
Action-Conditional Video Prediction
using Deep Networks in Atari Games

Junhyuk Oh
Computer Science & Engineering

University of Michigan
junhyuk@umich.edu

Xiaoxiao Guo
Computer Science & Engineering

University of Michigan
guoxiao@umich.edu

Honglak Lee
Computer Science & Engineering

University of Michigan
honglak@umich.edu

Richard Lewis
Psychology

University of Michigan
rickl@umich.edu

Satinder Singh
Computer Science & Engineering

University of Michigan
baveja@umich.edu

Abstract

Motivated by vision-based reinforcement learning (RL) problems, in particular
Atari games from the recent benchmark Aracade Learning Environment (ALE),
we consider spatio-temporal prediction problems where future (image-)frames are
dependent on control variables or actions as well as previous frames. While not
composed of natural scenes, frames in Atari games are high-dimensional in size,
can involve tens of objects with one or more objects being controlled by the actions
directly and many other objects being influenced indirectly, can involve entry and
departure of objects, and can involve deep partial observability. We propose and
evaluate two deep neural network architectures that consist of encoding, action-
conditional transformation, and decoding layers based on convolutional neural
networks and recurrent neural networks. Experimental results show that the pro-
posed architectures are able to generate visually-realistic frames that are also use-
ful for control over approximately 100-step action-conditional futures in some
games. To the best of our knowledge, this paper is the first to make and evaluate
long-term predictions on high-dimensional video conditioned by control inputs.

1 Introduction

Over the years, deep learning approaches (see [6, 21] for survey) have shown great success in many
visual perception problems (e.g., [14, 7, 26, 8]). However, modeling videos (i.e., building a genera-
tive model) is still a very challenging problem because it usually involves high-dimensional natural-
scene data with complex temporal dynamics. Thus, recent studies have mostly focused on modeling
simple video data, such as bouncing balls or small video patches, where the next frame is highly-
predictable based on the previous frames [23, 17, 16]. In many applications, however, future frames
are not only dependent on previous frames but also on additional control or action variables. For
example, the first-person-view in a vehicle is affected by wheel-steering and acceleration actions.
The camera observation of a robot is similarly dependent on its movement and changes of its camera
angle. More generally, in vision-based reinforcement learning (RL) problems, learning to predict
future images conditioned on future actions amounts to learning a model of the dynamics of the

1

ar
X

iv
:1

50
7.

08
75

0v
1

 [
cs

.L
G

]
 3

1
Ju

l 2
01

5

agent-environment interaction; such transition-models are an essential component of model-based
learning approaches to RL. In this paper, we focus on Atari games from the Arcade Learning Envi-
ronment (ALE) [4] as a source of challenging action-conditional video modeling problems. While
not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens
of objects with one or more objects being controlled by the actions directly and many other objects
being influenced indirectly, can involve entry and departure of objects, and can involve deep partial
observability. To the best of our knowledge, this paper is the first to make and evaluate long-term
predictions on high-dimensional images conditioned by control inputs.

This paper proposes, evaluates, and contrasts two spatio-temporal prediction architectures based on
deep networks that incorporate action variables (See Figure 1). The architectures divide the pre-
diction problem into three parts: encoding, action-conditional transformation, and decoding. One
architecture is based on convolutional neural networks (CNNs) and the other on recurrent neural
networks (RNNs). The encoding part computes high-level abstractions of input frames, the action-
conditional transformation part predicts the abstraction of the next frame conditioned on the action,
and finally the decoding part maps the predicted high-level abstraction to a detailed frame. The feed-
forward architecture takes the last 4 frames as input while the recurrent architecture takes just the last
frame but has recurrent connections as shown in Figure 1b. Our experimental results on predicting
images in Atari games show that our architectures are able to generate realistic frames over 100-step
action-conditional future frames without diverging. We show that the representations learned by
our architectures 1) approximately capture natural similarity among actions, and 2) discover which
objects are directly controlled by the agent’s actions and which are only indirectly influenced or
not controlled at all. We evaluated the usefulness of our architectures for control in two ways: 1)
by replacing emulator frames with predicted frames in a previously-learned model-free controller
(DQN; DeepMind’s state of the art Deep-Q-Network for Atari Games [18, 19]), and 2) by using the
predicted frames to drive a more informed than random exploration strategy to improve a model-free
controller (also DQN).

2 Related Work

Uncontrolled Video Prediction using Deep Networks. The problem of video prediction has led
to a variety of architectural proposals in the deep learning literature. A recurrent temporal restricted
Boltzmann machine (RTRBM) [23] was proposed to learn temporal correlations from sequential
data by introducing recurrent connections in RBM. A structured RTRBM (sRTRBM) [17] scaled
up RTRBM by learning dependency structures between observations and hidden variables from
data. More recently, Michalski et al. [16] proposed a higher-order gated autoencoder (HGAE) that
defines multiplicative interactions between consecutive frames and mapping units. By assuming
temporal consistencies in high-order mapping units, they suggest that temporal prediction problem
can be viewed as learning and inferring transformations between consecutive images. Srivastava et
al. [22] applied sequence to sequence learning framework [25] to a video domain, and showed that
deep LSTM networks are capable of generating video of bouncing handwritten digits. In contrast
to these previous studies that consider only previous frames to predict future frames, this paper
tackles problems where control variables affect temporal dynamics, motivated by vision-based RL.
In addition, we scale up spatio-temporal prediction to larger-size images than previous work.

