
Security in Practice: Security-Usability Chasm

Atul Prakash

Computer Science and Engineering Division,
University of Michigan, Ann Arbor, MI 48109, USA

Abstract. Computer systems security area has received increased at-
tention from both academics and in industry. However, recent work indi-
cates that substantial security gaps emerge when systems are deployed,
even with the use of state-of-the-art security protocols. Our findings sug-
gest that wide-spread security problems exist even when protocols such
as SSL and SSH are deployed because systems today do not give security
warnings properly or make it trivial for users to bypass them. Even when
these protocols are deployed correctly, systems often leave themselves
vulnerable to social-engineering attacks as an artifact of their design. In
one of our studies, we examined the web sites of 706 financial institutions
and found over 90% of them to have made poor design choices when it
comes to security, even though all deployed SSL for communicating pass-
words and doing transactions. In another study, we examined the usage
of SSH within our own department and found that most users would
be susceptible to a man-in-the-middle attack. Based on our studies, we
postulate that some of the most interesting challenges for security re-
searchers and practitioners lie at the intersection of security theory, their
application to practice, and user behavior. We point out some of those
challenges and hope that the research community can help address them.

1 Introduction

Online activities become an integral part of our day to day life. For example,
in the financial world, many people have given up conventional check writing in
favor of online banking. Brokerage sites are available for people to buy and trade
stock online. Financial institutions have a substantial stake in securing their
customer accounts. In order to protect customer accounts, financial institutions
deploy latest security technology, such as SSL/TLS [1] (originally developed by
Netscape), and employ security specialists to design their systems. Organizations
are also increasing deploying security protocols, such as SSH [2], to prove remote
secure access to their servers, in place of insecure protocols such as telnet.

A question that arises is whether the current practices for deployment of
security solutions are adequate. We have done some preliminary studies that
suggest most systems today continue to be vulnerable to network and spoofing
attacks, even when they deploy secure communication protocols. This is true
for both systems in academia as well as in the commercial world. Most of the
problems that we identified are at the intersection of usability and security,
but some appear to be due to insufficient appreciation of security risks beyond



eavesdropping of passwords or sensitive network communication. We therefore
submit that research needs to take place at the intersection of security principles
and its practice at the end-user level to address security gaps that arise at the
end-user level. In my talk, I plan to present some of our findings and hope that
the research community as well as the commercial world will explore solutions
to addressing those gaps.

We carried out two studies. The first study [3] examined the usage of SSH
within our department and the second study [4] analyzed the design of web sites
of financial institutions in the United States from a security perspective. We
will not go into the details of the studies in this paper, but just highlight some
of the security gaps that were identified by these studies. Besides our studies,
other studies [5, 6] also identified gaps in security in real-world systems due to
inadequate interface design. Our studies highlight gaps even for sophisticated
users who understand security.

In the next section, we discuss the results from two of our studies. In Sec-
tion 3, we present some challenges in IT security in developing countries such as
India that will be increasingly pushing information technology use to people in
rural areas. In Section 4, we discuss some of the lessons learned and some open
challenges. Finally, we conclude the paper.

2 Results from Studies

We briefly describe preliminary results from two on-going studies of vulnera-
bilities at the user level. The first study examined the vulnerability of users to
man-in-the-middle attacks on SSH on our department’s machines. The users in
this study can be considered to be fairly sophisticated users since they mostly
consist of computer science graduate students and some faculty. The second
study analyzed over 700 web sites of banks for a range of vulnerabilities that
resulted from poor web-site design decisions from a security perspective, as op-
posed to vulnerabilities that result from poor coding practices (which lead to
vulnerability to attacks such as SQL injection or cross-side scripting) or incor-
rect configuration of SSL.

2.1 Vulnerability Assessment of an SSH Deployment

SSH is considered to be a well-designed protocol from a security perspective
and is widely deployed. When used properly, it is designed to provide protection
against both passive and active network attacks. One limitation of SSH is that
a client must have the server’s public key a priori; SSH does not provide secure
support for key distribution. However, implementations of SSH do provide error
messages and, if so configured, terminate the connection if the destination host
is unable to present proof of possession of the server’s private key.

