
Implementation of a Discretionary Access Control Model

for Script-based Systems

Trent Jaeger and Atul Prakash

Software Systems Research Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122

E-mails: fjaegertjaprakashg@eecs.umich.edu

Abstract

Powerful applications can be implemented using
command scripts. A command script is a program
written by one user, called a writer, and made avail-
able to another user, called the reader, who executes
the script. For instance, command scripts could be
used by Mosaic, the popular World-wide Web brows-
ing tool, to provide fancy interfaces to services, such
as banking, shopping, etc. However, the use of com-
mand scripts presents a serious security problem. A
command script is run with the reader's access rights,
so a writer can use a command script to gain unau-
thorized access to the reader's data and applications.
Existing solutions to the problem either severely re-
strict I/O capability of scripts, limiting the range of
applications that can be supported, or permit all I/O
to scripts, potentially compromising the security of the
reader's data. We de�ne a discretionary access con-
trol model that permits users to
exibly limit the access
rights of the processes that execute a command script.
We use this model in a prototype system that safely
executes command scripts available from Mosaic.

Keywords: Discretionary access control, script-
based systems, authorization, authentication, operat-
ing systems, �le systems.

1 Introduction

Powerful applications can be implemented using
command scripts. A command script is a program
written by one user, called a writer, to act on the
writer's behalf when another user, called the reader,
executes the script. Examples of systems that uti-
lize command scripts include: (1) Mosaic, the popu-
lar information server for the World-wide Web; (2)

2

O/S Process
InteractsAccesses

Executes

1

Composes
Sends

Command
 Script

Command
 Script

Writer

to Reader

Reader

 Reader’s
File System

Figure 1: Command script execution

Telescript1 [17], a system meant for building elec-
tronic marketplaces; and (3) active or enabled mail
systems [2, 3, 6]. For example, Mosaic uses command
scripts to de�ne server actions when a client wants to
access information from the server.

Unfortunately, the use of command scripts also
presents a major security risk. Figure 1 demon-
strates how a command script is composed and ex-
ecuted. First, a writer composes the command script.
Through some mechanism (e.g., Mosaic or enabled
mail) the command script is transferred to the reader.
When the reader reads the command script (number
2 in the Figure), a process is created to execute the
command script. This process runs on the reader's
machine and is owned by the reader, so the command
script is executed with the reader's access rights. A
malicious writer can use these additional access rights
to: (1) read and write the reader's private objects; (2)
execute applications, such as mail, to masquerade as
the reader to other users; and (3) read the password
�le, /etc/passwd, on the reader's machine.

1Telescript is a registered trademark of General Magic, Inc.

File system security in the above systems is pro-
vided typically either by severely limiting the ways
that I/O can be performed within a command script
or by trusting that users will not write improper com-
mand scripts. This is exempli�ed by the Safe-Tcl [3]
language for enabled mail command scripts (an ex-
tension of the Tcl language [13]). Safe-Tcl provides
two interpreters: (1) a trusted interpreter and (2) an
untrusted interpreter. The trusted interpreter pro-
vides no security, so it is meant to be used for interac-
tion with trusted sources. The untrusted interpreter
provides tight security by replacing all the I/O func-
tions with safer I/O functions that only permit I/O
to a single, public directory. This provides security
for the �le system, but it limits the ways in which
command scripts can be used. We �nd that both so-
lutions are somewhat unsatisfactory. Severely limiting
the I/O capability of command scripts makes it dif-
�cult to build applications that perform I/O. On the
other hand, permitting all I/O can cause the reader's
objects to be accidentally or maliciously accessed or
modi�ed by the script. Borenstein has also recognized
these two options do not meet the needs of some appli-
cations, so he has left open the possibility of \power-
augmenting extensions" to the untrusted interpreter.

Our goal is to de�ne an access control model that
permits readers to execute command scripts with a
level of security between the two extremes. Our ini-
tial e�ort, the intersection security model [7], en-
ables readers to permit I/O to command scripts from
trusted writers while protecting the private objects of
both the reader and the writer. In the intersection
model, access is limited to only the objects that the
reader and writer share.

There are several limitations to the intersection
model, however: (1) the writer may not be a known
principal on the reader's machine, so the intersection
may be null; (2) the reader may want to further limit
the access rights of a command script to perhaps pre-
vent the execution of unsafe applications or to prevent
access to system objects, such as /etc/passwd; and
(3) the reader may want to permit access to some pri-
vate objects to complete the interaction. The access
rights needed for executing a command script can vary
greatly depending on the goal of the interaction, the
application, and the writer. In this paper we de�ne
a discretionary access control model that permits the
reader to
exibly de�ne the access rights for execut-
ing a command script. In addition, the writer can
also grant access rights to the command script using
our model. We demonstrate the use of this access
control model in the implementation of a system that
executes Mosaic server scripts.

The structure of the paper is as follows. In Section
2, we de�ne the problem and list our assumptions. In
Section 3, we describe the implementation of an ap-
plication server on Mosaic and the security problems
encountered. In Section 4, we outline the security re-
quirements of the application server. In Section 5,
we de�ne our discretionary access control model. In
Section 6, we detail a prototype implementation of
a script execution system for the Mosaic application
server that uses our access control model. In Section
7, we present conclusions and outline directions for
future work.

2 Problem Statement

In conventional systems, principals (e.g., users, ma-
chines, etc.) execute processes that perform opera-
tions (e.g., read, write, etc.) on objects (e.g., �les,
printers, etc.). The permissions of a principal to per-
form operations on system objects are called the ac-
cess rights of the principal in the system. In the exe-
cution of a command script, the reader is the principal
who executes a process whose code (i.e., the command
script) is written by another principal, the writer.
Since the reader is the process' principal, the pro-
cess can perform any operation on any object that the
reader can. This level of access rights for a command
script is unacceptable because the writer can gain ac-
cess rights to the reader's private objects. However,
in some cases, the reader may need to grant limited
access rights to enable the command script to per-
form the I/O (i.e., the operations on system objects)
necessary to implement the interaction. Meanwhile,
objects not involved in the interaction should be pro-
tected from access. The reader must be able to
exibly
limit a command script's access rights, such that the
reader can be con�dent that the objects that need to
be protected are.

In addition, the writer may also wish to grant ac-
cess to objects for use by the reader. The writer
should also be able to limit the set of objects made
available to the reader based on the purpose of the
command script.

The assumptions we make in solving the problem
stated above are as follows. First, we assume a multi-
user system that contains objects that are organized
in an hierarchical, name space. We use Unix 2 syntax
for the name space in our examples because of its
familiarity. Also, the granularity of access control is
limited to the object-level. Therefore, if a book is an

2Unix is a registered trademark of the Unix Open Founda-
tion, Inc.