ALE: Combining Deep Learning and RL. Atari 2600 games provide very challenging environ-
ments for RL because of high-dimensional visual observations, partial observability, and delayed re-
wards. Approaches that combine deep learning and RL have made significant advances [18, 19, 9].
Specifically, DQN [18] combined Q-learning [29] with a CNN and achieved state-of-the-art per-
formance on many Atari games. Guo et al. [9] used the ALE-emulator as a means for making
action-conditional predictions and slow UCT [13], a Monte-Carlo tree search method, to generate
training data for a fast-acting CNN, which outperformed DQN on several domains. Throughout this
paper we will use DQN to refer to the architecture used in [18] (a more recent work [19] used a
deeper CNN with more data to produce the currently best-performing Atari game players). There
have been few attempts to learn from ALE data a transition-model that makes action-conditional
predictions of future frames. One line of work [2, 3] divides game images into patches and applies a
Bayesian model averaging framework to predict patch-based observations. However, this approach
assumes that neighboring patches are enough to predict the center patch, which is not true in Atari
games because of many complex interactions (e.g., shooting an enemy changes the score pixels).

2

	
	
	

	
	
	

	
	
	

action

	
	
	

encoding transformation decoding

(a) Feedforward encoding

	
	
	

	
	
	

	
	
	

	
	
	

action

encoding transformation decoding

(b) Recurrent encoding

Figure 1: Two Encoding-Transformation-Decoding network architectures.

They present average log loss of 1-step predictions. In this paper we make and evaluate long-term
predictions both for quality of pixels generated and for usefulness to control.

3 Proposed Architectures and Training Method

The goal of our architectures is to learn a function f : xt−k+1:t, zt → xt+1, where xt and zt are
the frame and action variables at time t, and xt−k+1:t are the frames from time t − k + 1 to time
t, i.e., the last k frames. Figure 1 shows our two architectures that are each composed of encoding
layers that extract spatio-temporal features from the input frames (Section 3.1), action-conditional
transformation layers that transform the encoded features into a prediction of the next frame in
high-level feature space by introducing action variables as additional input (Section 3.2) and finally
decoding layers that map the predicted high-level features into pixels (Section 3.3). Our architectural
contributions are in the novel action-conditional transformation component as well as in the novel
use of the overall resulting architecture in vision-based RL domains.

3.1 Feedforward encoding and Recurrent encoding

We present two different types of encoding architecture: feedforward encoding and recurrent en-
coding as shown in Figure 1.

Feedforward encoding takes a fixed history of previous frames as an input, which is concatenated
through channels (see Figure 1a), and stacked convolution layers extract spatio-temporal features
directly from the concatenated frames. The encoded feature vector henc

t ∈ Rh at time t can be
formulated as:

henc
t = CNN (xt−k+1:t) , (1)

where xt−k+1:t ∈ Rk×n×m denotes k frames of n×m pixel images. CNN is a mapping from raw
concatenated pixels to a high-level feature vector using multiple convolution layers, each of which
is followed by a rectifier nonlinearity [20], and a fully-connected layer at the end. This encoding
can be viewed as early-fusion [12] (other types of fusions, e.g., late-fusion or 3D convolution [28]
can also be applied to this architecture).

Recurrent encoding takes one frame as an input for each time-step and extracts high-level spatio-
temporal features using an RNN in which the temporal dynamics is modeled by the recurrent layer
on top of the high-level feature vector extracted by convolution layers (see Figure 1b). In this paper,
long short-term memory (LSTM) [10] without peephole connection is used for the recurrent layer
as follows:

henc
t = LSTM (CNN (xt)) . (2)

Intuitively, LSTM units retain information from deep history of inputs using memory cells, and
CNN (xt) is given as input to the LSTM so that the LSTM captures temporal correlations from
high-level spatial features.

3.2 Multiplicative Action-Conditional Transformation

The transformation layer should be able to predict different frames for different agent-actions. A
straightforward approach would be to simply concatenate the action into the encoded feature vector
and use a fully-connected layer to map to the predicted feature vector. In this approach, however, the
encoded feature vector and the action-vector contribute to the prediction independently as an additive
interaction, which arguably makes it difficult for the actions to “condition” the transformation. To
allow the action to condition the transformation, we propose multiplicative interactions between the

3

encoded feature vector and the control variables as follows:

hdect,i =
∑
j,k

Wikjzt,jh
enc
t,k + bi (3)

where henc
t ∈ Rh is encoded feature, hdec

t ∈ Rh is transformed feature, zt ∈ Rz is action-vector at
time t, W ∈ Rh×h×z is 3-way tensor weight, and b ∈ Rh is bias. When the action z is represented
using one-of-k vectors, using a 3-way tensor is equivalent to using different weight matrices for each
action. This enables the architecture to model different transformations for different actions. The
advantages of multiplicative interactions have been discussed in image and text modelling problems
[27, 24, 15]. In practice, however, the 3-way tensor is not scalable because of its large number of
parameters. Thus, we approximate the tensor by factorizing into three matrices as follows [27],

hdec
t = Wdec (Wenchenc

t �Wzzt) + b (4)

where Wdec ∈ Rh×f ,Wenc ∈ Rf×h,Wz ∈ Rf×z,b ∈ Rh, and f is the number of factors. Unlike
the 3-way tensor, the above factorization shares the weights between different actions by mapping
them to the size-f factors. This sharing may be desirable relative to the full 3-way tensor when
there are common temporal dynamics in the data across different actions (e.g., ‘left+fire’ and ‘left’
in Atari games); this is discussed further in Section 4.3.

3.3 Convolutional Decoding

It has been recently shown that a CNN is capable of generating an image given fully-specified
attributes of the image [1]. Inspired by this, we apply this idea to our end-to-end deep architecture
for video prediction. In our method, convolutional filters are used to decode high-level features
encoded and transformed by CNN instead of attributes. More specifically, the transformed feature
vector hdec is decoded into pixels by repeatedly applying 2× 2 upsampling and a convolution layer.

