Filter: An Algorithm for Reducing Cascaded Rollbacks in Optimistic
Distributed Simulations

Atul Prakash

Rajalakshmi Subramanian

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122.

email: aprakash@zip.eecs.umich.edu

Abstract

We describe a new algorithm, called Filter, that lim-
its the propagation of erroneous computations in op-
timistic discrete-event distributed simulations. In the
proposed algorithm, each message carries a bounded
amount of dependency information that describes the
assumptions made in the generation of the message,
and, in addition, processes keep track of straggler
events that have occurred in the system. This knowl-
edge is used by processes to “filter” out messages that
depend on a preempted state by discarding them upon
receipt. We describe the algorithm and its use in con-
junction with time-warp, suggest several ways of reduc-
ing its potential overhead by adjusting the extent of
filtering, and point out several interesting performance
tradeoffs that we are currently exploring.

1 Introduction

Distributed discrete-event simulation is potentially a
powerful technique for getting speedups in discrete-
event simulations. Discrete-event simulations of large
systems in many domains, including computer science,
engineering, and military applications, generally take
enormous amounts of time and the goal of distributed
discrete-event simulations is to get speedups in carry-
ing out simulations by partitioning the system in such
a way that parallelism can be obtained. In this pa-
per, we consider those class of techniques where a sin-
gle simulation program is run on multiple processors
by decomposing the program into concurrently running
logical processes [1, 2, 6]. Each process maintains its
own logical clock, running asynchronously with other
processes.

In order to ensure that each process executes events
in the correct sequence, there are two broad classes
of simulation algorithms, conservative and optimastic.
Some of the conservative algorithms include the null
message scheme [1, 2] and deadlock detection and re-
covery scheme [3], an hierarchical scheme [9], and con-
servative time windows [7]. Most well known optimistic
algorithm is time-warp [6]. A survey of many of the dis-
tributed simulation algorithms can be found in [5]. In
this paper, we are concerned with reducing overheads
of optimistic algorithms for distributed simulations.

In the well known time-warp method [6], a causal-
ity error occurs whenever a message is received that
contains a time-stamp smaller than that of the last
processed message. The event message causing the
rollback is called a straggler. Since the process being
rolled back may have sent messages that are inconsis-
tent with the rolled-back state, cancellation events in
the form of anti-messages have to be sent to annihi-
late the sent messages. These anti-messages can cause
further rollbacks if the next process has already pro-
cessed the message that was supposed to be annihilated
by the anti-message. Unfortunately, it is possible for
these rollbacks to propagate for a long time, especially
if the process graph has loops, with anti-messages chas-
ing regular messages around the loop. Rollbacks are
generally expensive, and a major cause of degradation
in potential performance of time-warp algorithms.

Mechanisms have been proposed to prevent the
spread of erroneous computation using schemes such
as Wolf [8] and optimistic time-windows [10]. These
approaches can however also impede the progress of
correct computations by unnecessary freezing of correct
computations, since they cannot distinguish bad com-
putations from good ones [5]. In this paper, we propose

an alternative approach, using conditional messages,
that is able to distinguish between bad computations
from good ones and only prevent bad computations
from spreading.

The aim of the algorithm is to avoid processing of
messages that would eventually be annihilated by anti-
messages currently in transit. This is done by attach-
ing sufficient information with each message sent out
so that a process can determine if the message is defi-
nitely going to be annihilated by a future anti-message,
and therefore should not be processed. This is done by
propagating with each message a list of assumptions,
which if they were to be violated, the message would
eventually have to be annihilated. These assumptions
are simply the conditions that must hold true in order
for the message to eventually survive the simulation.

Whenever a process receives a message, it checks if
any events that could violate the assumptions associ-
ated with the message are known to have occurred (each
process maintains a list, called rollback list, of straggler
events for the purpose). If a violation of assumptions
is known to have occurred, the message is discarded.
Otherwise, the message is accepted for processing. So,
in the proposed algorithm, acceptance of a message for
processing 1s conditional upon its assumptions being
consistent with the current knowledge about the strag-
gler events in the system.