Figure 2: The UARC System Interface

Figure 3: UARC Home Page

object, access control on the chapters in the book is
only possible if the chapters are also objects. Lastly,
we assume the presence of a secure operating system,
such as Trusted Mach [1], that provides authentication
of principals, secure communication channels, a secure
initialization procedure, etc.

3 Example Problem

An example where the reader must permit the
command script to perform some limited I/O is the
World-wideWeb (WWW) server for the Upper Atmo-
spheric Research Collaboratory (UARC) [4] system.
The UARC system provides several services for re-
mote, collaborative analysis of atmospheric test data.
For example, users can read analysis data and write
annotations to that analysis data. Also, users can
write recordings of analysis sessions to replay later or
provide to other users [10]. The interface of the UARC
system is shown in Figure 2.

We enable clients to access our UARC-WWW
server by de�ning a home page for the server on Mo-

Writer Reader

Directions
for Viewer

Viewer
 Spec
 Files

Directions
for Viewer

Copy

Read

Edit

Writes

1

4

3
2

Figure 4: Get directions for viewer

Writer

Reader

 UARC
 Command
 Script

Viewer
 Spec
 Files

 Viewer
Programs

Writes Specifies
Executed By

Initiates

Interacts With

 Reader’s
File System

 UARC

1

Accesses

2

4

5

6

3

Figure 5: Execute UARC command script

saic, which we call the UARC Home Page (see Fig-
ure 3). The UARC Home Page entries make the fol-
lowing capabilities available:

1. Get directions for specifying a viewer for execut-
ing the UARC command script

2. Obtain a copy of the UARC application

3. Execute the UARC command script

In order to execute the UARC command script
from Mosaic, each reader (i.e., client) must specify
a viewer for executing the script. In the �rst entry,
we provide directions for the reader to edit the neces-
sary speci�cation �les (e.g., .mailcap, .mime.types,
etc.) to add this viewer (see Figure 4). The details of
this speci�cation are provided in the Implementation
Section. In addition, a reader may not have access
to a copy of the UARC application. A second entry
in the UARC Home Page uses ftp to copy a UARC
executable to the reader's machine. The UARC exe-
cutable must be protected from theft and forgery by
an intruder, so the server must encrypt the UARC
executable using both the writer's private key (for
authentication) and then the reader's public key (for
secrecy). Selection of the third entry initiates the ex-
ecution of the UARC command script (see Figure 5).
We are only concerned about forgery of the command
script, so only authentication of the writer is neces-
sary. The UARC command script is processed using

the viewer speci�ed by the directions. The viewer col-
lects access control restrictions from the reader and
executes the UARC application while enforcing those
restrictions.

Execution of the UARC command script could re-
sult in the following security problems. The process
that executes the UARC command script is run on the
reader's machine and is owned by the reader. There-
fore, the command script is run with the reader's ac-
cess rights. We believe that the readers have a reason-
able amount of trust in the developers of the UARC
system, but they and their system administrators are
hesitant to execute a command script under such con-
ditions. Readers are concerned about the accidental
modi�cation of their private data. System adminis-
trators are worried about the script's access to local
system data and their inability to trace a breach of
security if one occurs.

It is worth noting at this stage that executing the
command script with the access rights of the writer
is not an e�ective solution to this problem. In many
cases, the reader interacts directly with the command
script or an application triggered by the command
script. If the application or command script provides
I/O functionality, the reader could use this function-
ality to access the writer's private data.

4 Security Requirements

In order to e�ectively execute the UARC applica-
tion from Mosaic 3, the command script should be
able to perform a certain amount of I/O. Below, we
list the access rights required to perform I/O in a par-
ticular analysis session. We assume that the reader
intends to record this analysis session, but not add
any annotation data.

1. The right to perform a write operation on the
reader's recording directory to add a new record-
ing

2. The right to perform a read operation on any
recording, annotation, or data �les the reader
may possess

3. The right to perform an execute operation on the
UARC application �le

The following access rights must be revoked to en-
sure that the reader's security is not violated:

3We will use UARC as our example, but the argumentsmade
hold for any executable application.

1. The right to perform a read operation on system
objects, such as the password �le

2. The right to perform a write operation on any
objects for which the write operation is not ex-
plicitly granted

3. The right to perform an execute operation on any
objects for which the execute operation is not ex-
plicitly granted

The access rights for the command script should
be limited in such a way that the following usability
requirements are met:

1. A modi�cation to the access rights of the process
executing the command script should not a�ect
the access rights of any unrelated process in the
same authentication realm.

2. All objects to be used by UARC should be acces-
sible \in-place." That is, the reader should not
be required to move objects to a \safe" location
just so that the command script can use them.

These access rights must be enforced for: (1) the
process that executes the command script; (2) any
descendant process of the command script process;
and (3) any service process that is used by any process
in (1) or (2).

The only security problem for the writer in this ex-
ample is to control access to the UARC application.
Only members of the UARC project should be able to
access the UARC application. Mosaic uses passwords
and/or the client's (reader's) internet address to re-
strict access to web documents. We rely on the use of
a password to restrict access to the UARC application
in our implementation.

The I/O requirements of UARC are such that read
access to a possibly large number of objects is neces-
sary. In addition, the identity of these objects may not
be known until after the UARC application has been
started. For example, the reader may want to read old
data, annotations, or recording �les based on what the
reader sees in the current analysis session. Therefore,
it is not feasible to require that the reader move all
the objects that are to be read to a special, public
directory prior to every use of UARC. However, only
one �le is to be executed and write access is needed for
only a single directory. The security requirements of
the reader dictate that write access should be limited
only to the recording �les and execute access should
be limited only to the UARC application.

Reader Writer WriterReader

Reader: Public Writer: All

Reader: Public Writer: All Reader

Reader

1

3

2

Figure 6: Operation access rights: The reader shares
all public rights, and the writer shares all rights that
reader also has.

5 Access Control Model

We de�ne a discretionary access control model for
specifying the access rights available to a command
script. The goal of the discretionary access control
model is to enable the reader and writer of the com-
mand script to grant access to system objects that are
necessary to execute the command script e�ectively
while protecting other system objects from access.

Below, we de�ne the major concepts of the discre-
tionary access control model:

� De�nition 1: A writer, w, is a principal that
forwards the command script to the reader for
execution. Note that the writer does not neces-
sarily compose the command script.

� De�nition 2: A reader, r, is a principal that
executes the command script.

� De�nition 3: An object access right of a com-
mand script, oba 2 OBA, is a tuple, ob =
(obj;OPobj), where obj is a unique identi�er of
the object and OPobj is a set of operations (e.g.,
read, write, execute) that the command script
can perform on the object. Object access rights
can be either granted or revoked.