3.4 Incremental Training

Given the training data D =
{(

(xn
1 , z

n
1) , ...,

(
xn
Tn
, znTn

))}N
n=1

, the model is trained to minimize the
sum of the squared loss of K-step predictions as follows:

LK (θ) =
1

2

∑
n

∑
t

K∑
k=1

∥∥x̂n
t+k − xn

t+k

∥∥2 (5)

where x̂n
t+k is a k-step future prediction. Intuitively, the network is repeatedly unrolled through K

time steps by using its prediction as an input for the next time-step. The model is trained in multiple
phases based on increasing K, as suggested by Michalski et al. [16]. In other words, the model is
trained to predict short-term future frames and fine-tuned to predict longer-term future frames after
the previous phase converges. A mini-batch gradient descent with backpropagation through time
(BPTT) is used to optimize the parameters of the network by sampling training sequences from the
training data.

4 Experiments

In the experiments that follow, we have the following goals for our two architectures. 1) To evaluate
the predicted frames in two ways: qualitatively evaluating the generated video, and quantitatively
evaluating the pixel-based squared loss, 2) To evaluate the usefulness of predicted frames for control
in two ways: by replacing the emulator’s frames with predicted frames for use by DQN, and by using
the predictions to improve exploration in DQN, and 3) To qualitatively evaluate the representations
learned by our architectures.

We begin by describing the details of the data, and model architecture parameters, and baselines.

Data and Preprocessing. We replicated DQN and used our replication to generate game-play
video datasets using ε-greedy policy with ε = 0.2, which means DQN is forced to choose a random
action with 20% probability. For each game, the dataset consists of about 600, 000 training frames
and 60, 000 test frames with actions chosen by DQN. Following DQN, actions are chosen once every
4 frames which reduces the 60fps video to 15fps video. The number of actions available in games

4

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

271	

272	

273	

é	

é	

é	

Figure 2: Example of predictions over 270 steps in Freeway. ‘Step’ column shows the number of prediction
steps, while the ‘Action’ column shows the actions taken. The white boxes indicate the object controlled by
the agent. From prediction step 272 to 273 the controlled object crosses the top boundary and reappears at the
bottom; this nonlinear shift is predicted by our architectures and is not predicted (indeed, not even represented)
by naLinear and naFf. The horizontal movement of the uncontrolled objects (most clearly seen near the left
boundary of the frame) are predicted by our architectures and naFf but not by naLinear.

varies from 3 to 18, and they are represented as 1-of-k vectors. As in DQN, every image (210×160)
is down-sampled to 84 × 84 pixels and gray-scaled. We preprocessed the images by subtracting
mean pixel values and dividing each pixel value by 128.

Network Architecture and Training. The same network architecture is used for all game do-
mains. The encoding layers consist of 3 convolution layers and one fully-connected layer. The first
convolution layer has 64, 6 × 6 filters with stride of 2. The second and third convolution layers
have 64, 6 × 6 filters with stride of 2 and padding of 2. The fully-connected layer consists of 1024
hidden units. Every layer is followed by a rectified linear function [20]. For the feedforward en-
coding network, last 4 frames are used as an input for each time-step. In the recurrent encoding
network, a LSTM layer with 1024 hidden units is added on top of the fully connected layer. The
recurrent encoding network takes one frame for each time-step, but it is unrolled through last 11
frames to initialize the LSTM hidden units before making a prediction. The number of factors in
the transformation layer is 2048. The architecture of decoding layers is symmetric with respect to
the encoding layers. We trained the model by increasing the number of prediction steps: 1, 3, and 5.
Our implementation is based on Caffe toolbox [11].

Baselines. In the following experiments, the proposed models are compared with two baselines
that do not incorporate actions. The first, patch-wise no-action linear regression (or naLinear) takes
randomly sampled 16×16 patches concatenated through last four frames (4×16×16), and predicts
a 16×16 patch of the next frame. During testing, the linear regression model predicts every patch by
sliding windows with overlap, and the overlapped pixels are averaged. A second baseline, no-action
feedforward (or naFf) is the same as the feedforward encoding architecture (Figure 1a) except that
the transformation layer consists of one fully-connected layer that does not get the action as input.

4.1 Evaluation of Predicted Frames

Qualitative Evaluation: Prediction video. The prediction videos of our models and base-
lines are available at the following website: https://sites.google.com/a/umich.edu/
junhyuk-oh/action-conditional-video-prediction.1 As seen in the videos, our
proposed models make qualitatively reasonable predictions over 30 ∼ 500 steps depending on the
game. In all games, the naLinear baseline quickly diverges, and the naFf baseline fails to predict the

1In addition to the main results on down-sampled images, we have also trained larger networks on the
original images (210×160 RGB pixels). These preliminary results are also demonstrated in the website.

5

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

0 10 20

#10-3

0

0.5

1

1.5

2

(a) Seaquest

0 10 20

#10-3

0

0.5

1

1.5

2

2.5

(b) Space Invaders

0 10 20

#10-3

0

0.2

0.4

0.6

0.8

1

(c) Freeway

0 10 20

#10-3

0

0.5

1

1.5

2

(d) QBert

0 10 20

#10-3

0

0.5

1

1.5

(e) Ms Pacman

Figure 3: Mean squared error over 20-step predictions. The blue curves (‘o’) and red curves (‘*’) correspond
to feedforward encoding and recurrent encoding respectively. The black (‘+’) and green (‘x’) curves represent
naLinear and naFf respectively. The x-axis is the number of steps of prediction. The y-axis is the per-pixel
mean squared error.