A conservative algorithm based on conditional
knowledge has been proposed by Chandy and Sherman
[4]. In our algorithm, we are using conditional knowl-
edge to improve performance of optimistic algorithms.
The proposed algorithm is quite general, being applica-
ble to all simulations for which time-warp is applicable.

For simplicity of treatment, we make the following
assumptions in this paper:

1. Each communication channel is only between two
processes; and is FIFO and reliable.

2. Each message on a channel carries a monotonically
increasing sequence number, despite rollbacks.

3. The simulation system has a fixed communication
topology.

The first two assumptions are easy to satisfy using
appropriate communication protocols. The third is re-
ally not needed, except to keep our description simple.
We also assume that each communication channel has
a known globally unique identifier (which is easy to as-
sign before execution, because of fixed communication

topology).

In Section 2, we describe our algorithm, called Filter,
that uses the rollback list for filtering incoming mes-
sages and propagating rollbacks quickly and give exam-
ples to illustrate 1ts use. In the algorithm as described,
time-warp algorithm with anti-messages is still being
used to propagate rollbacks, but processing of many
unnecessary messages is avoided by selective filtering.
In section 3, we explore the computation-filtering trade-
off in the algorithm, suggesting various ways of cutting
down the overhead of the algorithm and show that as-
sumption lists can be kept bounded in size. In the Sec-
tion, we also discuss a variant of the algorithm, called
strong_filter, that does sufficiently extensive filtering so
that anti-messages become redundant and unnecessary.
In section 4 we present our conclusions and planned fu-
ture work.

2 Algorithm Filter

As in the standard time-warp algorithm, we assume
that a process selects the message with the least time-
stamp from its input channels, does some processing to
possibly update its local state, and then forwards zero
or more messages on its output channels. When a mes-
sage 1s processed, its copy is saved in an Input Queue,
so that the input queue can be restored in case of a
rollback, as in time-warp. Any messages sent are saved
in an Output Queue, so that in case of a rollback, anti-
messages can be sent to annihilate each of the messages
sent that are not compatible with the restored state.

In the algorithm Filter, each process also maintains
an assumption list, consisting of tuples of the form
< ¢,s,t >. Each tuple < ¢,s,t > can be interpreted
as follows: the current process state assumes that no
straggler message will be received on channel ¢ with a
sequence number greater than s, but with time-stamp
smaller than ¢. If such a message 1s received, the state
of this process will eventually have to be rolled back
to undo the acceptance of this message. Note that the
assumption list 1s part of the state of the process. It is
restored to the saved value whenever a process is rolled
back.

Whenever a regular message (data messages, other
than anti-messages) is sent, the assumption list of the
process is attached to the message. Regular messages
in the system are therefore of the format <channel_id,
s, d, 1, assum_list> where channel_id is the channel
on which message is sent, s is the sequence number,
d is the data in message, t is the time-stamp' of the

Itime-stamp refers to the virtual receive time [6], i.e. the

message, and assum_list is the message’s assumption
list. Whenever a message is accepted for processing,
the process updates its assumption list to include the
assumptions of the message. Assumption list of an ar-
riving message is saved, as part of the message, in the
Input Queue upon processing. An assumption list can
be thought of as the list of assumptions made (about
future events) in coming to the current state and in the
generation of outgoing messages.

Each process also maintains a rollback list, consisting
of tuples of the form < ¢, s, >. Each tuple < ¢, s,t >
on the rollback list is interpreted as follows: this pro-
cess knows that a straggler event was received from
channel ¢ with sequence number s and time-stamp ¢.
In this paper, we distinguish between straggler events
and anti-messages. Straggler events are regular mes-
sages that simply arrive late (out of order). On the
rollback list, only straggler events are recorded, not the
resulting anti-message events. Channel ¢ can be any
communication channel in the system, not necessarily
incident on this process.

Whenever a rollback occurs in any process due to
a straggler event, that process broadcasts a new type
of message, called a rollback-info message, containing
information in the form of the above < ¢, s,t > tuple
about the straggler event to other potentially affected
processes. Rollback list is not a part of the state of the
process; 1t retains its tuples even when a process has a
rollback.

