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A Framework for Source Code Search
Using Program Patterns

Santanu Paul, Member, IEEE, and Atul Prakash, Member, IEEE

Abstract— For maintainers involved in understanding and
reengineering large software, locating source code fragments that
match certain patterns is a critical task. Existing solutions to the
problem are few, and they either involve manual, painstaking
scans of the source code using tools based on regular expressions,
or the use of large, integrated software engineering environments
that include simple pattern-based query processors in their tool-
kits. We present a framework in which pattern languages are
used to specify interesting code features. The pattern languages
are derived by extending the source programming language
with pattern-matching symbols. We describe SCRUPLE, a finite
state machine-based source code search tool, that efficiently
implements this framework. We also present experimental per-
formance results obtained from a SCRUPLE prototype, and the
user interface of a source code browser built on top of SCRUPLE.

Index Terms—Reverse engineering, software maintenance, soft-
ware reengineering, program understanding, pattern matching,
query language.

[. INTRODUCTION

HERE has been a growing interest in the software en-
T gineering community to develop techniques that help
software engineers search through large amounts of source
code to locate relevant information [2], [3], [7], [10], [23],
[28]. Facilities to search through source code can be useful in
several situations:

1) Reengineering code: To reengineer software, a software
engineer may need to detect the existence of a repetitive
code, so that it can be replaced with calls to a single
procedure. The engineer may also wish to detect code
with potentially poor structure, such as procedures with
too many levels of nested loops, or statements that
use a sequence of if-then-else’s where case statements
might be more appropriate. Tools that employ automatic
program transformation techniques for reengineering
have identified source code search as their primary
performance bottleneck as well [19].

2) Making queries on programs: A software developer may
need to locate all lines in which a procedure is called (for
instance, when the procedure interface is to be changed),
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a variable is modified (when it is found to have incorrect
value), etc. When a bug is found in the algorithm used
in one section of code, a developer may need to locate
other sections of code that use a similar algorithm since
those sections could have the same bug.

3) Understanding programs: To understand programs, pro-
grammers often make a hypothesis (enlightened or other-
wise) a bout what the program does, scrutinize the source
code to confirm the hypothesis, and revise the hypothesis
based on what is discovered during the scrutiny [6]. For
example, a programmer may hypothesize that a program
needs to do matrix multiplication, and then look for a
code fragment with three nested iterative statements:

iterative (...)
iterative (...)

iterative (...)

}

iterative: do-while (for C)
A tool that can help find such code fragments can be
very helpful in validating or revising the programmer’s
hypothesis.

In the examples mentioned above, there are two types of
entities: 1) a specification of the features being looked for, and
2) matches, which are the entities or fragments in the source
code that fit the specification. Of course, specifications of the
features are expressed informally in the above examples. If
we could provide an easy-to-use formalism to express them,
then there is a hope of providing tools to help with finding
the matches.

The formalism used to express the specifications must
allow users flexibility regarding the degree of precision in
the specification. For instance, a programmer trying to locate
a matrix multiplication routine may wish to specify only a
control structure containing three nested loops, omitting details
of contents of the loops, whereas a developer trying to locate
all the exact copies of a certain piece of code may wish to use
the code piece itself as the specification.

In this paper, we describe a framework for alleviating search
problems similar to those outlined above. In the proposed
framework, specifications are written using a pattern language,

while, for,
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which is an extension of the programming language being
used. The extensions include a set of symbols that can be
used as substitutes for syntactic entities in the programming
language. When a specification is written using one or more of
these symbols, it plays the role of an abstract template which
can potentially match different code fragments. If no symbol
is used, the specification consists only of constructs which are
valid in the programming language, which effectively makes
it a valid code fragment in itself, and hence leads to only
precise matches.

We have prototyped a system, SCRUPLE, for two lan-
guages C and PL/AS (a PL/1 variant) to experiment with our
framework. SCRUPLE’s pattern matching engine automati-
cally finds source code entities or fragments that match the
specifications written in SCRUPLE’s pattern language. The
engine proceeds by transforming the source code to a syntax-
tree representation and transforming the user’s specification
to a special-purpose nondeterministic automaton. It then finds
the matches by running the generated automaton on the source
code’s syntax tree representation.

Section II compares our work with other techniques that
are used for doing search through source code. Section III
describes the key features of our framework. Section IV
discusses the SCRUPLE pattern language used to search
through C programs. Section V outlines the architecture and
algorithms of the SCRUPLE runtime system that locates code
fragments that match specified patterns. Section VI discusses
performance figures based on a suite of sample queries.
Finally, Sections VII and VIII present our conclusions and
plans for future work.