 Feed-‐
forward	

Recurrent	

True	

(a) Ms Pacman (25× 25 cropped)

True	

 Feed-‐
forward	

Recurrent	

(b) Space Invaders (25× 25 cropped)

Figure 4: Comparison between two encoding models. (a) Controlled object is seen in white square. As the
recurrent encoding model makes a small translation error at the beginning, this leads to a situation in which
the true position of the controlled object is in the bottom corridor while the predicted position is still above the
bottom corridor. The agent moves leftwards from then on which is not possible in the predicted position and
so the controlled object in recurrent encoding gets stuck. This is less likely to happen in feedforward encoding
because its position prediction is more accurate. (b) The objects move down after staying at the same location
for the first five steps. The feedforward encoding model fails to predict this movement (see last three frames)
because it only gets the last four frames as input while the recurrent encoding model predicts the downwards
movement correctly.

object controlled by the actions. An example of predictions over 270 steps in Freeway is illustrated
in Figure 2. We observed that both models predict complex local translations very well such as the
movement of vehicles and the object controlled by the agent. They can predict interactions between
objects such as collision of two objects. Since our architectures effectivly extract hierarchical fea-
tures using CNN, they are able to make a prediction that requires a global context. For example, in
Figure 2, the model predicts the sudden change of the controlled-object location (from the top lane
to the bottom lane) at 273-step.

However, both of our models have difficulty in accurately predicting small objects, such as bullets
in Space Invaders. This is because squared loss gives only small error signals when the model fails
to predict small objects during training. Another difficulty is in handling stochasticity. In Seaquest,
new objects appear from the left side or right side randomly, and these are hard to predict. Although
our models do generate new objects with reasonable shapes and movements (e.g., after appearing
they move as in the true frames), the generated frames do not necessarily match the ground-truth.

Quantitative Evaluation: Squared Prediction Error. Mean squared error over 20-step predic-
tions is reported in Figure 3 (see caption for details). Our predictive models outperform the two base-
lines for all domains. However, the gap between our predictive models and no-action-feedforward
baseline is not very large except for Seaquest. This is due to the fact that the object directly con-
trolled by the action occupies only a small part of the image.

Qualitative Analysis of Relative Strengths and Weaknesses of Feedforward encoding and Re-
current encoding. We hypothesize that feedforward encoding can model precise spatial transfor-
mations more easily because its convolutional filters can learn temporal correlations directly from
pixels in the multiple concatenated frames. In contrast, convolutional filters in recurrent encoding
can learn only spatial features from the one-frame input, and the temporal context has to be captured
by the recurrent layer on top of the high-level CNN feature vector, which does not have localized

6

0 50 100
0

2000

4000

6000

8000

(a) Seaquest

0 50 100
0

100

200

300

400

500

600

700

(b) Space Invaders

0 50 100
0

5

10

15

20

25

30

35

(c) Freeway

0 50 100
0

1000

2000

3000

4000

5000

(d) QBert

0 50 100
0

500

1000

1500

2000

2500

(e) Ms Pacman

Figure 5: Game play performance using the predictive model as an emulator. The models corresponding to
each curve are the same as in Figure 3. The solid horizontal lines are the performance of the DQN controller
when given the true frames, and the dashed horizontal lines correspond to scores achieved by purely random
play. The x-axis is the number of steps of prediction before re-initialization with real frames. The y-axis is the
average game score measured from 30 plays.

information. On the other hand, recurrent encoding is more flexible and potentially better for mod-
elling long-term dependencies, because the recurrent layer can account for an arbitrary number of
frames, whereas feedforward encoding is not suitable for modelling long-term dependencies because
it takes more memory and parameters as more frames are concatenated.

As evidence, in Figure 4a we show a case that feedforward encoding is better at predicting the precise
movement of the action-controlled object, while recurrent encoding makes a 1-2 pixel translation
error. This small spatial error leads to entirely different predicted frames after a few steps. Since
the architecture of feedforward encoding and recurrent encoding is identical except for the encoding
part, we conjecture that this result is mainly due to the failure of precise spatio-temporal encoding in
recurrent encoding. On the other hand, recurrent encoding is better at predicting when the enemies
move in Space Invaders as illustrated in Figure 4b. This is due to the fact that the enemies move after
9 steps, which is hard for feedforward encoding to predict because it takes only the last four frames
as input. We observed similar results showing that feedforward encoding cannot handle long-term
dependencies in other games. In Freeway, for example, the controlled-object cannot move for 9
steps when it starts a new stage. Feedforward encoding sometimes moves the controlled-object in
this situation.

4.2 Evaluating Usefulness of Predictions for Control

Replacing Real Frames with Predicted Frames as Input to DQN. Since squared loss does not
measure how meaningful the predictions are for playing the games, we implement an alternative
evaluation method that uses the predictive model to replace the game emulator as follows. A DQN
controller that takes the last four frames is first pre-trained using real frames and then used to play
the games based on ε = 0.05−greedy policy where the input frames are generated by our predictive
model instead of the game emulator. To evaluate how the depth of predictions influence the quality
of control, we re-initialize the predictions using the true last frames after every n-steps of prediction
for 1 ≤ n ≤ 100. Note that the DQN controller never sees a true frame, just the outputs of our
predictive models.

The results are shown in Figure 5. Unsurprisingly, replacing real frames with predicted frames
reduces the score. However, in all the games using the model to repeatedly predict only a few time
steps yields a score very close to that of using real frames. Our two architectures produce much
better scores than the two baselines for deep predictions than would be suggested based on the much
smaller differences in squared loss. The likely cause of this is that our models are better able to
predict the movement of the object directly controlled by the actions relative to the baselines even
though such an ability may not always lead to better squared loss error. In three out of the five
games the score remains much better than the score of random play even when using a 100 steps
of prediction (repeatedly) before re-initialization. In Freeway and Space Invaders the predictions
seem particularly good at replacing the emulator. In Freeway, where recurrent encoding clearly
outperforms feedforward encoding, we observed that the feedforward encoding network sometimes
fails to keep track of the directly-controlled-object when the agent starts a new stage.