� De�nition 4: A sharing function of a princi-
pal i for a command script, sf(i), is a function,
sf(i) = si or sf(i) = si \ j where si is a sharing
value (one of none, public, or all) that speci-
�es a class of objects accessible to i and j is an-

other principal. For example, if the writer speci-
�es sf(writer) =all \reader, the writer grants
permission to all of the writer's objects shared
by the reader. The set of objects shared by the
writer is shown in #2 of Figure 6.

� De�nition 5: An operation access right of a
command script, opa 2 OPA, is a tuple, opa =
(op; sf(r); sf(w)), where: (1) op is an operation;
(2) sf(r) is the sharing function of the reader for
op; and (3) sf(w) is the sharing function of the
writer for op. The value of opa speci�es that the
command script has permission to perform op on
the union of the objects represented by the do-
mains sf(r) and sf(w) (see Figure 6). If an opa

value is not speci�ed for an operation op, then
opa = (op; none; none).

� De�nition 6: A command script computation,
c, is a set of processes that execute a command
script. In our case, a computation is a set of pro-
cesses, p 2 P , including the process that executes
the script, its descendant processes, and any ser-
vice processes these processes use.

� De�nition 7: Command script access rights,
ar, is a tuple, ar = (r; w;OPA;OBAg; OBAn),
where: (1) r is the identity of the reader that ex-
ecutes the command script; (2) w is the identity
of the writer of the command script; (3) OPA

is a set of operation access right speci�cations;
(4) OBAg is a set of object access rights granted
to the command script; and (5) OBAn is a set
of negative object access rights of the command
script. The order of precedence of the access
rights speci�cations is (from highest to lowest):
(1) OBAn; (2) OBAg ; and (3) OPAg. The com-
mand script access rights must be enforced on all
processes in the command script computation.

In this discretionary access control model, the ac-
cess rights of a command script are speci�ed by oper-
ation and by object. Operation access rights permit
the reader and the writer to limit the operations that
can be performed on a class of objects. For example,
the read operation can be limited to only the writer's
public objects. Object access rights permit the reader
and writer to grant or revoke operations on a speci�c
object. For example, execute access may be precluded
for mail, but read access may be granted to a private
object, such as a recording.

In the UARC example, the writer does not pro-
vide any access rights to the reader, but the reader
needs to limit access. We specify the UARC command
script's access rights as shown in Table 1. These access

ar Attribute Value

Reader UARC reader
Writer UARC writer
OPA f(read,public,none)g
OBAg f(�/UARC,fexecuteg),

(�/recordingfread,writeg)g
OBAn f(/etc,fread,write,executeg)g

Table 1: UARC command script access rights

rights are interpreted in the following order: (1) oper-
ation access rights; (2) object access granted; and (3)
object access revoked. First, the (read; public; none)
operation access rights provide read access to all the
reader's public objects. Since operation access rights
are not provided for other operations, these opera-
tions are precluded on all objects. The object ac-
cess granted speci�cations, (�/UARC,fexecuteg) and
(�/recordingfread,writeg), override the operation ac-
cess rights by granting access to the perform the ex-
ecute operation on UARC and the write operation
in the recording directory object, respectively. Note
that we do not permit write access to any existing
objects in the �/recording directory, just the direc-
tory itself. The object access revoked speci�cation
(/etc,fread,write,executeg) also overrides the opera-
tion access rights, by precluding access to the read
operation on a public object. Object access rights
revoked always supersede those granted if there is a
con
ict. We address how a reader determines an ar

value in the Implementation Section.

6 Implementation

In this section, we detail the implementation of a
Mosaic script execution prototype that uses our dis-
cretionary access control model. The prototype imple-
ments the command script execution process shown in
Figure 7. The prototype supports two major actions
in the process: (1) selection of the command script
access rights (tasks 1-7) and (2) enforcement of these
access rights as the command script is executed (task
8). Selection of access rights is di�cult because it is
not possible to identify all the access rights needed
to execute a command script by examination. The
command script access rights should be enforced even
when an application is to be executed.

In our current implementation of the script
execution prototype, only the reader's access
rights are granted to the command script (i.e.,

Writer Reader

1

2

3

4 5

6

7

Compose
Command
Script

Propose
Access
Rights

Select
Access
Rights

Execute
Command
Script

Sign
Command
Script

8

Create/Send
Message
w/ Signed
Script

Receive
Message
w/ Signed
Script

Verify
Authenticated
Writer

Figure 7: Command Script Execution Process

sf(writer) =none for all scripts). In order to enable
a writer to delegate access rights to the script execu-
tion prototype, the writer must be able to grant access
rights with a long life time to enable the writer's ac-
cess rights to be available whenever the reader needs
them. The work in [14] addresses this problem.

6.1 Selecting Access Rights

First, the reader must select the access rights for
the computation that executes the command script.
The reader needs assistance to determine what access
rights are required to run the command script, how-
ever. A combination of the writer's knowledge of what
the command script does and the reader's knowledge
of trust in the writer determine the access rights for
the command script.

There are three sources of information for deter-
mining the necessary access rights for a command
script: (1) the script; (2) the writer; and (3) the
reader. Since the script may call compiled applica-
tions or the reader may want to perform actions with
the script not directly speci�ed in the script, it is not
possible to read the script and collect the complete set
of access rights that are required to execute the script
e�ectively. Our solution is to permit the writer to
propose the access rights for the command script and
to require the reader to select the permissible access
rights. The command script is run with the access
rights selected by the reader. Since users are prone
to make errors, we add a �le that de�nes the maxi-
mum I/O permitted for \safe" interactions. Any ac-
cess rights that the reader accepts that are outside the
safe access rights would require an explicit con�rma-
tion by the reader.

multipart/enabled-mail
1. multipart/mixed

1.1 message/x-op-access
1.2 message/x-grants
1.3 message/x-revokes

2. application/safe-tcl

Figure 8: Enabled mail message structure

The prototype provides the reader with: (1) an
authenticated identity of the writer; (2) a command
script; and (3) the writer's access rights proposal for
the command script. The reader uses this information
to select the access rights for the command script or
refuse execution of the command script. The reader
may edit the access rights proposal to either increase
or decrease the set of access rights available to the
script.