A process accepts the message with the earliest time-
stamp from its input. The message can either be a reg-
ular message, an anti-message, or a rollback-info mes-
sage. Below, we describe how each of the message is
handled in more detail.

2.1 Processing of regular messages

The processing of a regular message M is done as fol-
lows:

1. Fulter: Check the message’s assumption list
against the rollback list of the process. If there
is a conflict, the message is discarded and pro-
cessing goes on to the next message. There is a
conflict if an assumption tuple < ¢, s4,t, > on the
message’s assumption list is in contradiction with
a tuple < ¢, s,,1, > for the same channel on the
processes’ rollback list. There is a contradiction if

virtual time at which a message is supposed to be received at
the destination. Virtual send times [6] are not directly used in
Filter, but may be added to messages if needed by the underlying
time-warp implementation.

sq < Sy, but t, > t,. For example, an assump-
tion tuple < ¢,10,20 > would conflict with a roll-
back tuple < ¢,12,16 >. The assumption tuple
< ¢, 10,20 > is saying that no event is assumed to
occur on channel ¢ with a sequence number larger
than 10, but with time smaller than 20. The roll-
back tuple < ¢,12,16 > is saying that such an
event has already occurred (with sequence number
12 and time-stamp 16), and therefore the message
is derived from a rolled-back state and need not be
processed.

2. Straggler Check: If time-stamp of the message is
less than that of last accepted message, roll back
the process as in the usual time-warp algorithm,
sending anti-messages as necessary. Recall that,
assumption list is treated as part of the state of
the process, and is also rolled back to its earlier
value. Append a node containing the following tu-
ple about the straggler event to the rollback list:
< e¢,M.s, M.t >, where ¢ is the channel on which
M was received, and M.s and M.t are the sequence
number and time-stamp of M. A rollback-info
message containing the tuple i1s also broadcast to
other nodes so that they can do filtering on any
messages currently in transit that originated in a
rolled-back state.

3. Assumption list update: Otherwise, the message is
a non-straggler regular message that is not known
to have originated from a rolled-back state to this
process. Add the message to the saved message
queue and update the assumption list of the pro-
cess using the algorithm described in Section 2.4.

4. Processing: Do the user-specified processing of the
message. With any message sent out, attach the
assumption list of the process.

2.2 Processing of rollback-info mes-
sages

Rollback-info messages carry information about strag-
gler events that have occurred elsewhere in the system.
They are processed as follows:

1. Append the < ¢,s,7 > tuple in the rollback-info
message to the rollback list.

2. If the rollback tuple is in conflict with any tuple in
the assumption list of the process, a rollback 1s nec-
essary. In case of a conflict, go through the Input
Queue looking for the first message that conflicts

with the rollback-info message. Rollback to that
point, sending anti-messages as in time-warp. No
rollback-info messages needs to be sent as a result
of the rollback here, since no new straggler mes-
sage has been received at this process. Rollback-
info messages are sent only by the original process
at which a straggler message was received.

2.3 Processing of Anti-messages

If the message is an anti-message, go through the in-
put queue to annihilate the corresponding message.
If a message 1s annihilated, carry out a rollback to
a state consistent with the anti-message, sending out
anti-messages if necessary. If the corresponding mes-
sage is not found, the anti-message is discarded (the
corresponding message must have been received and
filtered out earlier since ordered delivery of messages is
assumed).

As in the previous case of rollback-info messages, no
additional rollback-info message needs to be sent since
broadcast of original straggler event will cause the same
filtering.

2.4 Update of Assumption List

Upon receiving a regular message M, if the message
is not filtered out, a process updates its own assump-
tion list to include the assumptions from the message’s
assumption list as follows:

1. for all < ¢, seq,time > tuples on the assumption
list of M, append the tuples on to the assump-
tion list of the process. (A more efficient strategy
which keeps the list bounded in size is described
in Section 3.1.)

2. For all input channels ¢, append the tuple <
¢, M.s, M.t > to the assumption list. This assump-
tion says that no straggler event with a time-stamp
earlier than this message’s time-stamp should ar-
rive in future in order for the present state to avoid

a rollback.