7

Model Seaquest S. Invaders Freeway QBert Ms Pacman

DQN - Random exploration 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
DQN - Informed exploration 13265 (577) 681 (23) 32.2 (0.2) 8238 (498) 2522 (57)

Table 1: Average game score of DQN over 100 plays. The first row and the second row show the performance
of our DQN replication with random exploration and informed exploration respectively.

(a) Random (b) Informed

Figure 6: Comparison between two exploration methods on Ms Pacman.
Each heat map shows the trajectories of the controlled object measured
over 2500 steps for the corresponding exploration strategy.

é	 N	 F	
N	
F	

è	 ç	 ê	 ì	 ë	 î	 í	

é
	

è
	

ç
	

ê
	

ì
	

ë
	

î
	

í
	

Figure 7: Cosine similarity be-
tween every pair of action factor
representations.

Improving DQN via Informed Exploration. To learn control in an RL domain, exploration of
actions and states is necessary because without it the agent can get stuck in a badly sub-optimal
policy. In the DQN paper, the CNN-based agent was trained using an ε-greedy policy in which the
agent picks the greedy action 1 − ε percent of the time and a random action ε percent of the time.
Such random exploration is a basic strategy that produces sufficient exploration, but can be slower
than more informed exploration strategies. Our informed exploration strategy is to again take the
greedy action 1−ε percent of the time but for the ε-percent exploratory actions to pick one that takes
the agent to a frame that has been visited least often (say in the last d time steps). Implementing such
a exploration strategy requires a predictive model because the next frame for each possible action
has to be considered.

Specifically, we store the most recent d frames in a trajectory memory, denoted D =
{
xi
}d
i=1

. The
predictive model is used to get the next frame xa for every action a. We estimate the visit-frequency
for every predicted frame by summing the similarity between the predicted frame and the most d
recent frames stored in the trajectory memory using an exponential kernel over the pixels as follows:

nD(xa) =

d∑
i=1

k(xa,xi) (6)

k(x,y) = exp(−
∑
j

min(max((xj − yj)2 − δ, 0), 1)/σ) (7)

where xi ∈ D is the i-th frame in the trajectory memory, δ is a threshold, and σ is a kernel band-
width.2

Table 1 summarizes our results. The informed exploration improves DQN’s performance using
our predictive model in three of five games (with the most significant improvement in QBert); see
Figure 6 for a heatmap that shows the informed exploration strategy improving the initial experience
of DQN. This preliminary result shows one way our predictive models can be used to improve
DQN’s game play; recall that DQN is the state of the art architecture for playing Atari games.

4.3 Analysis of Learned Representations

Similarity among Action Representations. In the factored multiplicative interactions, every ac-
tion is linearly transformed to f factors (Wzz in Equation 4). In Figure 7 we present the cosine

2The size of trajectory memory is 200 for QBert and 20 for the other games, δ is 0 for Freeway and 50 for
the others, σ is 100 for all games. We use our feedforward encoding architecture to predict xa.

8

similarity between every pair of action-factor representations after training in Seaquest. ‘N’ and ‘F’
corresponds to ‘no-operation’ and ‘fire’. Black arrows and white arrows correspond to movements
with or without ‘fire’. It turns out that there are strong positive correlation between actions that
have the same movement directions such as ‘up’ and ‘up+fire’. There are also negative correlations
between actions that have opposite moving directions such as ‘up+right’ and ‘down+left’. Both of
these effects are reasonable and discovered automatically in learning good predictions.

Distinguishing Controlled and Uncontrolled Objects. This is a hard and interesting problem
in it’s own right. Bellemare et al. [5] proposed a framework to learn contingent regions, the parts
of an image affected by the agent’s action, and suggested that contingency awareness is useful for
model-free RL agents. As we illustrate below, our architectures implicitly learn contingent regions
as they learn to predict the entire image.

Prev.	 frame	 Next	 frame	 Predic0on	

Ac0on	 Non-‐Ac0on	

Figure 8: Distinguishing controlled and uncon-
trolled objects. The red, blue, and white colors
represent positive, negative, and zero value from
the network output. See text for details.

In our architectures, a factor dimension (fi =
(wz

i)
>z) with higher variance measured over all

possible actions, Var (fi) = Ez

[
(fi − Ez[fi])

2
]
, is

more likely to transform an image differently de-
pending on actions. Thus, we assume that such fac-
tor dimensions are responsible for transforming the
part of the image related to the actions. Based on this
assumption, we collected the high variance (>0.001)
dimensions from the model trained on Space In-
vaders into a “highvar” subset (around 40% of fac-
tors), and collected the remaing dimensions into a
“lowvar” subset. Given an image and an action,
we did two controlled forward propagations: giving
only highvar factor dimensions (by setting the other
factors to zeros) and vice versa. The results are vi-
sualized as ‘Action’ and ‘Non-Action’ image in Fig-
ure 8. Interestingly, given only highvar-dimensions
(Action case), the model predicts sharply the move-
ment of the object controlled by actions, while the
other objects are much more blurry. In contrast,
given only lowvar-dimensions (Non-Action case), the model predicts the movement of the enemies
and the background more sharply, and the controlled object stays at the previous location. This result
implies that our model learns to distinguish between controlled objects and uncontrolled objects and
transform them using disentangled representations.

5 Conclusion

This paper introduced two different novel deep architectures that predict future frames that are de-
pendent on actions and showed qualitatively and quantitatively that they are able to predict visually-
realistic and useful-for-control frames over 100-step futures on several Atari game domains. To
our knowledge, this is the first paper to show good deep predictions in Atari games. Since our ar-
chitectures were domain independent we expect that they will generalize to many vison-based RL
problems. In future work we will learn models that predict future reward in addition to predicing
future frames and evaluate the performance of our architectures in model-based RL.