To write a command script that includes an ac-
cess rights proposal, a writer uses a MIME-compatible
mailer such as mhn or metamail to compose an en-
abled mail message �le that has entries for both the
command script and the access rights proposal. We
describe the use of an enabled mail message written
using mhn. We de�ne a enabled mail message of the
structure shown in Figure 8. The MIME type of an
enabled mail message is multipart/enabled-mail.
The access rights proposal is speci�ed in the
multipart/mixed section. message/x-op-access,
message/x-grants, message/x-revokes specify the
operation access rights, object access rights granted,
and object access rights revoked, respectively, for the
command script. For reasons that we will describe in
the following section, the interpretive language Safe-
Tcl [3] is used for writing command scripts. The entry
under the MIME type application/safe-tcl con-
tains the command script.

The writer signs the message �le using a public key
cryptosystem (we use the RSA-based system PGP 4

since it has already been integrated with Safe-Tcl)
to enable the reader to authenticate the writer. We
assume a secure key distribution mechanism exists.
Any reader can then verify the identity of the writer.
Therefore, the reader can be certain that the message
originated from the speci�ed writer (unless another
user stole the writer's secret key).

After signing the original message �le, the writer
creates a new MIME message �le with one entry,
application/signed-enabled-mail, which contains
the signed message �le that, in turn, contains the

4PGP is a trademark of Phillip Zimmermann

command script. This new message �le is named
exec.uarc and is the UARC command script �le for
the UARC-WWW server.

In order for the reader's machine to process the
message �le, the reader's pro�le must be de�ned with
the proper viewers to process the MIME messages.
The following entries must be added to the reader's
pro�le:

� .mime.types: application/x-uarc uarc

� .mailcap: application/x-uarc; xterm -e show -
�le %s

� .mh pro�le: mhn-show-application/signed-
enabled-mail: decode-pgp %f

� .mh pro�le: mhn-show-multipart/enabled-
mail: %pem play3 %F

The .mime.types entry permits Mosaic to recog-
nize that a �le with a .uarc extension corresponds to
the application/x-uarcMIME type. The .mailcap
entry speci�es how MIME entries of certain types are
to be processed. The application show processes mhn

messages, and the new xterm provides an outlet for
messages generated by show. The .mh profile en-
tries specify the di�erent scripts that are used by
show to process di�erent MIME entries. decode-pgp
is used to verify application/signed-enabled-mail
entries. em play3 processes the veri�ed enabled mail
message. Note that the reader's pro�le must be
secured in order to ensure that the pro�le can be
trusted.

When the exec.uarc �le is downloaded by Mo-
saic, the show command is executed to process the
message �le. Since the MIME type of the mes-
sage �le is application/signed-enabled-mail, the
decode-pgp script is executed. This script veri�es
the identity of the writer and stores this identity in
the variable $PGP SIGNATURE. Note that if the writer
does not sign the message �le, then the variable
$PGP SIGNATURE is not set. If this variable does not
have a value, then the command script application
assumes that the writer does not have access to the
machine. The use of a shell environment variable to
store the authenticated identity of the writer will be
secure if the operating system can protect the address
space of this shell from tampering. We have assumed
a secure operating system for this reason.

The decode-pgp script contains a second call to
show to display the enabled mail message. The MIME
type of this message is multipart/enabled-mail, so
the script em play3 processes this message. This

Figure 9: Select access rights

script triggers Safe-Tcl's untrusted interpreter to ob-
tain the access rights for the UARC command script
from the reader and then to execute this command
script with those access rights. The access rights are
obtained using the Tcl interface displayed in Figure 9.
This window is called from the Safe-Tcl initialization
function .safetclrc. This window initially displays
the writer's proposal for the access rights. If the writer
failed to supply a proposal, then the initial proposal
is for no access rights to be given to the script (i.e.,
an operation sharing value of none for all operations).
The reader may edit any part of the proposal, ex-
ecute the command script, or refuse to execute the
command script. The access rights are bound to a
Safe-Tcl variable that is used to setup the command
script execution environment. In the next section, we
describe several implementations of a mechanism for
setting the access rights for the command script and
executing the command script while enforcing these
access rights.

Note that in addition to the mailer, the cryptosys-
tem, and the operating system, the decode-pgp and
system's .safetclrc scripts must be trusted by the
reader. Therefore, no user should be able to replace
either of these scripts. Otherwise, a malicious writer
could write a script that substitutes the reader's ac-
cess rights with whatever rights the writer wants.
Tighter integration of the functionality of these scripts
with Safe-Tcl would enable us to reduce the number
of trusted programs required.

Execute the
Command
Script

Trusted Interpreter Untrusted Interpreter

(.safetclrc)

Initiates Calls

Execute
Application
(safe)

UARC

Define
Restricted I/O
Functions

Command Script

O/S
executing executing executing

Figure 10: Safe-Tcl script execution

6.2 Executing the Command Script

The �nal step in the command script execution pro-
cess is to execute the command script using only the
access rights selected by the reader. We examine three
implementations of this step: (1) Safe-Tcl's untrusted
interpreter; (2) Safe-Tcl's untrusted interpreter inte-
grated with Kerberos version 5; and (3) Safe-Tcl's un-
trusted interpreter and the Taos distributed operating
system. Safe-Tcl's untrusted interpreter can restrict
access to objects from the command script, but can-
not restrict access once an application is initiated from
the command script. Kerberos enables the command
script access rights to be enforced by applications that
are also Kerberos-aware. In order to ensure enforce-
ment of the command script access rights for all appli-
cations, the operating systems' authorization mecha-
nismmust enforce those rights. We examine using the
Taos distributed operating system.

6.2.1 Safe-Tcl

The Safe-Tcl implementation works as shown in Fig-
ure 10. First, we load our restricted I/O functions into
Safe-Tcl's untrusted interpreter. This is done using
the Safe-Tcl initialization �le, .safetclrc. Safe-Tcl
permits functions de�ned in the trusted interpreter
to be loaded into the untrusted interpreter. Since
.safetclrc is run in the trusted interpreter, it can
de�ne the restricted I/O functions and load them into
the untrusted interpreter. The command script access
rights must be hard-coded into these I/O functions to
prevent tampering by the writer's script. If the ac-
cess rights are stored in a global variable, the writer's
script could modify the value. We then process the
command script using the modi�ed, untrusted inter-
preter. If an application is executed from the com-
mand script the untrusted interpreter's authorization
mechanism is no longer applicable, so only \safe" ap-
plications can be executed.