II. COMPARISON WITH OTHER TOOLS

A. Tools Based on Regular Expressions

Why don’t we just use the tools of the grep family in UNIX
to specify patterns and extract the matches from the source
code? Both grep and egrep can match regular expressions,
which is a powerful mechanism for pattern matching [16].
They both, however, have the following limitations that make
them unsuitable for our purposes.

1) Writing certain code specifications using grep can be
difficult, and sometimes impossible. For example, if one
wished to look for a sequence of two statements—a
while followed by a for (both with arbitrary con-
ditions and bodies) at the same level of nesting—then a
grep specification might be

.*while.*for

2) Unfortunately, this specification would also match code
where the for is in the body of the while, or where
the while or for occur within comments, which is
clearly not what is desired.

3) A serious problem with grep-like tools involves writing
specifications for data declarations. Consider writing a
specification for a declaration of an integer variable
z and a character variablec. Since the ordering of
declarations is usually unimportant, they could appear in
any order in the source code. A regular expression for

such a specification would have to be of the following

form:
(.*int [ 1*x[ 1*;.*char[ ]*c[ }1*;)I
(.*char[ l*c[ 1*;.*int[ ]1*x[ ]*;)

The complexity of specifying patterns containing more
than two declarations is obvious.

4) The existing implementations of grep family tools do
not support the matching of newline characters. This
is a serious drawback in the context of source code
search where most meaningful patterns of code span
multipie lines.

Other tools that employ regular expressions for pattern
matching include ed, sed, and awk. ed and sed [16] are
text editors which allow find-replace facilities on regular
expressions (which in the case of sed can span multiple lines),
essentially treating the source code as a character stream. Awk
[1]is a pattern matching and processing language that views its
input as a stream of records. While the record abstraction is an
improvement over character streams, it does not significantly
help in source code search because records are inadequate for
modeling the complexities in source code.

The shortcomings of these tools in the context of source
code search stem from two facts: 1) the inappropriateness
of character streams or record streams as models of source
code and 2) the inadequacy of regular expressions as a source
code query language. For source code search, the source code
should be modeled using its abstract syntax representation.
Similarly, the query language must permit nested and recursive
patterns. As a result, the use of these tools makes queries
unnatural, clumsy, and often impossible.

B. Browsers and Program Databases

Omega [20], CIA [7], CIA++ [10]. Microscope [3], Rigi
[23], and SCAN [2] are examples of tools that are designed
especially for making queries on code and help with code
browsing. They typically generate a program database consist-
ing of entities such as file names, function names, and variable
names, with well-defined relations between them. Queries can
then be made on the program database to retrieve information
such as names of functions that call a specified function, global
variables used by a specified function, etc.

Though the above tools are powerful and useful, they
support only a limited range of queries—those that are based
on a entity-relation-attribute view of programs. In contrast,
our scheme takes a structural approach to source code search,
while supporting many of the features of the abovementioned
systems.

C. Tools to Detect Plagiarism

Tools that detect plagiarism in programs (the problem is
relevant in the case of student assignments) [4], [11], [21]
are usually based on software metrics such as Halstead’s [12].
Another category of tools [14] utilize the static execution tree
(the call graph) of a program to determine the ‘fingerprint’ of
a program, and use the latter to decide whether it has been
copied from another program. The primary limitation in all
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such systems is that the comparison depends on statistical
information, which makes them unsuitable for writing struc-
tural specifications. We are proposing techniques which give
a greater degree of control over the type of matching desired,
and allow matching over a part of the program (such as a
procedure, declarations, or statements) rather than a matching
between two programs.

D. Program Transformation Tools

Systems have been developed to manipulate source code
through program transformation [19]. The purpose is to au-
tomate software tasks such as development, modification, and
correction. Transformations are specified using rules. The left-
hand side of a rule is a code pattern. The right-hand side
consists of actions that must be performed if the left hand side
matches.

The TXL system [8] converts code written in a dialect
language into code in the base language. This is accom-
plished by transforming the parse tree derived using the dialect
grammar into a parse tree of the base language grammar,
and extracting a new program from the latter. Apparently,
a recursive tree matching algorithm is employed by the tree
transformer. The specifics of the algorithm and its complexity
are unavailable. The ASCENT system [9] generates program
transformers to convert programs written in an application-
specific language into those written in a general-purpose
language, by transforming parse trees.