A process also updates its assumption list if it sim-
ply advances its local virtual clock, without receiving
a message. If the local virtual clock is advanced to a
time ¢, then the assumption being made is that no mes-
sages will be received with a time-stamp earlier than
t. Therefore, for all input channels ¢, and there cor-
responding sequence numbers s, tuples < ¢, s, > are
added to the assumption list of the process.

2.5 Proof of Algorithm Correctness

The proof is based on the fact that the above algorithm
never filters out a message that should not be, based
on the globally known straggler events in the system.
The algorithm never rejects a message incorrectly be-
cause each message precisely carries the conditions un-
der which processes which it passed through will roll-
back from their states at that time. If any of the pro-
cesses rolls back from the state on which the message
is dependent, the message would eventually have been
annihilated in time-warp too, but using a sequence of
anti-messages. In the algorithm, the information about
the straggler event is propagated so that the message is
either filtered out, and if it had already been accepted
by a process, that process is rolled back to a state con-
sistent with the occurrence of the straggler event.

2.6 Examples of the algorithm

Below, we consider two examples that illustrate the use
of Filter algorithm.

Example 1:

Consider the simulation system shown in Figure 1.
Here, P, is a source process and P; to Ps are model-
ing FCFS servers with service time of 5 units. P has
already sent messages with time-stamps b, 35, 40, 65,
and 90.

Let us first consider a potential execution sequence
in standard time-warp:

1. P, receives 1n succession messages with time-
stamp b, 35, 40 and 65, and sends out messages
with time-stamp 10, 40, 45, and 70 to P,. Fig-
ure 1 shows the messages in transit and the Input
Queues at that point.

2. P, receives messages with time-stamp 10, 40, 45,
and 70 and sends out messages with time-stamp
15, 45, 50, and 75 in succession. These are then
forwarded by Ps after updating their time-stamp
to P1. Figure 2 shows the Input Queues and mes-
sages in transit at this point.

3. Py receives the message with time-stamp 20 from
P53, and has to rollback, since there is a causal-
ity error. It sends anti-messages with time-stamp
40, 45, and 70 to P and rolls back to time 20.
It moves all the messages that it received out of
sequence (35, 40, and 65) back to its input and
re-processes them in the correct sequence after the

PROCESS :| ANTI-MESSAGE

- MESSAGE MESSAGES SEEN SO FAR
Py o P o P2 |— § Ps
5
= [70] [35] [30][10]
40
65

Figure 1: The state of the Input Queues and the messages in transit in time-warp after P, has processed
the first 4 messages.

[50] [55] [80]

‘

Py Py » > Ps
1 90] 5 0 B
Z’g 40 1A
65 45 R0
: 70 20

Figure 2: The state of the Input Queues and the messages in transit in time-warp just before P; receives
the first straggler message from Ps.

‘

PO Pl

Y

[70| 45]]40][25]
= 70| @5 15

P, Ps

Y

2
n 10
65 40
45
70

45
A0
70

Figure 3: The state of the Input Queues and the messages and anti-messages in transit just before
acceptance of the straggler message with time-stamp 50. Note that this straggler message is being
chased by anti-message, currently being P; and P, with time-stamp 40.

message with time 20. It then sends out regu-
lar messages with time-stamps 25, 40, 45, and 70.
Figure 3 shows this situation.

4. Now the interesting situation arises. P next re-
ceives the message from P3 with time-stamp 50.
This causes a rollback to time 50. The process
sends an anti-message with time-stamp 70 to Ps,
rolls back, and then, after rearranging the input
queue, sends messages with time-stamp 55, and
70 to P2 (not shown).

5. P will receive further messages from Ps;. Those
may cause additional rollbacks to propagate.

6. Eventually, after several steps, P, will receive an
anti-message with time-stamp 50, undoing step 4
and further steps.

We could go further, but notice that at step 4, the
rollback was unnecessary. The message with time-
stamp 50 is being chased by an anti-message and need
not be accepted. It causes an unnecessary rollback at
step 4, and later at step 6 will cause additional rollbacks
to undo its acceptance when its anti-message finally ar-
rives at P;. Not only that, the rollback can potentially
propagate along the loop for quite a while.