Restricted I/O is permitted in Safe-Tcl's un-
trusted interpreter using two functions, safe open

and safe exec. These two functions both authorize a
request for access to an object against the command
script's access rights. If the authorization is success-

/�
� Safe-Tcl function that opens an object for
� (one of r, r+, w, w+, a, a+, x) if access rights
� are authorized. Returns a �le descriptor if
� successful. Else, no value is returned.
�/

safe open(obj, access)
f

/� if safe authorize obj and access w/ access rights
� open obj �/
if (safe authorize (obj, access))

return open(obj, access)
else reporterr()

g

Figure 11: The safe open function

ful, safe open and safe exec call the Safe-Tcl I/O
commands open and exec, respectively. open enables
an object to be read or written, and exec executes
an application. In addition, we de�ne safe versions
of the functions puts and gets to read and write ob-
jects. These commands prevent I/O using the global
�le descriptors, stdout, stdin, and stderr. There-
fore, all I/O from the command script is performed
using objects opened by safe open and executed by
safe exec.

safe open takes a name and an access mode spec-
i�cation for an object and returns a �le descriptor on
a successful open. No value is returned upon a failed
open. Pseudocode for safe open is shown in Fig-
ure 11. Whether an open is permitted is determined
by the function safe authorize which compares the
request to the command script's access rights.

Before detailing safe authorize let us exam-
ine the authorization requirements of safe exec.
safe exec takes an application and an argument list
and executes the application with the argument list
if the execution is authorized (see Figure 12). Au-
thorization is more complex for safe exec than it is
for safe open because the execution of an applica-
tion cannot be controlled by the untrusted interpreter.
Therefore, about the only way to ensure that an exe-
cution is safe, is to compare the structure of the com-
mand to a catalog of safe calls. This requires that a
system administrator catalog the safe command call
structures. This is likely to be a tedious and error-
prone task. We �nd this part of the solution less than
satisfactory.

The pseudocode for the safe authorize function
is shown in Figure 13. safe authorize converts the
access mode to a set of operations and authorizes ac-
cess to perform those operations on the object. In
Tcl, the r+ access mode means that the object is to

/�
� Safe-Tcl function that executes an application. An
� application is speci�ed by its complete �le name
� and arguments. If access is authorized or user
� approves the execution of a \not unsafe" application,
� the application is executed. Return result.
�/

safe exec(appl, args)
f

/� Hard-coded safety specs �/
safety specs = safe calls string
/� Determine if the appl is accessible and safe �/
if (safe authorize (appl, execute)) &&

(safety specs are satis�ed by appl and args))
result = exec(appl, args)

/� Give the user the option to OK the fn's exec �/
else if (safety specs are satis�ed by appl and args) &&

(reader has execute privilege for appl) &&
(user ok (writer, appl, args))

result = exec(appl, args)
else

reporterr()
return result

g

Figure 12: The safe exec Function

/�
� safe authorize: authorize obj and access using
� access rights for command script.
�/

safe authorize(obj, access)
f

/� Access rights are hard-coded to prevent spoo�ng s�/
OBAn = object access rights revoked
OBAg = object access rights granted
op groups = A set of group names from map for each op
op principals = A principal name from map for each op
/� Convert access to ops { prevent spoo�ng �/
�nd ops in access
foreach op in ops f
/� oban = set of negative rights for obj � /

if (oban 2 OBAn for obj && op is precluded by oban)
return FALSE

else f
/� obag = set of positive rights for obj �/
unless (obag 2 OBAg for obj && obag grants op) f

groups = op groups(op)
prin = op principals(op)
if ((negated op on obj for any prin or groups) jj

(no prin or groups has op access to obj))
return FALSE

g
g

g
return TRUE

g

Figure 13: The safe authorize function

OPA Value Principal Groups

None None None
Public \ Writer* Anyuser None
Public \ Writer None None
Public Anyuser None
All \ Writer* Anyuser Writer \ reader
All \ Writer None None
All Reader Reader's groups

Table 2: Conversion from OPA to authorization prin-
cipals and groups (* { Writer is a known principal in
the reader's realm)

be opened to permit both read and write operations
on the object. Access rights are checked in the fol-
lowing order: (1) OBAn; (2) OBAg ; and (3) OPA.
The reason for this is performance. We can use index-
ing techniques to quickly retrieve the oban and obag
values for a speci�c object. Each OPA value is con-
verted to the name of a principal and possibly a set of
groups. If either the principal or one of the groups can
be authorized to perform an operation on the object,
then this operation is authorized. The mapping be-
tween OPA values and principals and groups is shown
in Table 2. For example, an operation access rights
value of public, corresponds to the principal that has
all public rights (e.g., anyuser in the Andrew File Sys-
tem and nobody in Unix).

The safe authorize function cannot be imple-
mented as a procedure in the untrusted interpreter,
however. This is because the writer's script could re-
de�ne the function such that the function authorizes
every request. Thus, safe authorize can be imple-
mented in one of two ways: (1) by embedding the
safe authorize code into safe open and safe exec

or (2) by extending the Safe-Tcl trusted interpreter by
adding safe authorize as an unsafe function. The
�rst solution increases the complexity of the code for
both safe open and safe exec. The second solution
requires modifying the code for Safe-Tcl's trusted in-
terpreter which renders it unportable. We have opted
for the �rst solution.

6.2.2 Safe-Tcl and Kerberos

A second implementation option is to integrate Safe-
Tcl's untrusted interpreter with Kerberos version
5 [8]. This is referred to as \kerberizing" [12] Safe-
Tcl's untrusted interpreter. Kerberizing Safe-Tcl's
untrusted interpreter enables the untrusted inter-
preter to execute other kerberized applications that
also have the ability to enforce the command script

Execute the
Command
ScriptInitiate Call w/

Proxy

Execute
Appl (safe or
kerberized)

Trusted Interpreter Untrusted Interpreter

(.safetclrc) Command Script

executing executing executing
O/S

Get Proxiable
Ticket and Load
 I/O Fns

UARC

Figure 14: \kerberized" Safe-Tcl script execution

access rights. These other applications must have a
compatible representation for access rights in order
to perform authorization correctly, however. This is
not necessarily the case, at present, so we must en-
sure that the command script starts only kerberized
applications that can understand the command script
access rights.

Transfer of access rights between the command
script process and an application is accomplished
using a special type of Kerberos ticket called a
proxy [11]. A proxy ticket is a ticket that a principal
creates to delegate its access rights to another princi-
pal. Using Kerberos proxies, a principal can delegate
any subset of its access rights to another principal.
The actual access rights to be delegated are speci�ed
in the authorization data �eld of the ticket. The
format of this �eld is determined by the application,
so we use the command script access rights format of
our access control model for the authorization data

�eld.
Conceptually, command script execution using a

kerberized untrusted interpreter would proceed as fol-
lows (shown in Figure 14): (1) .safetclrc obtains a
proxiable ticket from Kerberos that enables the un-
trusted interpreter to create proxy tickets to execute
kerberized applications; (2) also .safetclrc loads
the safe I/O functions including a revised version of
safe exec that can recognize other kerberized appli-
cations; (3) the command script is then executed; and
(4) if the command script access rights allow, safe or
compatibly kerberized applications can be executed
from the command script. If a kerberized applica-
tion is to be executed, the untrusted interpreter must
obtain a proxy ticket from Kerberos using the proxi-
able ticket obtained earlier. The untrusted interpreter
passes the proxy ticket and any input data to the ap-
plication. The application uses the access rights spec-
i�ed in the proxy ticket to authorize the application's
I/O.