In contrast to the implicit tree matching in the above
systems, the REFINE system [28] offers an explicit pattern-
based query language to manipulate source code [18]. Program
reengineering systems [19] have used REFINE to write pro-
gram transformation rules. The lefthand side of these rules
are usually source code patterns written using the REFINE
pattern language. The REFINE source code model used is
based on the abstract syntax of the programming language.
The pattern language supports a rich set of features including
named and unnamed wildcards, matching of high level data
types such as sets and sequences, etc. The pattern matching
algorithm approach is based on tree matching [31]. SCRUPLE
has similarities with REFINE in its interactive pattern language
based approach to source code search, but uses a finite
state machine based pattern recognizer to efficiently find
matches.

IIl. FEATURES OF OUR APPROACH

Our solution to the search problem addresses many of
the limitations of existing schemes effectively. Some of the
important features of our approach are the following:

1) The pattern language used is an extended version of the
underlying programming language. In particular, most
code fragments are valid patterns in the pattern language.
This makes learning to write patterns quite simple.

2) The pattern matching approach is syntax-directed in-
stead of character-based. Making the matching approach
syntax-directed provides a higher abstraction to the user
in terms of specifying patterns.

3) A wide range of patterns, which are either very difficult
or impossible to express using just regular expressions,
can be expressed quite easily in SCRUPLE.

4) Pattern language gives the user substantial control over
expressing the precision of specifications.

5) The search for a match can span multiple lines. In fact,
the search is independent of the formatting of the source
code.

6) An efficient recognizer of syntactic/structural code pat-
terns expressed using the pattern language has been
designed, and a prototype system built. The recognizer
is based on well-known principles in automata theory.

IV. THE PATTERN LANGUAGE

In SCRUPLE, users use a pattern language to specify high-
level patterns for making queries on the source code. So far,
we have designed pattern languages for C and PL/AS. The
SCRUPLE system has been tested on real PL/AS programs.
The C version of the system is in a prototype stage. In view
of the popularity of C as a programming language, we are
currently implementing a complete SCRUPLE system for it.

The pattern language in our framework is an extension of the
source code programming language. The extensions include a
set of symbols that can be used as substitutes for syntactic
entities in the programming language. When a specification is
written using one or more of these symbols, it plays the role
of an abstract template which can potentially match different
code fragments.

The pattern symbols that lend the pattern language its
expressive power can be classified into four broad categories:
1) wildcards for syntactic entities, 2) wildcards for collections
of syntactic entities, 3) named wildcards, and 4) additional
features provided to allow complex queries regarding nesting,
references to identifiers, constraints and restrictions on the
names and entities to which wildcards get bound, etc.

To illustrate our approach, we give an overview of the
pattern symbols in a sample pattern language for C. More
detailed descriptions of the pattern language are available in
[24], [26].

A. Wildcards for Syntactic Entities

Queries about source code (written in imperative languages)
often pertain to the programming language constructs such
as statements, variable declarations, type declarations, ex-
pressions, functions, etc. To make such queries possible, we
introduce pattern symbols for such constructs. Table I lists
these pattern symbols. These pattern symbols can substitute
as wildcards in the patterns used to express queries about the
source code.

A few queries that can be expressed using these symbols
are described below.

« Query: Find all while statements where the condition
of the while statement is a relational expression of the
form not-equal-to zero.

Pattern:
(#!= 0) @;
The goal might be to replace (#! = 0) by simply (#).

while
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TABLE 1
WILDCARDS FOR SYNTACTIC ENTITIES

Syntactic Entity Pattern Symbol

1 declaration $d
2 type $t
3 variable $v
4 function $f
5 expression #
6 statement @

» Query: Find all occurrences of three consecutive 1if

statements.
Pattern:
if # @;
if # @;
if # @;

The goal might be to locate potential candidates for
switch statements.
e Query: Find all if statements where ‘=" has been mis-
takenly used in place of ‘=="in the condition.

‘

Pattern:
if (#=#) @;
The goal is to locate a common source of bugs in C
programs—namely the use of the assignment operator
instead of the equality operator in a relational expression.
e Query: Find all declarations of the variable x.

Pattern:

St x;
The goal might be to improve readability of the code by
introducing mnemonic names instead of z.

We chose the current symbols based on our perceptions
of what maintainers typically look for. If queries requiring
pattern matching on other syntactic entities were required, such
syntactic entities could be added easily to the pattern language
without changing the basic design of the system.

B. Wildcards for Collections of Syntactic Entities

In addition to the basic pattern symbols introduced in the
previous section, symbols that represent collections of these
entities are also necessary. For example, the user might be
interested in matching a collection of declarations or state-
ments of arbitrary size. The pattern symbols for collections of
syntactic entities are listed in Table II.