References

[1] A.Dosovitskiy, J.T.Springenberg, and T.Brox. Learning to generate chairs with convolutional neural net-
works. In CVPR, 2015.

[2] M. Bellemare, J. Veness, and M. Bowling. Bayesian learning of recursively factored environments. In
ICML, 2013.

[3] M. Bellemare, J. Veness, and E. Talvitie. Skip context tree switching. In ICML, 2014.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation
platform for general agents. JAIR, 47:253–279, 06 2013.

9

[5] M. G Bellemare, J. Veness, and M. Bowling. Investigating contingency awareness using atari 2600 games.
In AAAI, 2012.

[6] Yoshua Bengio. Learning deep architectures for AI. Foundations and trends in Machine Learning, 2(1):1–
127, 2009.

[7] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image classi-
fication. In CVPR, 2012.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR. IEEE, 2014.

[9] X. Guo, S. Singh, H. Lee, R.L Lewis, and X. Wang. Deep learning for real-time atari game play using
offline monte-carlo tree search planning. In NIPS, 2014.

[10] S Hochreiter and J Schmidhuber. Long short-term memory. Neural Computation., 9(8):1735–1780, 1997.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classifi-
cation with convolutional neural networks. In CVPR, 2014.

[13] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In ECML. Springer, 2006.

[14] A. Krizhevsky, I Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural
networks. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, NIPS, pages 1097–1105.
Curran Associates, Inc., 2012.

[15] R. Memisevic. Learning to relate images. PAMI, 35(8):1829–1846, 2013.

[16] V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent “gram-
mar cells”. In NIPS. 2014.

[17] R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured Recurrent Temporal Restricted Boltzmann
Machines. In ICML, 2014.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, February 2015.

[20] V. Nair and G. E Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.

[21] J. Schmidhuber. Deep learning in neural networks: An overview. arXiv preprint arXiv:1404.7828, 2014.

[22] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using
lstms. arXiv preprint arXiv:1502.04681, 2015.

[23] I. Sutskever, G.E. Hinton, and G. Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS,
21(1), 2008.

[24] I. Sutskever, J. Martens, and G.E Hinton. Generating text with recurrent neural networks. In ICML, 2011.

[25] I. Sutskever, O Vinyals, and QVV Le. Sequence to sequence learning with neural networks. NIPS, 2014.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

[27] G. W Taylor and G. E Hinton. Factored conditional restricted boltzmann machines for modeling motion
style. In ICML, 2009.

[28] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. C3D: generic features for video analysis.
CoRR, abs/1412.0767, 2014.

[29] C. JCH Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

10

A Informed Exploration

The entire DQN algorithm combined with informed exploration is described in Algorithm 1. The bold texts
show the modifications on the original DQN algorithm.

Algorithm 1 Deep Q-learning with informed exploration
Allocate capacity of replay memory R
Allocate capacity of trajectory memory D
Initialize parameters θ of DQN
while steps < M do

Reset game and observe image x1
for t=1 to T do

Sample c from Bernoulli distribution with probability ε

Set at =

{
argmina nD(xat) in Eq 6 if c = 1

argmaxaQ (φ (st) , a; θ)) otherwise
Choose action at, observe reward rt and image xt+1

Set st+1 = xt−2:t+1 and preprocess images φt+1 = φ (st+1)
Store image xt+1 in D
Store transition (φt, at, rt, φt+1) in R
Sample a mini-batch of transitions (φj , aj , rj , φj+1) from R
Update θ based on the mini-batch and Bellman equation.
steps = steps+ 1

end for
end while

Comparison to random exploration. Figure 9 visualizes the difference between random exploration
and informed exploration in two games. In Freeway, where the agent gets rewards by reaching the top lane,
the agent move only around the bottom area in the random exploration so that it takes about 4.6× 105 steps to
get the first reward. On the other hand, the agent moves around all locations in the informed exploration and
receives the first reward in 86 steps. The similar result is found in Ms Pacman.

Application to Deep Q-learning. The results of the informed exploration using the game emulator and
our predictive model are reported in Figure 10 and Table 2 with the baselines. Two published results of
DQN [18, 19] and our DQN replication. Our replication follows [18], which uses a smaller CNN than [19].

11

(a) Random (b) Informed (c) Random (d) Informed

Figure 9: Comparison between two exploration methods on Freeway (Left) and Ms Pacman (Right). Each heat
map shows the trajectories of the agent measured from 2500 steps from each exploration strategy.

epoch
0 100 200 300 400 500

av
er

ag
e

sc
or

e

0

2000

4000

6000

8000

10000

12000

14000

(a) Seaquest

epoch
0 100 200 300 400

av
er

ag
e

sc
or

e

0

500

1000

1500

2000

(b) Space Invaders

epoch
50 100 150

av
er

ag
e

sc
or

e

0

5

10

15

20

25

30

(c) Freeway

epoch
0 50 100 150 200

av
er

ag
e

sc
or

e

0

2000

4000

6000

8000

10000

12000

(d) QBert

epoch
0 100 200 300 400

av
er

ag
e

sc
or

e

0

500

1000

1500

2000

2500

3000

(e) Ms Pacman

Figure 10: Learning curves of DQNs. The red and blue curves are informed exploration using our predictive
model and the emulator respectively. The black curves use random exploration (original DQN). The average
game score measured from 100 game plays with 0.05-greedy policy.