The sequence of actions listed above are imple-
mented by a sequence of messages between Safe-Tcl's
untrusted interpreter and either Kerberos or other
kerberized applications. Figure 15 shows the sequence
of messages. Kerberos message speci�cations are quite
complex, so some of the details are omitted from the

AS TGS

APPLSAFE
 TCL

1 2

Kerberos

3
4

5

6

Figure 15: Messages in \kerberized" Safe-Tcl imple-
mentation

succeeding description for simplicity reasons. Com-
plete message speci�cations can be found in RFC
1510 [8].

Messages 1 and 2 implement the initial authentica-
tion exchange of the reader with Kerberos to obtain a
proxiable ticket. When command script access rights
are selected (in the .safetclrc script), the reader
must authenticate with Kerberos if any applications
could be executed from the command script. In mes-
sage 1, the reader submits the reader's secret key (us-
ing an extended version of the interface shown in Fig-
ure 9) and the speci�cations for a proxiable ticket to
the Kerberos authentication server (AS). The AS re-
turns a proxiable ticket-granting ticket from which
proxy tickets can be created in message 2. Inside
the ticket-granting ticket is a session key that is used
for encrypting and decrypting all future messages ex-
changed with Kerberos.

Once the session key and the proxiable ticket have
been obtained, .safetclrc loads the restricted I/O
functions. With the exception of safe exec, the def-
initions of the I/O functions are unchanged from the
previous implementation. safe exec is revised to per-
mit kerberized applications to be executed (see Fig-
ure 16). The �rst condition (speci�ed in bold in the
Figure) lists the requirements for executing a kerber-
ized application: (1) the command script access rights
permit execution of the application and (2) the appli-
cation is registered as a compatibly-kerberized appli-
cation. The second requirement limits the set of ker-
berized applications that can be used to only those
that also can also enforce the command script access
rights. The session key and proxiable ticket are hard-
coded in the safe exec, so they may be used to create
proxy tickets in krb5 exec.

If an application is kerberized and the command
script access rights permit its execution, the func-
tion krb5 exec is called to execute the application.
The pseudocode for krb5 exec is shown in Figure 17.
First, a request for a proxy ticket is generated us-
ing the proxiable ticket and the access rights. The

/�
� Safe-Tcl function that executes either a kerberized,
� safe, or user-approved application. An
� application is speci�ed by its global object name
� and arguments. Return result.
�/

safe exec(appl, args)
f

/� If no proxiable tkt, don't execute appl �/
unless (PROXIABLE TKT) reporterr()
/� Hard-coded safety specs and kerberized appls �/
safety specs = safe calls string
kerberized appls = krb appls string
/� Is appl is accessible and kerberized? �/
if ((safe authorize (appl, execute)) &&

(member(appl,kerberized appls)))
result = KRB5 EXEC(appl, args, S KEY,

PROXIABLE TKT, RIGHTS)
/� Determine if appl is accessible and safe �/
else if (safe authorize (appl, execute)) &&

(safety specs are satis�ed by appl and args))
result = exec(appl, args)

/� Give the user the option to OK the fn's exec �/
else if (safety specs are met by appl and args) &&

(reader has execute privilege for appl) &&
(user ok (writer, appl, args))

result = exec(appl, args)
else

reporterr()
return result

g

Figure 16: The Kerberos-aware safe exec Function

proxiable ticket is used to authenticate the source of
a request. The access rights specify the authoriza-
tion data for the proxy ticket. The format of the ac-
cess rights is the same as in Safe-Tcl implementation
above. The access rights are represented by a prin-
cipal, a set of groups, a set of object access rights
granted, and a set of object access rights revoked.
Message 3 in Figure 15 sends this request to the ticket-
granting service (TGS). Unless there is an error, mes-
sage 4 returns a new proxy ticket that contains the
command script access rights in its authorization

data �eld. The proxy ticket is encrypted using the ap-
plication's session key from its ticket-granting ticket,
so only the application can use the proxy.

Once the proxy ticket is obtained, krb5 exec uses
this ticket to authenticate the untrusted interpreter
to the application. In message 5, the encrypted proxy
ticket and an authenticator is sent to the application.
The proxy ticket contains the authorization data for
the proxy and session key for the application (di�er-
ent than the session key between the reader and the
TGS). The application uses the session key to verify
that the authenticator is from the reader. The appli-
cation authenticates itself to the untrusted interpreter
in message 6. If both authentications succeed, then
the application is run. Using the authorization data

/�
� Execute a kerberize service. Delegate the proxy to
� the kerberized service.
�/

krb5 exec(appl, args, s key, proxiable tkt, access rights)
f

/� Create KRB TGS REQ msg to obtain proxy ticket �/
KRB TGS REQ from application, proxiable tkt,

access rights, etc.
Encrypt KRB TGS REQ using the session key
/� Msgs 3&4: Get proxy from TGS �/
send receive(KRB TGS REQ, TGS, resp)
/� If the resp is OK, create KRB AP REQ �/
if (resp == KRB ERROR) reporterr ()
else f

Decrypt resp using the session key
Obtain proxy ticket for appl from resp
Create authenticator from sub-session key
KRB AP REQ from appl,args,proxy ticket,

authenticator,etc.
/� Msgs 5&6: authenticate w/ appl �/
send receive(KRB AP REQ,application,resp)
/� Handle responses from the application �/
if (resp == KRB ERROR) reporterr()
else f

Decrypt resp using the sub-session key
if (resp is OK) perform application

g
g

g

Figure 17: The krb5 exec Function

in the proxy, the application can limit the access rights
of the command script's application appropriately.

The bene�t of integrating Safe-Tcl's untrusted in-
terpreter with Kerberos is that kerberized applica-
tions could be executed that enforce the command
script access rights and the command script access
rights are transferred safely (i.e., with strong authen-
tication). However, a requirement on the kerberized
application is that they must be able to interpret the
access rights data. At present, there is neither a stan-
dard representation for access rights data in a proxy
nor a signi�cant body of applications that are kerber-
ized. Therefore, this implementation provides only
a slight improvement over the �rst implementation.
We do think that a secure operating system that is
integrated with Kerberos version 5 may be a viable
solution in the future, however.