In the proposed algorithm, situation changes as fol-
lows. The second message (time-stamp 35) processed
by P; will carry an assumption of < 4,0, 35 >, where we
let 4 be the id of the channel from Ps to P (Figure 4).

This assumption will propagate with the message and
will still be attached to it when the message is later
received at P; with time-stamp 50. But, before that,
at step 2 above, the rollback will occur at P; due to the
straggler message with time 20. This event is recorded
in the rollback list in the form < 4,1,20 >, where 4 is
the channel number, 1 is the sequence number of the
message on this channel, and 20 is the time-stamp (Fig-
ure). Later, at step 4 when the message with time-
stamp 50 is received, it 1s discarded since it conflicts
with an event in the rollback list. Therefore, an erro-
neous computation path is avoided by the Use of the
Filter algorithm, potentially decreasing the number of
messages incorrectly processed and resulting rollbacks.

Example 2:

This example shows that the Filter algorithm can
also be effective in controlling the propagation of wrong
computations in networks without loops but with mul-
tiple feed-forward paths. Consider the situation in Fig-
ure 6. Suppose P; has to roll back because of a straggler
event. In the Filter algorithm, notification of the roll-
back will be broadcast in the form of a rollback-info
message, say A. However, prior to the rollback, P, had
sent messages B and C' which are currently in transit.
If the rollback-info message manages to arrive before
B and C at Py (through the quicker direct channel),
we have potential savings. Ps will correctly discard
messages B and C since their assumptions will conflict
with the tuple in the rollback-info message. In standard

Y

Y

Py
40 15} 40 10

f

(<4,0,35>,<1,2,35 >)

Py

Y

Message Assumption List with

format (ch_id, seq, time)

Figure 4: The assumption list that propagates with the 2nd message, currently with time-stamp 40.

4
(<4,0,35>,..) [50d

Message Assumption List

1 2
J oA J P

] Co @

(<4,1,20>)
Process Rollback List

Figure 5: The assumption list that propagates with the message with time-stamp 50 has a tuple
< 4,0,35 >. The rollback list for process P; has the tuple < 4,1,20 >. Since there is a conflict, the
message with time-stamp 50 will be discarded even though its anti-message is still in transit.

time-warp, both B and C' would have been processed
by P and the incorrect computation could potentially
have propagated beyond P> by the time anti-messages
for B and C' were received. In general, in the Filter
algorithm, broadcasts of rollback-info messages should
be given priority over other messages so that comput-
ing along incorrect execution paths in the simulation
can be avoided as much as possible.

3 Performance Issues

There are several performance issues that are raised
by the Filter algorithm. It is cutting down on number
of messages wrongly processed but at the expense of
maintaining assumption lists and rollback lists. While
only experimentation will tell whether the tradeoff is
effective, we discuss below some of the ways in which
the overhead can be cut down.

3.1 Limiting the size of the assumption
list

Whenever a process decides to accept a message, each
assumption made in generation of the message has to
be added to the list of assumptions made by the pro-
cess in arriving at the current state. We could simply
append all the tuples in the arriving message to the as-
sumption list of the process, but, even after eliminating
duplicates, the list would tend to grow over time.

Since the Filter algorithm is being used in conjunc-
tion with time-warp, one way to keep assumption lists
small (and therefore message overhead small) is to sim-
ply prune the assumption list at any time by discard-
ing some of the assumption tuples. This reduces the
amount of filtering, but the algorithm would still work
since anti-messages will eventually annihilate the rest
of inconsistent messages not caught by Filter. Ways
to keeping assumption list small include keeping only
the assumption with highest sequence number for each
channel, or to keep track of assumptions only for se-
lected channels. Both strategies can significantly re-
duce the computational and communication overhead
of the Filter algorithm.

It turns out that the assumption lists can be kept
bounded in the number of channels by maintaining only
one tuple per channel, and without loss of filtering ac-
tion, provided rollback-info messages are broadcast to
all the potentially affected nodes (i.e. those that are
reachable from the broadcasting process) using the fol-
lowing broadcast algorithm. The broadcast algorithm

is to simply forward the rollback-info message on all the
output channels. Processes, upon receiving a rollback-
info message, immediately forward it on all their output
channels, if they had not done so previously. Assuming
ordered delivery of messages, this algorithm guaran-
tee that rollback-info messages are received before any
messages that are derived from next state of the process
initiating the broadcast.