Model Seaquest S. Invaders Freeway QBert Ms Pacman

DQN (Nature) [19] 5286 1976 30.3 10596 2311
DQN (NIPS) [18] 1705 581 - 1952 -

Our replication of [18] 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
I.E (Prediction) 13265 (577) 681 (23) 32.2 (0.2) 8238 (498) 2522 (57)
I.E (Emulator) 13002 (498) 708 (17) 32.2 (0.2) 7969 (496) 2702 (92)

Table 2: Game score. The average game score is measured from 100 plays for every epoch (50,000 weight up-
dates), and the maximum average score is reported. I.E indicates DQN combined with the informed exploration
method. ‘Emulator’ and ‘Prediction’ correspond to the emulator and our predictive model.

12

B Squared Loss

Data Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Seaquest Linear 8.81 11.5 13.2 14.2 14.7 15.1 15.4 15.8 16.2 16.5 16.8 17.1 17.2 17.4 17.6 17.7 17.9 18.0 18.1 18.2
naFf 4.67 5.81 6.74 7.53 8.21 8.84 9.29 9.72 10.0 10.4 10.7 10.9 11.2 11.4 11.7 11.9 12.1 12.3 12.5 12.7
Feedforward 1.10 1.41 1.89 2.32 2.74 3.23 3.57 3.93 4.30 4.62 4.87 5.13 5.32 5.52 5.72 5.92 6.09 6.26 6.43 6.57
Recurrent 1.04 1.27 1.55 1.75 2.09 2.35 2.66 2.89 3.20 3.45 3.76 4.02 4.30 4.56 4.81 5.04 5.30 5.52 5.75 5.95

S.Invaders Linear 4.45 7.68 10.2 12.4 14.2 15.7 17.0 18.1 19.0 19.8 20.5 21.1 21.6 22.1 22.5 22.9 23.4 23.8 24.1 24.4
naFf 3.17 3.99 4.64 5.13 5.18 5.98 6.83 7.39 8.39 9.29 10.0 10.6 10.7 11.5 12.2 12.9 13.9 14.8 15.4 15.9
Feedforward 2.38 3.37 3.96 4.50 4.76 5.30 5.86 6.29 7.05 7.70 8.36 8.98 9.32 9.63 10.0 10.3 11.0 11.6 12.1 12.4
Recurrent 1.47 1.98 2.38 2.83 3.17 3.65 4.08 4.47 4.96 5.41 5.78 6.26 6.66 7.00 7.36 7.73 8.27 8.75 9.15 9.49

Freeway Linear 3.37 4.62 5.89 6.51 7.05 7.45 7.76 7.93 8.10 8.24 8.33 8.41 8.47 8.53 8.56 8.58 8.61 8.64 8.64 8.67
naFf 0.28 0.36 0.42 0.48 0.51 0.53 0.56 0.59 0.62 0.62 0.65 0.65 0.68 0.68 0.68 0.70 0.70 0.70 0.73 0.73
Feedforward 0.08 0.11 0.11 0.11 0.14 0.14 0.14 0.14 0.17 0.17 0.17 0.17 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.22
Recurrent 0.17 0.17 0.17 0.17 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.22 0.22 0.22 0.22

QBert Linear 3.71 5.69 6.57 7.17 7.90 8.36 9.04 9.77 10.6 11.2 11.3 11.4 12.1 12.6 13.2 13.6 14.2 14.4 14.7 15.1
naFf 0.76 0.96 1.21 1.58 1.98 2.43 2.77 3.23 3.65 4.13 4.56 4.90 5.41 5.52 5.86 6.29 6.54 6.88 7.25 7.48
Feedforward 0.59 0.79 1.04 1.41 1.55 1.89 2.32 2.49 2.63 2.89 3.11 3.42 3.79 3.85 4.10 4.42 4.70 4.81 4.98 5.18
Recurrent 0.42 0.65 0.87 1.13 1.44 1.70 1.98 2.26 2.55 2.83 3.08 3.34 3.68 3.88 4.16 4.42 4.67 4.93 5.13 5.41

Ms.Pacman Linear 4.96 7.51 8.50 9.04 9.89 10.4 10.4 10.6 11.1 11.5 11.6 11.6 12.0 12.3 12.4 12.5 12.9 13.2 13.2 13.3
naFf 2.09 2.91 3.59 4.30 4.87 5.38 5.83 6.23 6.57 6.91 7.22 7.51 7.79 8.04 8.27 8.53 8.75 8.92 9.12 9.35
Feedforward 1.61 2.26 2.86 3.42 3.91 4.33 4.73 5.04 5.35 5.66 5.95 6.17 6.43 6.68 6.88 7.11 7.31 7.51 7.68 7.85
Recurrent 1.89 2.69 3.37 3.96 4.45 4.90 5.27 5.61 5.89 6.20 6.49 6.74 7.02 7.31 7.53 7.82 8.04 8.27 8.50 8.75

all values are multiplied by 104

Table 3: Mean squared error over 20-step predictions. The numbers represent 1
n
‖x̂t+k − xt+k‖2 measured

from randomly sampled 30,000 sequences from the test data. Pixel values are scaled to [0, 1].

C Correlation between actions

N"
N"

Freeway	

N"
N"

Ms	 Pacman	

N" F"
N"
F"

QBert	

N" F"
N"
F"

!" ""

#
"
$
"

Space	 Invaders	

!!N! F!
N!
F!

"! #!$!%! &!'! (!

!
!

"
!

#
!

$
!

%
!

&
!

'
!

(
!

Seaquest	

Figure 11: Correlations between actions. The brightness represents consine similarity between every pair of
factors.