Collections of syntactic entities can have semantics which
are relevant to the problem of pattern matching. These se-
mantics must hold for the pattern symbols that represent these
collections. For example, we know that in the source code of a
C program, the order of declarations in a group of declarations
usually does not matter. Therefore, the two declaration groups
shown below are treated as identical for the purposes of pattern
matching.

Group I Group II
int x; char s;
char s; int x;

TABLE 1I
WILDCARDS FOR COLLECTIONS OF SYNTACTIC ENTITIES
Entity Pattern Semantics
Collection Symbol
1 declarations $*d SET
2 variables $Hv SET
3 expressions #* SET
4 statements @* SEQUENCE

However, in the case of statements, the order is important
and for the purposes of pattern matching the following two
groups are not identical.

Group 1 Group 1I
if (x > 0) y = y*x; y = y+1;
y = yt+1; if (x>0) y = y*x;

Based on these examples, it is apparent that syntactic entity
collections are of specific types. A group of declarations form
a set, a group of statements form a sequence, a group of
expressions form a set, and a group of variables form a
set. Consequently, $*d is a wildcard for a set of arbitrary
declarations, #* for a set of arbitrary expressions, @* for a
sequence of arbitrary statements, and $*v for a set of arbitrary
variables. For the purposes of pattern matching, the matching
rules applied to a collection of syntactic entities are determined
by its type.

A few queries that can be expressed using these symbols
are described below:

o Query: Find all statements which are procedure calls.

Pattern:
Sf(#7);

e Query: Find all functions which return values of type
COMPLEXNUMBER.
Pattern:

COMPLEXNUMBER $ £_1($*v) $*da {@*;}

The goal is to locate all functions which return data of
a certain type.

o Query: Find a sequence of statements such that three or
more if statements occur, possibly with other statements
between them.

Pattern:
if # @;

if # @;
The goal could be to locate code sections with high
cyclomatic complexity [22]: in this case there are eight
possible paths through the source code.

» Query. Find a set of declarations, one of which is a
declaration of a variable maxval of type int.
Pattern:

int maxval;
$*a;
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TABLE 1II
NAMED WILDCARDS

Entity Pattern Symbol

1 declaration $d_{name}
2 declaration set $*d_{name}
3 type $t_{name}
4 variable $v_{name}
5 variable set $*v_{name}
6 function $f_{name}

7 expression #_{name}

8 expression set #*_{name}
9 statement @_{name}
10 statement seq. @*_{name}

C. Named Wildcards

The pattern symbols described in the last two sections make
the pattern language reasonably expressive; however, there
is still a large class of queries which cannot be expressed
using just these features. Consider the query: Find all instances
where a variable of type integer is incremented by 1. It is
clear that the query needs to be expressed as a combination of
two simple patterns—the first pattern expressing a variable of
type integer, and the second pattern expressing that the
same variable is incremented by 1. To make such queries
possible, the concept of named wildcards are introduced.
Named wildcards imply bindings, and can be used to express
constraints within patterns, and to restrict the matching of one
part of a pattern based on that of another part. The list of
named wildcards are given in Table III.

The query mentioned earlier:

Find all instances where a variable of type integer is
incremented by 1 can now be expressed as:
Pattern:
int $v_1;
$v1=8%v1 + 1;

Using the concept of semantically equivalent statements
described in Section IV-F, this query can be used to match
statements of the type $v_1 + +; as well.

A few other queries that can be expressed using named
wildcards are described below:

« Query: Find situations where the values of two variables
are being swapped.

Pattern:
$v_tmp = $v_x;
e*;
$v_x= $v_y;
@*;
$v_y = $v_tmp;

The goal is to recognize a swapping plan or cliche.
» Query: Find all struct declarations containing a field
whose type is recursively defined.

Pattern:
$ t.1 {
$*d;
$ 1 *$v;

TABLE IV
OTHER PATTERN SYMBOLS

Pattern Symbol Meaning

1 @{{..{}..1} A statement with depth of
nesting equal to the number of
{.

2 @|{**} A statement with arbitrary

nesting depth.

3 @{stmt-typel | stmt-type2...] Any of the specified statements

4 @<id-1,id-2, - > < - > $f< - > refers to/uses identifiers

The goal may be to detect the various linked
lists used in the program.

D. Additional Power

This section covers the remaining features of our pattern
language. The inclusion of these features makes the pattern
language considerably more expressive. Table [V lists the
pattern symbols for these features.

The symbols 1 and 2 in Table IV permit the specification of
nesting information in patterns. Symbol 3 imposes constraints
on potential matches. Symbol 4 is intended to specify usage
information (i.e., whether or not a certain identifier is used or
referred to within a statement, expression, or function).