With the above broadcast protocol in place, suppose
that a tuple < ¢,s1,¢1 > from the message M’s as-
sumption list 1s to be added to the assumption list L
of the process. If I does not contain any tuple for the
same channel ¢, then < ¢,s1,¢1 > can simply be added
as a new tuple to L. However, if it does contain another
tuple for the same channel, say < ¢, s2,12 >, the ac-
tion taken is to simply discard the tuple with the lower
sequence number and keep the one with the higher se-
quence number on the list. If the sequence numbers
are the same, the one with higher time is kept. Let us
consider the various possibilities to see why this action
malkes sense.

Case sl > s2 and t1 > t2: The action is to replace
< ¢,82,12 > by < ¢,s1,t1 >. The justification
is that no straggler event violating < ¢, s2,12 >
with sequence numbers between s2 and sl could
have occurred on ¢, and therefore the entry is not
needed. Had such a straggler event occurred, a
rollback-info message would already have arrived
through the above broadcast protocol, causing a
rollback to a time before < ¢, s2,12 > was added to
the assumption list, thereby removing < ¢, s2,12 >
from the list.

Case sl > s2 and 11 < {2: In this case, a straggler
event must have occurred on the channel ¢ with
sequence number between sl and s2, violating
< ¢, s2,t2 >. However, using the above broadcast
protocol for rollback-info messages, straggler event
notifications are received before messages derived
from a subsequent state of the process, and there-
fore the tuple < ¢,s2,¢2 > should already been
discarded. Therefore, this case cannot occur with
the above broadcast protocol.

If s1 < s2, it can be similarly argued that only
< ¢,582,12 > needs to be kept in an assumption list.
Therefore, we have the conclusion that, with the above
broadcast protocol for rollback-info messages, only one
tuple per channel needs to be kept in the assumption
list of a process without loss of filtering action.

rollback_info event (ch_id, seq,time)

P

P;

P,

(i]

Py

-

Messages sent

before the rollback event

Figure 6: Messages B and C were derived from a state at P, prior to the rollback. If the rollback-info
event A reaches P, prior to B and C, then B and C will be filtered out by P,. In standard time-warp,
anti-messages for B and C' would have traveled the same path as B and C, potentially taking a long
time before catching up, leading to spread of an erroneous computation from Ps.

3.2 Limiting the size of the rollback list

If the Filter algorithm is being used in conjunction with
time-warp, There are several ways for reducing over-
head associated with rollback lists without affecting
the correctness of the simulation. Note that any incon-
sistent messages not filter out by use of rollback lists
are eventually annihilated by anti-messages. Therefore,
rollback list can be pruned at any point, say by discard-
ing very old tuples.

Some efficiency is possible in the broadcasts of
rollback-info messages. Rollback-info messages need to
be sent to only those processes that are reachable from
the process. Other processes cannot be affected by a
straggler event notification since they cannot see any
messages that depend on the state of the rolled-back
process.

In fact, since the algorithm is being used in conjunc-
tion with time-warp, rollback-info messages need not
even be sent. A process receiving a straggler message
can simply update its own rollback list and make no
broadcast. Since anti-messages are being sent anyway,
they would annihilate any messages not filtered out as
a result.

3.3 Limiting the information to se-

lected channels

In many simulations, the only place where straggler
events can occur are at merge points, where a process
has more than one input channel. If that is the case,
assumption lists and rollback lists can be restricted to
those channels that are part of a merge point. For
instance, in Example 1, the only channels on which
straggler events can be received are the channel from
Py to Py and the channel from Ps to P;. On all other
channels, messages will be received in increasing time-
stamp order, or with an intermediate anti-message or
rollback-info message. Therefore, in that example, as-
sumption lists and rollback lists need to keep track of
only two of the channels, those input to P, significantly
reducing the overhead.

