
 1

WSF: An HTTP-level Firewall for Hardening Web Servers

Xin Zhao and Atul Prakash
EECS Department, University of Michigan

1301 Beal Ave, Ann Arbor, MI, 48109
{zhaoxin, aprakash}@eecs.umich.edu

ABSTRACT

Due to both complexity of administration, insufficient
checks on input data in many web applications, as well as
lack of a single place to enforce security policy, web
servers remain prone to external tampering. This paper
proposes WSF (web server firewall) to protect web systems
with three new mechanisms. First, WSF provides a
language for specifying fine grained access control policy
and enforcing it at the perimeter of a web server. Second, to
prevent abuse of web application with malicious parameters,
WSF allows web application developers to specify the
restriction on application running parameters, rather than
requiring them to enumerating all possible invalid input
patterns, which substantially simplify input validation.
Finally, WSF collects web user behavior statistics, which
helps administrators to detect abnormal activities and adjust
the access control policy heuristically.

KEYWORD:

Firewall, Attack Signature, User Behavior Audit

1. Introduction
Attacks against web systems represent a substantial portion
of the total number of network intrusions. According to the
2002 DTI Information Security Breaches survey, 44% of
surveyed companies had suffered web attacks in 2001[1].

To counter web attacks, most web servers enforce
coarse-grained access control to restrict the execution of web
applications within a specified directory that CGI programs
must reside. One can also deploy intrusion detection systems
or vulnerability assessment systems with known attack
signatures to detect malicious requests and vulnerabilities.

Unfortunately, the above approaches leave a lot to be desired.
Coarse grained access control mechanisms are not flexible
enough and often leave loopholes to attackers. Most IDS
systems and vulnerability assessment systems rely on known
attack signatures to protect web systems. However, it is hard
to keep the attack signature updated with respect to the large
number of vulnerabilities discovered daily. Moreover,
vulnerabilities may be introduced by custom web-based
applications developed in-house. Many attacks are tailored
to these applications and may not match any of known attack
signatures. It is hard to enumerate all possible malicious
request patterns.

This paper proposes WSF(web server firewall), an HTTP
level firewall, as a supplement to existing solutions, to help

combat web attacks. We first describe the threat model we
address and then summarize the extent to which our
approach can defend against web attacks.

Threat Model
Like network firewalls, WSF is primarily designed to handle
external threats, rather than insider attacks on a web server.
Unlike network firewalls, WSF is aware of HTTP protocol
and is designed to prevent attacks only at that level. At
present, WSF primarily focus on two categories of attacks:

1. Unauthorized accesses to sensitive files: Modern web
systems usually provide coarse-grained access control
to restrict that web applications can be invoked by web
clients only if they reside in a specified directory (e.g.,
/cgi-bin). However, the coarse grained access control
often gives attackers opportunities to exploit
configuration error and compromise the web system.
An example attack is what we will call the bypass
execution attack. CGI programs that are invoked from
user input by the web server often need to run helper
scripts or programs internally. The intent of the
programmer is that the helper programs should not be
invoked directly by a client. For example, a CGI
program may authenticate a user and then invoke a
helper perl script to accesse a database if the user is
valid. Unfortunately, if the helper program is put in the
same directory as the CGI program, it can be invoked
by a malicious client directly (via the web server, but
without going through the parent CGI program). Thus,
attackers can bypass the user authentication and violate
web server security.

2. Abuse of CGI programs with parameters that violate
the designed specifications: CGI Developers are
supposed to do input validation and filter out requests
with invalid parameters, but they often fail to follow a
sound security methodology and overlook the input
error checking. Attackers can exploit the vulnerability
of weak input validation to send CGI programs the
parameters that do not meet the normal length or
format restrictions and cause SQL injection or buffer
overflow attacks[2]. For example, suppose that a CGI
program uses the dynamically generated SQL
command to create a new user account,

INSERT INTO USER(name, id) VALUES($username, 100);

Here, $username is a CGI parameter input by the user
via a web form. The original purpose of this CGI is to
create only one user account. However, if no input

 2

validation applies, an attacker may input “tom’, 99),
(‘mary” in the $username field, the user creation
command is then generated as:

INSERT INTO USER(name, id) VALUES(‘tom’, 99),
(‘mary’,100)

Because many database systems, such as MySQL, allow
users to insert multiple records in a line, this SQL command
will allow the attacker to insert two records instead of one as
expected. The reason of this SQL injection attack is a
security bug: the user input validation is insufficient.

