DACIA:

A Mobile Component Framework
for Building Adaptive Distributed
Applications

Radu Litiu and Atul Prakash
University of Michigan, EECS

v

Outline

= Motivation and Goals

= DACIA Architecture

= Performance Measurements
= Related Work

s Conclusions and Future Work

v

Need for Adaptation -
SPARC Collaboratory

An application is a graph of connected components.

Possible changes:
» Execute the computation on the client machine
» Store computed images instead of raw data
» Add/remove modules

v

Why Reconfiguration?
s Environment: Pentium 1l 200, Ultra SPARC 1

= raw data size / computed image size = 1/2
= compute time =5 msec/kB (fast machine)

15 msec/kB (slow machine)
service request time (msec)

350
300
250
200

0

bandwidth=800kBps

150 -
100 -
50 |

8k

16k

request size (bytes)

bandwidth=60kBps

900
800
700
600
500
400 -
300 -
200
100 -

0

8k 16k
request size (bytes)

O Compute on server

@ Compute on clients

= Adaptability and reconfiguration can be useful

Mobility

A\
= (]| T

v

Design Goals

= Adapt to variability

= Runtime reconfiguration

= Application and user mobility

= Persistent connectivity between components
= Low communication overhead

s Ease of use

v

DACIA* Architecture

HOST 2 - mohile PC

MONITOR 2

HOST 1 - fixed PC
MONITOR 1 ‘ :I

Engine (mechanism)

+» Communicate between hosts

» Manage connections
between components

» Relocate components
» Reconfigure the application

Monitor (policy)
» Monitor performance

» Make reconfiguration decisions

» Implement application-specific
reconfiguration policies

v

PROCs : Basic Model

PROC - Processing and Routing Component
» Communication through ports

» Key goal: low communication costs

synchronous communication asynchronous communication

message queue data

v

Communication Performance

= Environment: Pentium Il 200, Ultra SPARC 1, 10 Mbps LAN
= Latencies (nrsec) for inter-PROC communication and raw TCF

message size || local PROCs | local PROCs local local TCP|| Remote Remote
(bytes) synchronous| asynchronous| procedure call PROCs TCP
0 6.6 44 6.4 370 2040 990
1000 6.6 44 6.4 400 3900 2600

= Throughput (message size = 1-5 kB)

+» DACIA: 4.78-5.33 Mbps

» TCP (Java): 5.35-6.61 Mbps

v
Component Mobility

s 1ransfer the PROC's state

» data
» Message queue

= Implicit/explicit state capture
= Movement at well-defined times

= Cost of PROC movement - 121 msec (size = 788 bytes)
» Java serialization cost

= Component mobility more effective for long-term
environment changes

v

Connectivity

= Multiplex virtual connections between PROCs
» LOow cost to establish connections

» Hide temporary network failures

= Persistent connectivity between moving PROCs

» Messages buffered or forwarded

» Dissemination of PROC location information

v
Dynamic Application Reconfiguration

An adaptive application:
multi-party communication

» Change connections
between components I /‘
el®

= Change components’
; AN

e T

= Load new components

v

Reconfiguration Mechanisms

= Specialized monitors

s Command-line interface :

= connect [hostname] [porthumber]

= connectProcs [sourceProclD] [sourcePortNo] [destProciD]
[destPortNo]

= disconnectProcs [sourceProclID] [sourcePortNo]

= move [proclD] [hostname]

= Start [prociD]

= StartMonitor

\ 4
Related Work

a Distributed component architectures: CORBA, Globus,
Darwin, Scout

= Code mobility & mobile agents: Telescript, Obliqg,
Sumatra, Tacoma, Aglets, FarGo

= Mobile environments: Rover, Daedalus/Barwan, GloMop

a Adaptive systems: Odyssey, Conductor

v

Conclusions

s DACIA - a framework for building adaptive distributed
applications

= Dynamic reconfiguration can improve the performance
of the application

= LOw-cost connectivity
m Application and user mobility

» Persistent connectivity between mobile components

v

Current and Future Work

» Policies and algorithms for application reconfiguration

= Formalism for specifying components and composition
rules

» Deployment and experimentation

» Security infrastructure

http://www.eecs.umich.edu/~radu