6.2.3 Safe-Tcl and Taos

To enforce the command script access rights for any
arbitrary user application, the operating system must
perform the access rights enforcement. In this im-
plementation, we use Safe-Tcl's untrusted interpreter
to execute the command script and the Taos dis-
tributed operating system [15] to authorize the com-
mand script's I/O. We select Taos because it provides

Execute the
Command
Script

Trusted Interpreter Untrusted Interpreter

(.safetclrc)

Execute
Application

Initiates

 Modify
Taos Access
 Rights

Taos

Calls

UARCCommand Script

executing executing executing

Figure 18: Safe-Tcl and Taos script execution

an extensive model for authentication in a distributed
environment. Taos' representation of process access
rights does not include all the �elds necessary to store
the information from our access control model, how-
ever. Therefore, we suggest a new data type to rep-
resent our access control model's information and a
primitive that manipulates this data type. Also, some
modi�cations to Taos' authorization mechanism are
necessary to use this new data type.

The mechanism for executing a command script us-
ing Safe-Tcl's untrusted interpreter on the Taos dis-
tributed operating system is shown in Figure 18. In
this implementation, all authorization is performed by
the operating system. First, the Safe-Tcl initialization
function .safetclrc calls the Taos primitives to al-
ter the access rights of the command script process to
those obtained from the reader. All processes spawned
by the command script process inherit the command
script process' access rights. In addition, any services
that are requested by the command script or its appli-
cations are delegated the same access rights. There-
fore, as long as these access rights are unchanged, the
access rights of the command script are enforced by
this implementation even when applications are exe-
cuted. .safetclrc also adds the functions safe open

and safe exec (as well as safe gets and safe puts),
but these functions simply call open and exec, respec-
tively. Safe-Tcl does provide other security capabili-
ties, such as CPU time limits, that are useful for this
application.

We now examine the details of the implementation.
At the application-level, Taos represents the access
rights of a process using a set of Auths. Each Auth

represents a principal (possibly compound) that the
process has access rights for. Taos provides primitives
for obtaining and modifying the set of Auths for a
process:

� Self(): Auth: Returns the Auth of the current
process.

� Inheritance(): ARRAY of Auth: Returns the
Auths that the process inherits from its parent.

� New(name, password:TEXT): Auth: Create a

new credential for name if the password is cor-
rect.

� AdoptRole(a:Auth; role:TEXT):Auth: Restrict
the authority of the process to that of the role.

� Delegate(a:Auth; b:Prin): Auth: Create a cre-
dential that can be used by the principal Prin.

� Claim(b: Auth; delegation: Prin): Auth: Claim
a credential that has been created by the princi-
pal Prin.

� Discard(a: Auth; all: BOOL): void: Make an
Auth invalid. If all is true then the Auth becomes
invalid in all the processes that inherited it.

Access rights of a process are restricted in Taos
using the primitive AdoptRole. This primitive weak-
ens the authority of an Auth by associating it with a
role that has fewer access rights. A role corresponds
to an identity that has a special access control policy,
usually some semantically meaningful identity such as
system administrator [5, 16]. Roles are static entities
that are managed by system administrators. If the
number of operations in our access control model is
fairly small, we �nd roles to be a reasonable model
to represent the access rights for the operation access
right values: public, none, and all. For example, a
role can be created for each combination of public,
none, and all with the read, write, or execute op-
erations. In the UARC-WWW server example, the
operation access rights value of f(public; read; none)g
can be implemented by a role that only has read ac-
cess to any �le that anyuser has access and negative
rights for write and execute.

Roles are not an appropriate representation for im-
plementing operation sharing that requires an inter-
section of two principals' access rights or the object
access rights of our access control model, however.
The access rights granted by intersection also depend
on the writer of the script. Since the reader may ex-
ecute several scripts with di�erent writers, we may
need several di�erent roles. In addition, object access
rights cannot always be predicted, even if we know
the application. The reader may want to use di�er-
ent objects for di�erent runs of the same application
or may provide more access rights to the application
as the reader's trust in the application and the writer
increase.

The generation of a role on demand would be the
cleanest solution to this problem, as it would be con-
sistent with theory upon which the Taos authentica-
tion mechanisms are built [9]. However, the creation

/�
� set cmd script rights: Reset the Auths of
� the current process (i.e, the Safe-Tcl interpreter) to be
� those speci�ed for the command script by the reader.
� Called from .safetclrc (trusted interpreter).
�/

set cmd script rights(role, grps, objRights, negObjRights)
f

/� Get default Auth �/
a:Auth = Self();
/� Create DynPrin from input data �/
AdoptDP(a, role, grps, objRights, negObjRights);
/� Remove other Auths from process �/
foreach auth in Inheritance() f

unless (auth 6= a)
Discard(auth,TRUE);

g
g

Figure 19: The set cmd script rights function

of a role would require the modi�cation of a large num-
ber of access control lists (ACLs), so the performance
would be poor. In lieu of this, we propose to create
a subtype of the Taos principal data structure Prin,
called DynPrin, which represents the information that
would be used to create a role dynamically. Below, we
de�ne the data structure for DynPrin:

� principal name: name of base principal (e.g., a
role)

� groups: a set of group names to which DynPrin

belongs

� obj rights: OBAg of the command script access
rights

� neg object rights: OBAn of the command
script access rights

Since a DynPrin de�nes the access rights of the
process to each object, a role could be created in a
straightforward manner from a DynPrin. Therefore,
a DynPrin is functionally equivalent to a role. As a re-
sult, it seems reasonable that DynPrin is a consistent
extension of the Taos authentication model. However,
a formal proof is beyond the scope of this paper.

We modify the de�nition of the Auth data structure
to permit a principal to be represented by either a
Prin or a DynPrin data type. A new primitive called
AdoptDP, is added to restrict the access rights of an
Auth using a DynPrin. AdoptDP takes the following
arguments:

1. a: Auth: The Auth whose access rights are being
restricted.

2. role: TEXT: Name of the role being assumed.
The value of the principal attribute in DynPrin

is set to role.

3. groups: ARRAY of TEXT: A set of group name
strings. The value of the groups attribute in
DynPrin is set to groups.

4. objRights: ARRAY of obag's: A set of
object access rights granted. The value of
the objRights attribute in DynPrin is set to
objRights.

5. negObjRights: ARRAY of oban's: A set of
object access rights revoked. The value of the
negObjRights attribute in DynPrin is set to
negObjRights.

AdoptDP replaces the value of the Auth's prin-
cipal with the DynPrin created from the role,
groups, objRights, and negObjRights arguments.
In our implementation, .safetclrc calls the function
set cmd script rights shown in Figure 19 to create
the appropriate DynPrin given the command script
access rights selected by the reader. In the UARC-
WWW server example, the following argument values
are used:

1. a: The default Auth for the process returned by
a call to the primitive Self.