Level of Protection
WSF helps to protect against a wide-range of common
vulnerabilities with the following three mechanisms:

1. To prevent unauthorized access to web files, WSF
provides a language for specifying fine-grained access
control policy and enforcing it at the perimeter of a
web server. With this language, web administrators
can classify web clients into variety of roles and
specify their access permissions to web objects at the
granularity ranged from directories to files. In addition,
rather than allowing all files in /cgi-bin directory to be
executed by web clients, WSF allows a web
application to be invoked only if it is explicitly
specified as executable to web clients, which
effectively prevents the bypass execution attack.

2. To thwart abuse of web applications, WSF proposes an
input validity specification language to allow
developers to specify the valid input patterns instead of
requiring enumeration of all possible malicious inputs,
which substantially simplifies the input validation task.

3. WSF also collects user behavior statistics on a
per-user/per-IP basis. The behavior statistics can be
used to detect abnormal web activities and heuristically
change the access policy to proactively delay or block
the requests from malicious users.

The rest of the paper is organized as follows. In Section 2, we
describe related work. In Section 3, we illustrate the
architecture and design of WSF. In Section 4, the
implementation details are presented. In Section 5, we
evaluate the WSF system. Finally, we make our conclusions.

2. Related work
Most web protection mechanisms fall in two primary
categories: intrusion detection/prevention systems and
vulnerability assessment systems.

Intrusion Detection/Prevention Systems
Most intrusion detection/prevention systems deployed to
protect a website work at network level or application level.

Network based intrusion detection systems such as snort [3]
can analyze network traffic to detect web intrusions.
However, network-based intrusion detection is vulnerable
to insertion and evasion attacks[4]. In addition, the network
IDS needs to model how the application interprets the

operations, but this is almost an impossible task without
receiving feedback from the application.

Aiming at the problem of network based IDS systems,
several application level IDS systems are proposed.

Mod_security[5] filters http requests that match specified
attack signatures. However, it does not provide fine-grained
access control, and is less effective in preventing
unauthorized accesses like bypass execution problem. In
addition, it is hard to keeping attack signatures updated and
enumerating all possible malicious request patterns.

David Scott and Richard Sharp proposed the Security
Gateway[6] to support CGI input validation based on
application-level security policies, which is similar to WSF’s
input validity specification. The difference between WSF
and Security Gateway is that WSF supports fine-grained
access control and collects user behavior statistics that can
be used to detect abnormal web behaviors and adjust the
access policy heuristically.

WebSTAT [7, 8] detects intrusions against a web server by
analyzing its logs. Like WSF, it also uses behavior statistics
to infer abnormal activities. However, while WebSTAT
allows an administrator to associate actions with the
intermediate step of an attack, it is hard to stop one evil
connection and avoid interrupting other valid connections at
the same time, because WebSTAT is independent of a web
server. For the same reason, WebSTAT does not prevent
unauthorized access to web files. In contrast, WSF works as
a module of Apache web server, it sit in line and stop
malicious requests on site.

Vulnerability Assessment Systems
Various vulnerability scanners such as ISS Internet Scanner
[9], Saint[10], LibWhisker[11], Nikto[12, 13] and
Nessus[14], help assess a web system for loopholes before
bad guys find them. They primarily rely on attack signature
based checking, which makes them often raise false alarms
or fail to detect critical vulnerabilities[15].

3. Design of WSF

3.1 System Overview

 Figure 1. The architecture of WSF

As shown in Figure 1, WSF consists of the input and output
filters. Input filter deep inspects the incoming HTTP
requests to reject invalid web accesses. Output filter collects

 3

the status of outgoing responses. Response status
information helps infer user behavior patterns.

WSF maintains a per-user security context. A security
context in WSF is indexed either by the user’s IP address or
by a user ID (if the user authenticated to the web service).
We will defer the description on how to extract a user ID
from web traffic to Section 4.2. The security context
contains the user’s past behavior statistics, such as the
number of invalid requests, the number of failed requests,
and the number of requests during a specified time interval.
All those behavior statistics are updated by the input and
output filters.