3.4 Avoiding sending unnecessary anti-
messages

If all processes keep all tuples on their assumption and
rollback lists for a particular channel, and if rollback-
info messages for that channel are always broadcast
reliably, then it is unnecessary for the process making
the broadcast, as a result of a straggler message on
that channel, to also send anti-messages. Since mes-
sages carry all the assumptions regarding that channel,
a rollback-info message will eventually annihilate all

the messages that originated in the state prior to the
receipt of the corresponding straggler event, either by
causing filtering or by causing rollbacks.

An extreme implementation of the algorithm is that
no anti-messages are ever sent out, and only rollback-
info messages are relied upon for all rollbacks and an-
nihilation. We call this the Strong_Filter algorithm.
In this case, all processes have to make broadcasts
of rollback-info messages, assumption lists cannot be
pruned arbitrarily?, and rollback-info events cannot be
pruned from the rollback lists. The advantage here is
that Output Queue is no longer necessary, since anti-
messages are not sent. The disadvantage i1s that roll-
back lists can grow over time and there is a higher com-
putation overhead per message, in the form of checking
conflicts over the whole assumption list, etc. It remains
to be examined whether the higher overhead in com-
putation compensates for the reduction in number of
messages and rollbacks.

Clearly, there are many ways to reduce overhead of
the proposed algorithm by varying the degree of filter-
ing and taking advantage of knowledge about channels
on which straggler events can occur. We are currently
implementing time-warp algorithm on a set of work-
stations, with and without Filter, and will report on
our experimental results in the future. Further perfor-
mance studies should show under what situations the
algorithm is effective.

4 Conclusions

We have proposed an algorithm for reducing the num-
ber of rollbacks in optimistic distributed simulation.
The algorithm is interesting in the way it keeps track
of dependencies between messages so that messages can
be discarded if they are known to have originated in a
state incompatible with current knowledge about the
global state. The Filter algorithm is likely to increase
the overhead per message in the system, but poten-
tially reduce the total number of messages sent around
and processed, and the number of rollbacks. The al-
gorithm allows some control over how much filtering
is carrying out in a particular simulation all the way
from no filtering (completely relying on anti-messages
of time-warp), to complete filtering (completely relying
on rollback-info messages). Future performance stud-
ies will indicate how effective filtering 1s in practice and
how much filtering should be carried out for different

?Message assumption lists can still be kept bounded used the
strategy described in Section 3.1.

types of simulations.

Acknowledgments

This work was supported by the National Science Foun-

dation under the Grant NSF-CCR-8909674.

References

[1] R.E. Bryant. Simulation on a distributed system.
In Proc. of COMPSAC, 1979.

[2] K.M. Chandy and J. Misra. Distributed simula-
tion: A case study in design and verification of
distributed programs. IEFETSE, 1979.

[3] K.M. Chandy and J. Misra. Asynchronous dis-
tributed simulation via a sequence of parallel com-

putations. CACM, 24(11):198-206, April 1981.

[4] K.M. Chandy and R. Sherman. The conditional
event approach to distributed simulation. Pro-
ceedings of the SCS Multiconference on Distributed
Simaulation, 21(2):95-99, March 1989.

[5] Richard M. Fujimoto. Parallel discrete event sim-
ulation. Communications of the ACM, 33(10):30-
53, October 1990.

[6] David R. Jefferson. Virtual time. ACM Trans. on
Programming Languages and Systems, 7(3):404-
425, July 1985.

[7] B.D. Lubachevsky. Efficient distributed event-
driven simulations of multiple-loop networks.
Commaunications of the ACM, 32:111-123, Jan-
uary 1989.

[8] V. Madisetti, J. Walrand, and D. Messerschmitt.
WOLF: a rollback algorithm for optimistic dis-
tributed simulation systems. In 1988 Simulation
Conference Proceedings, pages 296-305, December
1988.

[9] Atul Prakash and C.V. Ramamoorthy. Hierarchi-
cal distributed simulations. In Proc. of the Eighth
International Conference on Distributed Comput-

wng, San Jose, pages 341-348, 1988.

[10] L.M. Sokol, D.P. Briscoe, and A.P. Wieland.
MTW: A strategy for scheduling discrete simu-
lation events for concurrent execution. In Proc.
of the SCS Multiconference on Distributed Simu-
lation, pages 34-42, July 1988.