2. role: \PUBLIC-READ" (public access rights for
only the read operation)

3. groups: NULL

4. objRights: OBAg value for the UARC-WWW
server (see the Access Control Model Section)

5. negObjRights: OBAn value for the UARC-
WWW server (see the Access Control Model Sec-
tion)

In general, the authorization mechanism is more
complicated for the Taos implementation because: (1)
of the ability to specify cascaded delegations in an
Auth and (2) a process may have multiple Auths. In
Taos, an access is granted if there exists a principal
in the ACL with the rights requested that one of the
process' Auths speaks for [9]. Principals and groups
in a DynPrin can be checked using the Taos authoriza-
tion mechanism, but we must add the ability to check
object access rights. The semantics for checking an
object access right is that if any DynPrin in a chain
of principals contains a negObjRight that precludes
any requested operation on the current object, then

the access is denied. Otherwise, if any DynPrin con-
tains an objRight that grants access to perform all
the requested operations on the current object, then
access should be granted. Therefore, a modi�ed ver-
sion of the function safe authorize that �rst checks
negObjRights and objRights and then applies the
Taos mechanism to authorize compound principals
can be used to authorize access. To make this test
more e�cient, we may like to cache information about
an Auth's constituent DynPrins on the Auth rather
than having to examine an entire chain of delegations.

Since this authorization mechanism is used by all
calls to open and exec in Taos, we obtain a greater
guarantee that the command script access rights will
be enforced. However, if we use an application on
a machine running a di�erent operating system, the
access rights data is of no value.

The security of this implementation depends on
preventing the computation from obtaining any ad-
ditional access rights (Auths). The primitives avail-
able for obtaining additional access rights are New and
Claim. If the writer has access to the machine, then
the writer can create additional Auths for the com-
mand script computation by using either: (1) New to
generate a new Auth or (2) claim to obtain an Auth

from a writer process that is executing concurrently.
Although these Auths only enable the writer to gain
access to objects that the writer could already access
through normalmeans (i.e., public objects), the access
control model should be able to prevent this access if
speci�ed by the reader. The representation of a pro-
cess must be modi�ed to indicate that its set of Auths
are immutable to prevent obtaining these new Auths.

7 Conclusions and Future Work

We de�ned a discretionary access control model to
represent the access rights available to the command
script when it is executed. This model permits the
reader and writer of a command script to
exibly re-
strict the access rights that are authorized to the com-
mand script's processes. This is important because
the access rights needed for executing a command
script can vary greatly depending on the application
and the writer. We use this model in a prototype
implementation of a system that executes command
scripts that are obtained using Mosaic. The prototype
implementation only supports the reader's ability to
grant access rights at present.

We examine three separate implementations for en-
forcing the command script access rights in the pro-
totype. We see some synergy between the three im-

plementations that leads us to believe that a combi-
nation of the three implementations may be appro-
priate in the future. A command script execution
language, such as Safe-Tcl, is necessary to execute
the command scripts. We expect that as people try
to evolve scripts into agents (e.g., Telescript) more
demands will be placed on the interpreter, so an un-
trusted interpreter that can ensure that these con-
straints are upheld in an environment of mutual dis-
trust becomes more important. Kerberos' restricted
proxies provide an e�ective mechanism for specifying
and transferring the command script access rights, but
Kerberos must be integrated with a secure operating
system to enable script execution to be trusted. Taos
provides an extensive authentication model, but we
needed to add what amounts to restricted proxies in
Taos (the DynPrins) to implement our access control
model. Therefore, some combination of the function-
ality of the three systems should be examined. We
also plan to enable writers to delegate access rights
safely to the command script.

Acknowledgements

Nathaniel Borenstein has provided us with valu-
able guidance on the use of Safe-Tcl. Discussions with
Aviel Rubin and Peter Honeyman also contributed to
this paper. This work is supported in part by the
National Science Foundation under the cooperative
agreement IRI-9216848.

References

[1] Trusted Mach kernel primer. Trusted Information
Systems, Inc., 1991.

[2] N. S. Borenstein. Computational mail as a net-
work infrastructure for computer-supported cooper-
ative work. In CSCW 92 Proceedings, pages 67{74,
1992.

[3] N. S. Borenstein. Email with a mind of its own: The
Safe-Tcl language for enabled mail. In ULPAA '94,
1994. Available via anonymous ftp from ics.uci.edu
in the �le mrose/safe-tcl/safe-tcl.tar.Z.

[4] R. et. al. Clauer. A prototype upper atmospheric
collaboratory (UARC). AGU Monograph: Visualiza-
tion Techniques in Space and Atmospheric Sciences.
In press.

[5] M. Gasser and E. McDermott. An architecture for
practical delegation in a distributed system. In IEEE

Symposium on Security and Privacy, pages 20{30,
1990.

[6] Y. Goldberg, M. Safran, and E. Shapiro. Active Mail
{ a framework for implementing groupware. In CSCW
92 Proceedings, pages 75{83, 1992.

[7] T. Jaeger and A. Prakash. Support for the �le sys-
tem security requirements of computational e-mail
systems. In ACM Conference on Computer and Com-

munications Security, pages 1{9, 1994.

[8] J. T. Kohl and B. C. Neuman. The Kerberos net-
work authentication service, September 1993. Inter-
net RFC 1510.

[9] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in distributed systems: Theory and
practice. ACM Transactions on Computer Systems,
10(4):265{310, 1992.

[10] N. R. Manohar and A. Prakash. The session capture
and replay paradigm for asynchronous collaboration.
Submitted to ECSCW'95.

[11] B. C. Neuman. Proxy-based authorization and ac-
counting for distributed systems. In International

Conference on Distributed Computing Systems, pages
283{291, 1993.

[12] B. C. Neuman and T. Ts'o. Kerberos: An authenti-
cation service for computer networks. IEEE Commu-

nications, pages 33{38, September 1994.

[13] J. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[14] A. Rubin. Nonmonotonic Cryptographic Protocols.
PhD thesis, University of Michigan, Ann Arbor, 1994.

[15] C. Thacker, L. Stewart, and E. Satterthwaite. Fire
y:
A multiprocessor workstation. IEEE Transactions on

Computers, 37(8):909{920, August 1988.

[16] S. T. Vinter. Extended discretionary access controls.
In IEEE Symposium on Security and Privacy, pages
39{49, 1988.

[17] J. E. White. Telescript technology: The foundation
for the electronic marketplace. General Magic White
Paper.