The input filter deploys three engines: security context
checking engine, access right checking engine, and CGI
input validation engine. These engines check the incoming
requests one by one. An incoming request will be forwarded
to the protected web server only if it goes through the checks
of the three engines.

The security-context checking engine examines the user ID
and the IP address of the request to see if requests from the IP
address or the user ID should be blocked or delayed.
Administrators can use the security-context checking engine
to temporarily block a user’s access to the web server if their
statistical behavior, recorded in the security context, violates
specified limits (e.g., too many failed authentication requests
within a short interval). Therefore, the security context
essentially works as a “credit history report” to help WSF
monitor a client’s abnormal behavior pattern and adjust its
access policy accordingly.

The access right checking engine checks the requested URI
against the access right policy. With the access right control,
WSF can limit authenticated or unauthenticated users to only
specified web files/services and prevent unauthorized access
to the sensitive files that are left accidentally in public web
directories. The access right checking engine provides
fine-grained control, rather than standard access control
imposed by web servers. Section 3.2 gives more details
about the access right checking engine.

Finally, if the request is intended to invoke a CGI program,
the request will be checked by the CGI input validation
engine. The CGI input validation engine checks the
parameters carried in the CGI request against the input
validity specifications. Only requests with valid inputs can
be sent to the web server. The CGI input validation helps
mitigate many buffer overflow attacks and SQL injection
attacks that compromise web systems via sending malicious
parameters to CGI programs. More details are presented in
Section 3.3

The output filter checks the status of outgoing replies and
updates the behavior statistics in the security context. In
addition, the output filter also helps the input filter to track
the user information and generate the user tracking tag for
each source.

3.2 Access Control Policy
WSF defines an access control policy language to allow
administrators to explicitly define the access rights to web
entries, including normal data files and CGI programs.

An access rule is a mapping as follows:

 →Web_Entry Web_User : Access_Right

The web entry defines the object on which the access rule
should apply. It can be a specific file, a class of files with a
wildcard pathname or a directory. The web user defines the
subject that is allowed to access the web entry. It can be a
specific user or a web group. The access right defines the
authorization under which a web user can access a web entry.
The access right mapping means: the “web_entry” can and
only can be accessed by the “web_user” under the
“access_right” authorization.

An access policy usually includes three parts:

1. Definition of valid user set and user groups

2. Definition of default accessible file types

3. Definition of access right rules of web entries

The first part defines the valid user set and user groups.

The second part contains the default accessible file types
(i.e. *.html and *.jpg files) for the web system. The accessible
file types can be defined by file type extensions or certain
file name patterns. By default, only common web file types
are included, which helps prevent unauthorized accesses to
sensitive files, such as “creditcard.dat”, that are left in the
public web directory.

The third part specifies the access right of users to web
entries. An access right policy may include multiple access
rules. Each rule defines the access right of one URI entry. A
URI entry can be defined as a specific file, a class of files
with a wildcard pathname or a directory. Wildcards are
allowed and only allowed in file name to represent multiple
files with similar name pattern. If an access rule defined for a
directory, this access rule applies to all files and
sub-directories under this directory if they are not associated
with access rules. In other words, if no access rule is defined
for a directory or a file, permissions are inherited from the
parent directory. The access right rules are prioritized as
follows:

→ →
→ →

ro o t d irec to ry su b -d irec to ry (leve l1)

su b -d irec to ry(leve l2) ... a c la ss o f file s s in g le file

The access rule of root directory has the lowest priority and
access rules of single files have highest priority. Rules with
higher priority have precedence in policy enforcement.

The CGI programs are treated differently. Each accessible
CGI program must be explicitly specified to be executable.
No wildcard is allowed in the access right rules for CGI
programs. By default, only the CGI programs that are
explicitly configured as executable can be requested to run
by web clients. Thus, if a helper program, say
"user_management.pl", is supposed to be only invoked by
other trusted CGI programs, it will not be put in the access

 4

right policy. Any attempts to directly invoke such a helper
program via a URI will then be blocked by WSF.