A few queries that can be expressed using these symbols
are described below:

« Query: Find all functions that have references to the

identifier xmax.
Pattern:
$t $f_x (xmax) ($v*) { @* };

The goal may be to examine the accessibility of the

identifier xmax from various functions.

« Query: Find a structure of three nested loops.

Pattern:
@[while | for | dowhile ]{@*;
@[while | for | dowhile ]{@*;
@[while | for | dowhile ]{@;

}
}

The goal is to look for solutions to matrix multiplication,
path closure, etc.

E. Writing a Pattern

Using the symbols mentioned in the previous sections,
patterns can be written. The text of a pattern has two sections.
In the first section, any restrictions that apply to variable, type
or function names are declared. In the second section, the
actual pattern of the code being looked for is described. The
two sections are separated by %%.
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Pattern

$f_1 = “*max*x’
%
$t_1 $f_1($*v)
$*d
{*
¢[whileldowhilelfor] {*
if ($v_2[#]) > $v_3)
$v_3 = $v_2[#];
*}
*}

Fig. 1. Patten for finding the maximum in an array of integers.

Pattern

while ($v_1<25)

$v_3[$v_1]
$v_1++;

lan)

$£.5($v_1);

}

Fig. 2. Matching after transformation to canonical forms.

Suppose a maintainer wants to locate a function that finds
the maximum value in an array of integers. He suspects that
the name of the function contains the substring “max” in it. In
addition, the maintainer assumes that the function has a store
for the current maximum, which is updated as necessary as
the entire array of integers is scanned from left to right. After
the scan of the array is done, the store contains the maximum
value in the array.

Using this knowledge, the maintainer may come up with the
pattern in Fig. 1, for which the code on the right is a match.
$v_3, $f_1, and $v_2 are bound to maxstore, find max,
and int_arr respectively.

F. Matching Equivalent Statements

The abstraction provided by the features of the pattern lan-
guage described so far can be further enhanced by introducing
low-level semantics to the matching mechanism. Consider
a pattern consisting of an iterative statement (say while).
It may happen that the source code contains a do-while
statement that has a body and a terminating condition matching
that of the while statement in the pattern. In such situations,
we may want a maich to be reported. An example is given
in Fig. 2.

Low-level semantics of this type can be introduced into the
matching mechanism by mapping equivalent constructs into
canonical forms. Such a representation scheme would map
while, for,and do-while statements in C to a common
iterative form. The patterns which use these constructs would
also be transformed to the corresponding common iterative

A match

int find_max(int_arr, N)
int int_arr( J;
int N;
{
int i;
int maxstore;
maxstore = int_arr[0];
for (i=1;i<N;i++) {
if (int_arr[i] > maxstore)
maxstore = int_arr[il;

}
return(maxstore);
}
Match
do {
squares[x] = squareof(x);
X++;

} while (x < 25B);

form. The problem of matching the while and the do-
while statements would thus reduce to comparing their
canonical forms. At this point, we have not implemented this
facility in our prototype.

V. SCRUPLE SYSTEM ARCHITECTURE

The SCRUPLE run-time system searches the source code
for matches. The program source code is transformed by
a source parser into a data structure called the attributed
syntax tree (AST), which is based on the attributed depen-
dency graph model described in [2]. The pattern (or query)
specified by the user is transformed by a pattern parser into
an automaton called code pattern automaton (CPA). CPAs
are special-purpose nondeterministic finite state automata. The
formal definition of a CPA is given in Section V-B. The major
components of the system are shown in Fig. 3.

After the AST and CPA have been generated, a CPA
interpreter runs the CPA with the AST as input. A match
occurs whenever the CPA reaches a final state. The interpreter
maintains information about bindings of named wildcards in
data structures called binding tables.

In our prototype, the source and pattern parsers are written
manually using a high-level programming language (C). It is
however possible to generate the parsers automatically from
a high-level description of the abstract syntax of the source
code programming language [25], [28].

We now describe the SCRUPLE architecture in some more
detail.
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SOURCE

PATTERN

]

|

|

|

] Forms
4

|
Canonical =
I
i— —————— Y —1|
Ry < =
|
| e0) {
I chefk_state() |
I new_binding() ange_state() i
T . CPA
: Binding Tables Interpreter =
| check_binding() |
| regord() |
| |
I Match [
| Set I
i |
o ThePanterMaching System _|

Fig. 3. The architecture of the SCRUPLE system.

A. AST: Attributed Syntax Trees

The source parser compiles the source code (on which the
search is to be carried out) into an AST. The AST is a tree
data structure that captures the abstract syntax of source code
(see Fig. 4). The nodes of the AST represent the entities of
the program, along with attributes that contain information
about the entities. The entities can be functions, declarations,
statements, expressions, or other terminals and nonterminals of
the source code language grammar. The use of abstract syntax
representations in software engineering has been documented
in [27].