We monitored SSH logs to analyze user behavior when our system adminis-
trators changed the SSH host key on a popular server within our department.
The server’s public key had remained static for over two years and thus expected



to be installed at most user’s machines. Over 70 users attempted to login over
the server after the key change during the monitored period. We found that less
than 10% of the users asked the administrators if there was a key change and
none verified the actual key. Rest of the users decided to log in, ignoring the
warnings from SSH. This was true for even users whose connections were ter-
minated by SSH (this happens in SSH in “strict checking” mode). Almost all of
these users logged in later – presumably after deleting the offending server’s host
key from their configuration file, typically /.ssh/known hosts on non-Windows
hosts, so that it could be replaced automatically on the next SSH login.

We also analyzed the SSH logs of users who had opened accounts in the last
three months on the server and inquired as to if any of them had asked our
administrators for the server’s host key. None had. All users accepted the initial
key that was provided by the server.

An interesting question is why did users in our study make poor security
choices when using SSH? One could potentially say that they were ignorant
of risks, but we do not believe that to be the case. Most of the users in our
study were graduate students and faculty in Computer Science and were so-
phisticated enough to get around SSH warnings by removing the offending keys
from /.ssh/known hosts file. Furthermore, SSH gives pretty explicit warnings
about the risks of establishing the connection. We do not have data to answer
this question conclusively, but we did talk to a few of the users, including some
we knew were aware of the risks (because they have done research related to
security).

Based on our conversations, we came up with a few possible factors. Some
users may simply be using the path of least resistance. They perceived the SSH
error to be an obstacle to connecting to the server. The simplest solution to get
around the problem was to delete the server’s public key rather than contact an
administrator to verify the key. This suggests that the simplest path to getting
around a security error for a user should be carefully secured, rather than be-
ing treated as a rare anomaly that is not particularly interesting from security
perspective. SSH does not do that well. SSH warnings do suggest to contact the
administrator, but they do not say how or what to do if the administrator is not
available (e.g., late at night). Thus, the easiest path for a user is an alternative
one – delete the offending key and accept the new key.

Unfortunately, other systems, such as web sites, do not fare much better
either in handling security errors. Many sites will send temporary passwords via
email, for example, when users forget their password. The assumption is that
the path from the server to user’s email account is secure (or someone else’s
problem). But we security researchers know that is not necessarily the case. The
last hop to the user is perhaps the most vulnerable link because a user could be
connected to an insecure wireless network and accessing his email account. Most
web-based email systems today (e.g., gmail, yahoo) authenticate users over SSL,
but deliver email in the clear. A variety of other solutions for handling forgotten
passwords are available, some better than this. But there is no clear standard or



guidelines from the security community for the best way to address this problem,
even though it occurs so frequently in practice, which is an astonishing gap.

Another factor could be that users get frequent security warnings from SSH
when logging to different hosts around the campus that they tune out the warn-
ings and consider them as essentially a nuisance from SSH. Lack of consistency in
user experience to security-related events can really hurt system security. Unfor-
tunately, our study shows that it does not help for administrators of one machine
to provide a consistent experience. In our study, SSH host keys did not change
on the server for over two years. But users do get SSH warnings from other
machines, including login server pools, and when logging in from new machines.
We believe that this may be diluting the impact of a security warning even from
a machine that gives warnings rarely.

In our SSH user study, we found that most users bypassed SSH warnings even
though the host key was changed after a period of two years. As we mentioned
earlier, one problem is that standard SSH warnings tell you that there could be
an active attack going on, but not how to get around the problem and accomplish
the work. Not connection to the server, as the warnings suggest that the users
do, is not really an option for most users because they need to get their work
done. Instead, if the warnings provide clear instructions for verifying the new
key (perhaps by providing a secure URL to a well-known, standardized site),
more users may have followed those instructions. Of course, it is possible that
the instructions themselves could be tampered with by an attacker, leading to
an interesting challenge. In SSH, the key distribution problem is simply left as
an assumption for security. Unfortunately, no standard ways have evolved for
guiding administrators on how to best address it.