3.3 CGI Input Validity Specification
Because the inputs to CGI programs are complex, fixed
attack signatures are often not flexible enough to tell a valid
input from invalid ones.

To deal with this problem, WSF provides a fine-grained way
to specify constraints on inputs of CGI programs. We use an
example to describe how validity specification works:
suppose we have a user login script /cgi-bin/login.cgi, it only
allows parameter transferred with POST method; the
expected input at the user name field is a string composed by
3-8 letters or digits and the expected valid password is a
string composed by 6-15 letters and digits. No special
character is allowed in the username and password
parameters. The validity specification can be defined as
follows:

< Rule>

 <URI> /cgi-bin/login.cgi <\URI>

 < Method> POST <\ Method>

 < Parameter>

 <Name> username </Name>

 <Value> ^[a-zA-Z0-9]{3,8}$ </Value>

 </ Parameter>

 < Parameter>

 < Name> password </Name>

 < Value> ^[a-zA-Z0-9]{6,15}$ </Value>

 </ Parameter>

<SIG_CHECKING> NO </SIG_CHECKING>

</Rule>

The URI section contains the URI of the CGI program.

The Method section configures which methods are allowed
for this URI. The methods that are often used are GET and
POST. Other HTTP methods like PUT, TRACK must be
used carefully as they may bring vulnerabilities like cross
site script attack[16].

The Parameter section defines the validity specifications for
parameters of this CGI program. Each possible parameter
must have a Parameter definition. The validity specification
of each parameter consists of two parts: parameter name and
parameter value. The parameter name field is the parameter
name to be checked while the parameter value field shows
the valid parameter value pattern. The valid parameter value
pattern is defined with regular expression. If there is no
restriction on a parameter, the valid parameter value pattern
can be empty. Based on the configured validity pattern, the
input validation checking engine can then check whether the
user inputs carried in a CGI request is valid or not. Note that
only parameters listed in this section will be regarded as
valid and checked against the corresponding validity
specification. For those parameters whose names are not on
the valid parameter list, the input validation engine will

directly regard them as malicious. This mechanism
effectively prevents many buffer overflow attacks such as
Code Red I and II attacks[17].

To reduce the risks of mis-configurations, the validity
specifications can be tested with known attack signatures to
see whether known attacks can slip through the protection of
validity specifications. Currently, WSF use signatures
extracted from the Snort attack signature database[3] to
check the validity specification.

The above example shows, the rule clearly defines what
inputs are expected by the programmer developers. The CGI
program, at a minimum, must take care of inputs that satisfy
the above specification. Any other unexpected inputs will be
blocked by this specification directly at the firewall. This
mechanism does not require developers to enumerate all
possible invalid input patterns. Instead, web application
developers only need to express their intention of valid
inputs with regular express, which substantially simplify the
input validation procedure.

3.4 User Behavior Auditing

Figure 2. WSF Security Context

As a complementary mechanism, WSF also supports
tracking and auditing of web user behaviors. WSF maintains
a security context for each web client. The security context is
indexed with the client’s user ID if the client is an
authenticated user. If the client is an anonymous guest, the
security context is indexed with the client’s IP address. As
Figure 2 shows, the WSF security context contains three
parts of user security information:

1. Index of the security context (User ID or IP address);

2. Behavior statistics;

3. Access control decision based on the behavior pattern.

WSF uses the index of the security context, IP address for
unauthenticated user and User ID for an authenticated user,
to locate a user’s security context.

The behavior statistics part contains cumulative user behavior
patterns, measured over multiple configurable time-intervals
on a per-user/ IP basis:

 The number of received requests. This data is collected
by the input filter.

 The number of bytes sent out. This data is collected by
the output filter.

 The number of invalid requests. This data is collected
by the checking engines in the input filter. Any request
that violates WSF security policies will be counted as an
invalid request.

 The number of failed requests. This data is collected by
the output filter. Any request with the HTTP status code

 5

that does not fall into the period between 200 and 307
will be counted as a failed request.

 The number of failed authentication requests. The field
helps to prevent brutal force password guessing attacks. It
is collected by the output filter.