B. CPA: Code Pattern Automata

The pattern parser compiles a user-specified pattern into
a CPA, an extended nondeterministic finite state automaton.
Finite state automata are a good basis for designing efficient
pattern detection algorithms. Nondeterminism permits the de-
tection of wildcards such as @*, #*, etc., and also makes it
possible to explore multiple potential matches simultaneously.
The input to the CPA is an AST. Ordinary finite state machines
cannot be run with a syntax tree as input, and must be
extended.

The definition of a CPA evolves from that of a classical
nondeterministic finite state machine [13]. Two key extensions
to the classical model are introduced. First, the input alphabet

consists of syntactic elements of the source code, i.e., nodes
of the AST (terminals and nonterminals). Secondly, transition
arcs between CPA states contain explicit information about
the “next” AST node that must be seen by the new state.
Essentially, this is a mechanism of navigating through the
AST to generate the correct input stream for each match being
explored by the CPA.
Formally, a CPA is a 6-tuple of the form (@, %, A, T, go, F')
where we have the following:
1) @ is the set of states.
2) ¥ is the input alphabet consisting of nodes of the
AST that represent syntactic elements. We define ¥ =
Y nUZX, where X represents the internal nodes of the
AST and ¥ represents the leaves.
3) A is the set of AST navigation functions given by A =
{moveto _leftchild, moveto_rightsibling, moveto_parent}.
The semantics of the functions are apparent from their
names. These are are used by the CPA interpreter to
navigate through the AST to generate input streams for
the CPA.
4) T is the set of transition functions given by I' =
{CAT, VAL}, where we have the following:

o CAT:Q x Ty —> 29x47
Arc Label:
CAT {category): ACTION : (actions)
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while (z>1)z=2z-2;

y=0;

p=0;
if(t==)x=1;
}

Fig. 4. Sample attributed syntax tree used in SCRUPLE.

The CAT arc specifies the syntactic category
to which the input must belong. Consider
the inheritance hierarchy of the source code
language. If T is a type, then for all S that
are subtypes of T, an arc labeled CAT(T’) can
be traversed if an instance of type S occurs in
the input stream. For example, if a while-
stmt is seen, an arc labeled CAT(stmt) can
be traversed.
2@xAT expresses nondeterminism in the au-
tomata transitions. There could be several
valid transitions from the given state for the
same input. For each possible transition, a new
CPA state is reached and one or more actions
to advance the current node pointer in the AST
input are taken. The choice of the transition
taken is nondeterministic.

¢ VAL:Q x T — 2@x47
Arc Label:
VAL (value); ACTION : {actions)

A VAL arc can be traversed when the value
seen in the input stream matches the (value)
on the arc.

5) go in Q is the initial state.

6) F C Q is the set of accepting states.

An AST is accepted as input by a CPA if there exists a
sequence of transitions, corresponding to the input AST, that
leads from the initial state to some accepting state.

Fig. 5 shows the CPA corresponding to the following pat-
tern:

while (#) @;
@*;
if (#) x = 1;

Note how the arc corresponding to @* (self-referencing arc
on node 3 in Fig. 5) introduces nondeterminism in the CPA.

C. The CPA Interpreter

The CPA interpreter simulates a CPA on an AST and
produces a match set. The interpreter simulates the necessary
state transitions of the CPA, and also moves the current
AST node pointer to the next input node, as specified by
actions on the transition arcs. The only type of actions
used on transitions in our automata are the following:
moveto_lefichild, moveto_rightsibling, and moveto_parentt,
moveto_rightsibling. Restricting the actions to just the above
types implies that no node in the input AST will be seen
twice, thus ensuring termination of the interpreter algorithm.
A match is found if and when the CPA reaches a final state.
A simulation of the CPA in Fig. 5 on the AST fragment in
Fig. 4 is shown in Fig. 6.

Let us consider the interpreter algorithm under the simpli-
fying assumption that the pattern has no named wildcards.
Since the CPA is a nondeterministic machine, the interpreter
uses a queue-like data structure to simulate its nondetermin-
ism using a deterministic algorithm. The queue consists of
elements called states, where a state is a 2-tuple of the
form (CPA_node, AST_node). The queue is partitioned into
segments of input equivalent states (states that will consume
the same AST node as input or, equivalently, have the same
value for AST_node). The interpreter reads the next state
to be simulated off the front of the queue and, in case of
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Fig. 6. CPA simulation (the numbers on the nodes show the current CPA state).

possible transitions, inserts the next states into their appropriate
segments, creating new segments if necessary. A match occurs
when a state with CPA_node € F arrives at the front of the
queue.