Though our study is limited to only one department and one type of pop-
ulation, it strongly suggests that SSH deployments fails to provide protection
against man-in-the-middle attacks at the user-level, even though the protocol it-
self may be designed to prevent man-in-the-middle attacks when correctly used.
We note that if a user uses password-based authentication in SSH, they are
susceptible to a man-in-the-middle attack. It would be safer for a user to use
public-key based authentication in SSH (using passphrases). In that case, an
attacker could spoof a server, but not login as the user to the real server. In
our study, we found that most users did not use passphrases though that is an
available option. Perhaps, passwords are more convenient and provide a path of
less resistance than passphrases.

It is possible that the users made, what they considered to be, a rational
decision. They perceived the risk of an actual man-in-the-middle attack to be
low and the possibility of a configuration change at the server higher. But that
is disconcerting because it means that users will discount security risks and will
use unsafe methods, if given a choice.

SSH designers made the choice to trusts the users to make the right security
decisions. Most SSH clients, when seeing a bad server’s key, very clearly tell a
user not to connect and to verify the server’s fingerprint with an administrator
because they may be subject to a serious attack that will totally compromise the



session’s security. But it also tells them that they can get around the problem by
deleting the cached server’s key. Our study indicates that most users will choose
the latter option, raising the question whether even sophisticated users should
be trusted by implementers of security systems to make security decisions.

2.2 Vulnerability Assessment of Financial Websites

In [4], we analyzed over 700 web sites of financial institutions with presence in
the United States. The main aspect we were looking for is how these institutions
structured the online interaction with their customers from the perspective of
security vulnerabilities. The good news is that almost sites use SSL for authenti-
cating their web server to users and do not send passwords in the clear. The bad
news is that most of them still make poor design decisions at the macro level that
leave their users more vulnerable to spoofing, phishing, and social engineering
attacks.

Below are two representative examples of poor design decisions that many of
the financial web sites suffered from (several other vulnerabilities can be found
in [4]):

1. Providing a secure login window, but on an insecure page
2. Insecure pages for customer service and instructions for password reset

Why do these decisions get made and why are they poor decisions from a
security perspective? Let us consider each of the two examples in turn. Here is
a plausible chain of events between an hypothetical bank’s user-interface design
group and its security group that lead to the first decision:

1. Providing a login window on the home page is convenient for users, as per the
user-interface team. It saves users one click in going to a separate login page
and we know that the number of clicks matter, when it comes to ease-of-use.

2. The security group rationalizes that the userid and password is being sub-
mitted securely over SSL. Therefore, the credentials are safe against spoofing
and network attacks.

Thus, it is plausible that the software group at the bank rationalizes that
the design decision of providing the login window on an insecure home page is
reasonable because the Javascript code that handles the login window submits
the userid and password over an SSL-protected session. SSL guarantees security
(assuming that SSL is secure), therefore the login process is secure.

Unfortunately, the reasoning is faulty. From a user’s perspective, they do not
know if the login window form is genuine or not, since it is on an unauthenticated
page. Thus, the login credentials must be entered based on blind faith that
the login page is not spoofed and not tampered with, and that the financial
institution has taken precautions to submit the information securely.

I recall reporting this problem to my brokerage company (which I shall leave
unnamed) in United States several years ago when they used to provide a lo-
gin/password window on an insecure home page (though the credentials were



submitted over SSL). The response was that if I was concerned, I should just
click the login button without entering the user id and password. That will take
me to an SSL-protected page, where I could enter the correct user ID and pass-
word. I would argue that it it unreasonable to expect most users to be aware
of such a workaround and most users will not use it anyway since it is not the
path of least resistance. To that company’s credit, at least they had a solution
for me and eventually they modified their login procedures so that they are no
longer vulnerable to that problem. Many other financial institutions, however,
continue to take that risk.