The user behavior statistics help to detect abnormal behavior
pattern and proactively adjust access control policies. For
example, excessive authentication failures of a specific user
may indicate that a hostile party is mounting brutal force
password guessing attack or this user forgets the password.
To thwart password guessing attack, web administrators can
configure WSF to suspend this user’s further authentication
requests for several seconds upon the number of failed
authentications exceeding the specified threshold.

4. Implementation Details

4.1 Modularized WSF
The Apache modularized architecture processes web traffic
using the same idea as Unix command line filters: ps -ax |
grep "apache.*httpd" | wc –l. The basic idea is to treat the
information processing flow as an information stream.
Apache modules can be inserted into the stream and
organized as a module chain. Each module receives the data
from upstream module, processes the data and then forwards
the processed data to the next module in the chain. By this
means, data in the stream can be manipulated independently
from how it's generated.

With the same idea, WSF is implemented as an Apache
module to terminate the incoming request, check it and
decide whether to let the request go to next module. One
advantage of deploying WSF as an Apache module is that
the existing Apache code can be leveraged to reduce the
implementation complexity. Another benefit is that WSF sits
behind the SSL module and can monitor the decoded web
traffic.

4.2 User Behavior Tracking
To collect a user’s behavior statistics, WSF first needs to
identify a web client. If the client is anonymous, WSF only
needs to identify it by the client’s source IP. If a client is an
authenticated web user, WSF has to identify the user’s ID
to enforce the corresponding access policy.

To track the user identity, WSF requires the web
administrator to fill out a login template to tell WSF the user
ID field and successful authentication flag (i.e. a session
cookie). With the login template, WSF’s input and output
filters cooperate with each other to track the user information.
The input filter identifies the user authentication requests
and extracts user information from the requests. With the
extracted user information, the input filter generates a login
memo to mark this request as an authentication request and
save the extracted user information. The WSF output filter
keeps checking whether an outgoing message carries the
login memo. If it is, the output filter then searches for the
successful authentication flags which are defined in the login
template. If no success flag is found, the output filter regards

the login request as failed. It simply forwards the outgoing
message to the client and update the security context
corresponding to the client’s IP address. If the success flag is
found in the response message, WSF infers that this is a
successful authentication. The user associated with this
authentication request becomes an authenticated user. WSF
then generates a unique WSF cookie as the user
identification tag. The WSF cookie will be carried with this
user’s further requests and used by the WSF system to track
this user’s activities. If no valid WSF cookie is located in an
incoming HTTP request, WSF will always regard the request
sender as an anonymous user.

5. System Evaluation

5.1 Security Evaluation
To evaluate the effectiveness of WSF system, we copied all
files on our department website and deployed a parallel
website as the testbed. Multiple attacks, including Bypass
execution, Random File Access, and SQL Injection, are
mounted against the testing website. The simulation results
showed that WSF can effectively mitigate various web
attacks.

5.2 Performance Evaluation

Performance Comparison

0

100000

200000

300000

400000

500000

1 2 3 4 5
Request File Size(KBytes)

T
hr

ou
gh

pu
t(

by
te

s/
s) WSF with

small cache

WSF with
large cache

Apache(no
firewall)

Figure 3 Throughput Comparisons

To evaluate the performance of WSF, we setup the
simulation environment as follows: the web server is a
Pentium IV PC with 1.8GHz CPU and 256MB memory with
Linux 2.5.75 and Apache 2.0.40 installed. 3 Pentium III PCs
with 850MHz CPU and 256MB memory work as web clients.
Standard web system benchmark tools like WebStone does
not support testing of authenticated web sessions that carry
WSF cookies, we developed a benchmark tool that is similar
to WebStone but supports authenticated web sessions. In the
benchmark experiments, each of the three client hosts has 8
threads to send out HTTP request at their best efforts. Each
thread sends 2000 HTTP requests in a sequential manner: a
request will not be sent out until the reply of the previous
request is received. In the simulation, we have deployed the
access rules for 3394 web files and validity specifications for
150 CGI programs. The number of CGI validity
specification rules has little effect on performance, because

 6

the rules are indexed with CGI program pathnames and each
CGI program is governed by one rule.

