, May 1987.

[11]

[12]

[14]

[15]

N.R. Manohar and A. Prakash. Replay by re-execution: a paradigm for asynchronous
collaboration via record and replay of interactive multimedia streams. ACM SIGOIS

Bulletin, 15(2):32-34, December 1994.

N.R. Manohar and A. Prakash. Synchronization infrastructure for the support of the
session capture and replay paradigm for asynchronous collaboration. In submaitted to:
Network and Operating Systems Support for Digital Audio and Video, N.H., USA. May
1995.

C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H. Morris. Issues in the design
of computer support for co-authoring and commenting. In Proceedings of the Third
Conference on Computer-Supported Cooperative Work, pages 183-195, Los Angeles,
California, October 1990.

C.M. Neuwirth, D.S. Kaufer, J. Morris, and R. Chandhok. Flexible diff-ing in a collabo-
rative writing system. In Proceedings of the Fourth Conference on Computer-Supported
Cooperative Work, pages 147-154, Toronto, Canada, October 1992.

A. Sheperd, N. Mayer, and A. Kuchinsky. Strudel: An extensible electronic conversation
toolkit. In Proceedings of the Second Conference on Computer-Supported Cooperative
Work, October 1990.