Now, let’s examine the second problem of providing contact information on
an insecure page. One of the institutions that holds retirement accounts for
faculty at my university, TIAA/CREF, was guilty of that. Why is this a poor
security decision? Let us assume that part of the threat model is a man-in-the-
middle attack or a site spoofing attack. That is one of the reasons why the use
of SSL for protecting communication related to authentication and transactions
makes sense. Suppose that an attacker redirects the user to a spoofed “Contact
Us” page that contains bad phone numbers for TIAA-CREF that are actually
manned by the attacker. If a user were to use those phone numbers for account
queries, it is conceivable that user would be asked to provide credentials, such as
social security number and birthdate, to verify their identity and would simply
end up giving those to the attacker.

I initially suspected that the problem was primarily due to TIAA/CREF
not being aware of the risk. They could easily have provided the information on
an SSL-protected page. Not using SSL for all pages does potentially reduce the
load on the web server, but I doubt that protecting the “Contact Us” page with
SSL, or even the whole web site, would be a major expense for a large company
that handles billions of customer dollars. I did report the problem to them but,
at the time of this writing, they continue to provide contact information on a
non-protected page. Hopefully, they are working on it. Hit the “Contact Us” link
at their site to see if they have since fixed the problem.

A few financial web sites have addressed this problem. For example, Fidelity
brokerage uses SSL to protect their entire site. However, a vast majority of sites
remain vulnerable today.

3 Broader Problem of Authenticating Users

So far, we only touched on the problem of verifying identity in the context
of an authentication protocol. But, there is a more general problem that has
broader implications. In the United States, social security numbers serve as
universal, unique identifiers for individuals and form the basis of establishing
credentials for other services such as bank accounts and credit cards. But, as is
well-known, the use of a single identifier also increases the risk of identity theft.
In developing countries, such as India, most citizens do not have a unique ID
assigned at present. Tax IDs and voter cards are being increasingly assigned to



individuals, but they are not yet universal. So, there is a window of opportunity
to recommend better systems if the security community can come up with them.

Another interesting problem in a country like India is that of identifying
people over the phone. A large percentage of people do not speak English, the
country is multi-lingual, and as a result the mapping to a bit string that repre-
sents a name in an authentication database is ambiguous. Other attributes, such
as home address, are also ambiguous because many addresses, particularly in ru-
ral areas, are simply a collection of attributes that describe the place sufficiently
for the local mail delivery person; a classical example given in India is an address
specified by just the recipient’s name and a nearby local landmark - presumably
the postal carrier would know the person and how to deliver the letter). This
raises the question how to do verification. For example, if a user gives an ap-
proximately matching name and address (rather than an exact match), should
that be accepted for locating a record? Would it reduce the “number of bits”
in the verification process? I conjecture that it does, since it is akin to doing an
approximate match on passwords, rather than an exact match. But analyzing
the extent of its impact on authentication systems requires further research.

4 Lessons Learned

Fortunately, the situation is not entire hopeless. Our studies suggest a few design
principles that may help in securing systems as well as providing good usability,
though their validation requires further work:

End-user visibility of security guarantees : System designers must not only
secure the network communication channel, but also ensure that the end-
user application is able to make that security visible to the end-user before
the user uses that channel. Ideally, this visibility of security attributes to
the end-user should be tamper-proof for the desired threat model and be
presented in a way that the user is likely to understand and notice. Unfortu-
nately, providing good user presentation of security guarantees is easier said
than done. The work by Cranor et al [7] shows that it can be a significant
challenge in designing interfaces that present P3P privacy policies of web
sites to users so that users are likely to notice them and be able to use them
for making informed security decisions. The work in [5] highlights similar
problems in web browsers for presenting SSL security context. Providing a
tamper-proof way of displaying security guarantees is also a challenge. For
example, Javascript could be used to control the contents of the displayed
URL at the bottom of a page when a link is highlighted. Many users rely on
that to see if a link should be trusted prior to clicking. Browsers are doing a
better job today of preventing scripts from modifying the displayed security
context, but it is still an arms race.