Figure 3 shows the throughput comparison of a web server
with WSF support and without WSF support. We can see
that when request file size is large, the apache server with
WSF can achieve performance comparable to an apache
server without WSF. However, when the requested file size
is small, we can easily see performance penalties. The reason
is that WSF is primarily CPU-bound. Most of its time is
spent performing regular expression matching against client
requests and updating behavior statistic records. When file
size is large, the file transmission time is dominant, the WSF
cost is relatively small. If file size is small, the CPU time
used by WSF becomes non-negligible and thus reduces the
apache server performance. However, as our prototype is
completely un-optimized, we believe there is large scope to
improve system performance. For example, Figure 3 also
shows by increasing cache size to hold security contexts,
WSF can achieve higher throughputs. This indicates that the
size of memory allocated for caching security contexts can
affect the system performance significantly. Upon receiving
requests from a new client, the security context checking
engine needs to load the client’s security context from
database into cache. If the cache is full, some clients’
security contexts have to be sent back to the database. Those
database I/O operations thus increase the system overhead.
The larger the cache size is, the higher cache hitting rate is,
and the less database accesses are required. Therefore, large
cache helps to improve the performance of WSF.

6. Conclusion
WSF proposes a policy-based framework to provide
perimeter security for those web services. With proper
policies, WSF can help to thwart unauthorized accesses to
system sensitive files and achieve flexible, role-based access
control. To prevent attackers from sending maliciously
manipulated requests to CGI programs, WSF allows
administrators to explicitly define the input validity
specification for each accessible CGI program. Instead of
inferring all possible attacks from known attack signatures,
WSF checks incoming requests against the input validity
specification, which simplifies the procedure to determine
whether a use input is valid or not. In addition, WSF collects
user behavior statistics, which helps web administrators to
detect abnormal user behaviors and proactively adjust the
access control policies.

References:

1. BBC News, Web attacks on the rise, 2002.

http://news.bbc.co.uk/1/hi/sci/tech/1930832.stm
2. Anley, C., Advanced SQL Injection In SQL Server

Applications, 2002.
http://www.nextgenss.com/papers/advanced_sql_injecti
on.pdf

3. Roesch, M.S. Lightweight Intrusion Detection for
Networks. in Proc. of the USENIX LISA '99 Conference.
November 1999.

4. Ptacek, T.H. and T.N. Newsham., Insertion, Evasion
and Denial of Service: Eluding Network Intrusion
Detection. January 1998, Secure Networks.

5. Ristic, I., Introducing mod_security, 2003.
http://www.onlamp.com/pub/a/apache/2003/11/26/mod_
security.html

6. Scott, D. and R. Sharp. Abstracting Application-Level
Web Security. in Proceeding of the eleventh
international conference on World Wide Web
(WWW'2002). 2002.

7. Vigna, G., et al. A Stateful Intrusion Detection System
for World-Wide Web Servers. in Proceedings of the 19th
Annual Computer Security Applications Conference.
2003.

8. Kruegel, C. and G. Vigna, Anomaly detection of
web-based attacks in Proceedings of the 10th ACM
conference on Computer and communications security
2003 ACM Press: Washington D.C., USA p. 251-261

9. ISS, ISS Internet Scanner, 2004.
http://www.iss.net/products_services/enterprise_protecti
on/vulnerability_assessment/scanner_internet.php

10. SAINT Corp., SAINT vulnerability scanner.
http://www.saintcorporation.com/products/saint_engine.
html

11. rfp.labs, libwhisker.
http://www.wiretrip.net/rfp/index.asp

12. Nikto, Nikto 1.32. http://www.cirt.net/code/nikto.shtml
13. Symantec Corp., Symantec NetRecon.

http://enterprisesecurity.symantec.com/products/product
s.cfm?ProductID=46

14. Nessus, NESSUS Scanner, 2004.
http://www.nessus.org/

15. Forristal, J. and G. Shipley, Vulnerability Assessment
Scanners, 2001.
http://www.nwc.com/1201/1201f1b1.html

16. CERT Center, Microsoft Internet Information Server
(IIS) vulnerable to cross-site scripting via HTTP
TRACK method, 2004.
http://www.kb.cert.org/vuls/id/288308.

17. CERT Advisory, "Code Red" Worm Exploiting Buffer
Overflow In IIS Indexing Service DLL, 2001.
http://www.cert.org/advisories/CA-2001-19.html