To control the complexity of the simulation, duplicate states
(states with identical values of CPA_node and AST node) are
prevented from being inserted into the queue. In addition,
the segments in the queue are ordered by increasing preorder
numbers of the corresponding AST nodes. If the number of
AST nodes and CPA nodes is given by N and M, respectively,
then the two conditions mentioned above ensure that no more
than VM states are examined during the course of a CPA
simulation. For each state, the time taken to process a next
state is bounded by (N + M), where N is the time to
locate its appropriate segment, and M is the time to examine
the states in that segment for duplicates. Each state may
have at most M next states, hence the total complexity of

the simulation is proportional to NM2(N + M). Typically,
N > M, hence the algorithm is O(N?2). This is of the
same worst-case complexity, in the length of the input, as
algorithms used to match regular expressions in text strings
[29].

When the pattern has named wildcards, the interpreter
uses binding tables to keep track of the bindings between
named wildcards in the pattern and actual names seen in the
source code. Because the matching is nondeterministic, there
may be more than one match being explored at any given
time. A unique binding table is associated with each such
exploration, and hence more than one binding table may be
active during the simulation of the CPA. The binding table for
a given exploration stores only the bindings relevant to the
exploration.

We point out here that traditional and efficient pattern
matching algorithms such as the Knuth, Morris and Pratt
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algorithm [17], the Boyer and Moore algorithm [5], and
the Rabin and Karp algorithm [15] were not used to
solve our problem because they do not match regular
expressions.

D. Performance Issues

Managing the bindings of named wildcards causes problems
in terms of algorithm complexity. If the user is interested in
all possible binding scenarios for a pattern, in the worst-case,
pattern matching using named wildcards can be expensive.
For example, consider the pattern:

int $v_1;
int $v_2;

If there exist n variables in the code of type int, then we
have n(n — 1) possible bindings for the pattern.

To manage the combinatorial blow-up caused by named
wildcards, we are currently looking into heuristics that can
speed up the search for matches. In the absence of any
named wildcards in the pattern, the pattern matching engine
adopts a shortest match strategy. This means that if-a pattern
can potentially match two multiple code fragments starting
at the same position, only the shortest one is matched. If
named wildcards exist, a shortest match for each binding
strategy is adopted. We implement this strategy by associ-
ating a binding table with each current state. The presence
of too many named wildcards can still be combinatorially
explosive; however, our experience indicates that such patterns
are rare in program understanding and browsing tasks. We
are looking for additional heuristics to control the complex-
ity of named wildcards matching as a part of our ongoing
research.

Another strategy adopted currently in SCRUPLE to deal
with named wildcards is to match the statements and ex-
pressions in the pattern before attempting to match the data
declarations. This is a useful approach because, statement or
expression matching (a sequence matching problem) being less
expensive than declaration matching (a set matching problem),
the bindings generated in the first phase can be used to perform
a controlled search for matching declarations.

The performance of the SCRUPLE system could also be
improved by using additional node attributes to record program
fingerprints [14], metric informations (4], [12], etc.

VI. EXPERIMENTAL RESULTS

Fig. 7 shows the interface of the SCRUPLE prototype for
PL/AS. The interface provides commands for selecting a file
on which matching is to be done, passing the file to SCRUPLE
for parsing, creating and editing patterns, and searching for
matches. The pattern corresponding to a query used by the
user is shown in the partern window (the lower right box). The
source code file being queried is shown in the source window
(lower left box). When the user chooses the option “Match
Pattern” from the pull-down menu associated with the action
“Match” (on the action bar), the SCRUPLE runtime system
executes, and a summary of the matches found are returned in
the results window (upper left box). If the user now clicks on
one of these matches, say Match 2, the matched source code is

automatically highlighted in the source window. The binding

" of the pattern symbol(s) for the selected match is shown in the

bindings window (upper right box). The user can also navigate
around the source code inspecting other matches and bindings
using the buttons Next Highlight, Prev Highlight, etc.
Using our PL/AS prototype, we have shown that the pattern
language of SCRUPLE is powerful enough to make queries
similar to those possible using other browsing systems such as
CIA [7] and SCAN [2], in addition to expressing a wide range
of structural queries that are impossible using other systems.
The tests described in this section were conducted on a 9,600
line PL/AS program using a Sun SPARC station. A suite of
five queries was used. The queries were:
« QI: Find all the places in the source where any procedure
call is made:
CALL $p_1(#%):
Q2: Find all the places where the procedure ARIDMGE
is called:
CALL ARIDMGE_1 (#%);
+ Q3: Find all code fragments with the following nested
loop structure:
DO;
@*;
IF # THEN DO;
B*;
END;
@*;
END;
« Q4: Find all statements in the source code where a
variable is being incremented:

$v_1 = $v_ 1 + #;
Q5: Find a sequence of three consecutive IF statements:

IF # THEN @;
IF # THEN @;
IF # THEN @;

Q1 and Q2 are examples of simple queries supported by
systems like grep, CIA, SCAN, etc. [2], [7], [10]. Q3, Q4,
and Q5 are examples of queries that SCRUPLE is adept at
handling, but are not handled easily by other tools.

Additionally, we also tested the performance of grep on
Q1, Q2, and a query very similar to Q4 (which involved
searching for a pattern of the form: [A-Z]*[ ]*=[]*[A-
71%[ 1*+.*;). Q3 and Q5 are unsuitable for grep because
the instances of code that will match these patterns will very
likely span multiple lines, and grep would fail to detect them.
The performance figures for SCRUPLE and grep on the
queries are shown in Table V. The numbers exclude the time
taken by SCRUPLE to parse the source code into an AST,
since it is incurred only once at the beginning of a query
session.

Our experience with SCRUPLE shows that it is also an ef-
fective tool for expressing queries that are typical in a software
maintenance or reengineering situation. Authors of program
transformation systems for code reengineering [19] have in-
dependently arrived at similar conclusions about REFINE-like
pattern languages. We interpret this as a reaffirmation of our
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Fig. 7.

work in SCRUPLE, where the goal is to build a powerful
pattern language.

VII. CONCLUSION

We have described a framework for specifying high-level
patterns in terms of programming language constructs. High-
level patterns provide a natural way to express structural
features which are either difficult or impossible using grep
like languages. A pattern language is an extension of the
underlying programming language, which makes it relatively
easy to use. The pattern matching is syntax-driven as opposed
to character-based, which provides a better abstraction to the
user, and results in an effective search method. To validate our
framework, SCRUPLE prototypes have been built for C and
PL/AS and demonstrated at conferences. Preliminary results
using the prototypes show that SCRUPLE simplifies the task of
locating complex code fragments. The strength of SCRUPLE
lies in the combination of a good source representation, a

User-interface of a browsing application that uses PL/AS version of SCRUPLE.

powerful pattern matching engine, and a high-level query
language.

The work described in this paper is based on the premise
that structural patterns are a useful and interesting means
of investigating source code. This hypothesis needs to be
rigorously validated. Two aspects to this validation exist. First,
detailed studies need to be carried out on the kinds of structural
queries that arise in software maintenance. Finally, SCRUPLE
must be tested widely on large-scale software systems.

VIII. FUTURE WORK

To make SCRUPLE more powerful, research needs to
be done in the area of canonical representations so that
simple semantic equivalence can be established for language
constructs. The problem of semantic equivalence is difficult,
and starting with simple programming constructs may be a
useful approach. Automatic generation of SCRUPLE imple-
mentations for different programming languages is alse under
investigation [25].
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TABLE V
PERFORMANCE (IN SECONDS)
Real Time Matches
SCRUPLE 1.06 335
Q1
grep 1.45 335
SCRUPLE 1.12 270
Q2
grep 1.47 270
SCRUPLE 3.70 250
Q3
grep X X
Q4 SCRUPLE 2.64 140
Q4 grep 12.96 145
SCRUPLE 3.65 160
Q5
grep X X

Extensions to the current SCRUPLE system are being
considered. A library of frequently used patterns, including
those available on other program browsing systems [2], [7],
[10], will enhance the utility of SCRUPLE. Alternative ways
of letting the user navigate through the match set are being
considered. We also wish to introduce a general mechanism
for query composition using which more complex queries can
be constructed out of simpler ones. Related to this is the idea
of query pipelining, where the output of one query can be the
input to another. This can be useful in query refinement and
will improve the efficiency of the search.

New application areas for pattern-based query processing
are emerging. Two areas that we have identified are distributed
debugging and multimedia databases. In distributed debug-
ging, the domain of search is the event history of executing
processes, and queries can be expressed as patterns of com-
munication behavior between these processes. In multimedia
databases, data is often parsed according to a simple grammar.
In the case of a video database of CNN newsclips [30],
clips are organized into higher level syntactic entities like
stories, episodes, and so on. For the purposes of querying,
the video database can be likened to a syntax tree of clips,
stories, and episodes, and pattern matching techniques similar
to SCRUPLE can be applied.
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