Secure the context : This is a well-known principle that not only communi-
cation must be secured but also its context [8, 9]. For example, SSL 2.0 was
vulnerable to cipher rollback attack because it did not adequately protect



the key negotiation steps. SSH fails to do that for host keys. Unfortunately,
most administrators do not adequately tell users how to verify the host keys
in a convenient way, leaving users vulnerable to security attacks. Providing
a login window (even that is submitted over SSL) on an insecure page is also
an example of this problem; it would be easy for the attacker to replace the
page contents so that the information is submitted insecurely. For a bank to
provide contact phone numbers on an insecure page is also an example of
this problem.

Secure the path of least resistance when errors occur : Security errors
may be rare (most logins are successful), but the implications can be signif-
icant if those errors are not correctly handled. A careful analysis of users’
likely responses to errors and the security implications of that must be done
and standards evolved for handling them safely. That analysis should assume
that most users will choose the simplest path to getting around the problem
rather than the most secure path.

Security warnings should be rare events: In our SSH study, it is conceiv-
able that users get SSH warnings about bad or missing host keys so frequently
that they have come to accept it as “normal”, rather than a possible security
risk. Organizationally, system administrators should make it a high priority
to not change host keys except when a key is suspected to be compromised.
For example, if a server is upgraded (e.g., new computer replacing an old
one), it would be better to transfer the old machine’s key rather than gen-
erating new keys. It would be even better to consider standard extensions
to SSH to support signed host keys (using long-term certificates of organiza-
tion’s authorities). That may help make the warnings rarer when machines
are upgraded and new host keys are installed.

End-user verification of security-related information: If a protocol gives
security warnings with information such as fingerprints, the user must be told
how to verify them. SSH fails in that regard. It does print out the fingerprint
of the host’s key. However, most users are unlikely to be aware how to verify
that fingerprint.

5 Conclusions

We presented some of the findings from two of our studies that suggest existence
of wide-spread security problems at the end-user level in systems that attempt
to deploy security protocols to secure user interactions. Our findings suggest
that significant security gaps are introduced at the application level, even in
systems where security is the primary concern and users can be considered to
be sophisticated about security. This points to a significant challenge for the
security community. The community must not simply ignore this issue, leaving
it to application writers or user-interface designers to address. We must develop
security-oriented guidelines for application developers as well as automatic se-
curity modeling and evaluation tools to assist the developers in assessing the
security of their systems. The guidelines and tools should factor in results from
existing studies on user behavior.



Acknowledgments

The results from studies cited in this paper would not have been possible without
the help of graduate students, Brett Clippingdale and Laura Falk. Brett was
instrumental in collection and analysis of results on SSH usage. Laura Falk was
instrumental in writing scripts to help analyze security at bank sites. I also thank
the organizers of ICISS 2007 for the opportunity to present this work.

References

1. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley (2000)

2. Ylonen, T., Lonvick, C.: The secure shell (SSH) protocol architecture (Jan. 2006)
RFC 4251, IETF draft.

3. Clippingale, B., Prakash, A.: Usability vulnerabilities in SSH: When good users go
bad. unpublished manuscript. Contact author(s) for a copy (September 2007)

4. Prakash, A., Falk, L.: Web security analysis of financial institutions. Technical
Report CSE-TR-534-07, Department of EECS, University of Michigan (2007)

5. Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators: An evaluation of website authentication and the effect of role playing on
usability studies. In: IEEE Symposium on Security and Privacy. (2007)

6. Whitten, A., Tygar, J.: Why Johnny can’t encrypt: A usability evaluation of PGP
5.0. In: Proc. of the 8th Usenix Security Symposium. (1999)

7. Cranor, L., Guduru, P., Arjula, M.: User interfaces for privacy agents. ACM Trans-
actions on Computer Human Interaction 12(2) (2006) 135–178

8. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: Proc. of The 2nd
Usenix Workshop on Electronic Commerce. (Nov. 1996) Revised April, 2007.

9. McDaniel, P.: On context in authorization policy. In: Proc. of the 8th ACM Sym-
posium on Access Control Models and Technologies (SACMAT). (June 2003) 80–89