13

D Handling different actions

è	 +	 fire	

Prev.	 Frame	

no-‐op	

fire	

é	 è	 ç	 ê	

ì	 ë︎	 î︎︎︎	 í︎	

é	 ç	 ê	

ì	 ë	 î	 í

+	 fire	

+	 fire	 +	 fire	

+	 fire	

+	 fire	

+	 fire	

+	 fire	

(a) Seaquest

+	 fire	 +	 fire	

Prev.	 Frame	 no-‐op	 fire	

è	 ç	 è	 ç	

(b) Space Invaders

14

Prev.	 Frame	 no-‐op	 é	 ê	
(a) Freeway

Prev.	 Frame	

no-‐op	 fire	 é	

è	 ç	 ê	

(b) QBert

Figure 11: Predictions given different actions

15

Prev.	 Frame	

no-‐op	 é	 è	

ç	 ê	 ì	

ë︎	 î︎︎︎	 í︎	

(c) Ms Pacman

Figure 11: Predictions given different actions

16

E Prediction video on down-sampled images

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

1	

2	

3	

4	

5	

6	

7	

8	 é	

ç	

ì	

é	

è	

è	

è	

é	

(a) Seaquest (1 ∼ 8 steps). The proposed models (feedforward and recurrent) predict the movement of the
submarine as well as the enemies correctly. It also predicts the blinking oxygen level which is running out.

17

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

49	

50	

51	

52	

53	

54	

55	

56	 é	

é

+
fire	

é	

é	

é	

é	

ê	

ê	

(a) Seaquest (49 ∼ 56 steps). The submarine is filling the oxygen tank at the surface of the sea (the oxygen
level is increasing). It stays at the same location regardless of the actions until the oxygen tank is filled up.

18

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

141	

142	

143	

144	

145	

146	

147	

148	
í

+
fire	

î

+
fire	

í︎	

í	

ê	

ì

+
fire	

í

+
fire	

í

+
fire	

(a) Seaquest (141 ∼ 148 steps). The recurrent model predicts new enemies coming from the right side.
Although they do not match the ground-truth images, the generated objects are realistic in terms of shapes and
movements.

19

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

1	

2	

3	

4	

5	

6	

7	

8	 fire	

fire	

fire	

fire	

fire	

è	

fire	

fire	

(a) Space Invaders (1 ∼ 8 steps). The controlled object is located in the bottom, while the enemies are arranged
in a grid. Since there are not many variations in the early part of the game, the models predict the dynamics of
the game well.

20

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

169	

170	

171	

172	

173	

174	

175	

176	
è

+
fire	

è

+
fire	

è

+
fire	

è

+
fire	

è

+
fire	

no-‐op	

è

+
fire	

è

+
fire	

(a) Space Invaders (169 ∼ 176 steps). The recurrent model predicts enemies moving down in 171-step, while
the other models fail to predict it.

21

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

193	

194	

195	

196	

197	

198	

199	

200	
è

+
fire	

ç

+
fire	

ç

+
fire	

fire	

fire	

ç	

ç

+
fire	

è

+
fire	

(a) Space Invaders (193 ∼ 200 steps). In 200-step, our models keep track of the object. The recurrent model
predicts the positions of the enemies more accurately than other models.

22

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

1	

2	

3	

4	

5	

6	

7	

8	 ê	

é	

é	

no-‐op	

é	

ê	

é	

no-‐op	

(a) Freeway (1 ∼ 8 steps). The predictions made by our models are almost same as ground-truth images. The
small object (chicken), which is controlled by the agent, is diffused in the predictions of naFf.

23

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

132	

133	

134	

135	

136	

137	

138	

139	

é	

é	

no-‐op	

ê	

ê	

no-‐op	

no-‐op	

é	

(a) Freeway (132 ∼ 139 steps). The chicken crashes with one of the cars in 133-step, so it is forced to move
down regardless of the actions.

24

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

337	

338	

339	

340	

341	

342	

343	

344	

é	

é	

no-‐op	

é	

no-‐op	

no-‐op	

no-‐op	

no-‐op	

(a) Freeway (337 ∼ 344 steps). When the chicken reaches the top lane in 338-step, it is relocated to the bottom
lane in the next step. The feedforward model has a small translation.

25

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

351	

352	

353	

354	

355	

356	

357	

358	

é	

é	

é	

é	

é	

é	

é	

é	

(a) Freeway (351 ∼ 358 steps). The chicken disappears in the predictions made by the feedforward model.
This is due to the fact that the chicken cannot move for 8-steps regardless of the action whenever it starts a new
stage from the bottome lane. We conjecture that the feedforward model cannot handle this type of dependencies
very well.

26

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

493	

494	

495	

496	

497	

498	

499	

500	

no-‐op	

ê	

é	

ê	

é	

é	

ê	

no-‐op	

(a) Freeway (493 ∼ 500 steps). The recurrent network successfully predicts every object up to 500-step.

27

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

1	

2	

3	

4	

5	

6	

7	

8	

no-‐op	

ê	

ê	

fire	

no-‐op	

no-‐op	

no-‐op	

no-‐op	

(a) QBert (1 ∼ 8 steps). In this game, the player has to visit every cube location in order to change their
colors. The actions do not affect the game play when the object is moving from cube to cube. In this figure, the
controllable object moves from the third row to the fourth row from 1-step to 8-step.

28

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

37	

38	

39	

40	

41	

42	

43	

44	

è	

ç	

ç	

ê	

no-‐op	

no-‐op	

é	

ê	

(a) QBert (37 ∼ 44 steps). When the agent visits every cube (40-step), the entire cubes flash for a few seconds
(41 ∼ 52 steps). Our models successfully handle this type of global changes in the screen.

29

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

45	

46	

47	

48	

49	

50	

51	

52	

ç	

é	

ç	

ç	

é	

fire	

é	

fire	

(a) QBert (45 ∼ 52 steps). The entire cubes are flashing because the player changed the colors of all the cubes
in 40-step.

30

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

110	

111	

112	

113	

114	

115	

116	

117	

è	

è	

è	

ç	

è	

è	

ê	

ê	

(a) QBert (110 ∼ 117 steps). After 114-step, the predicted object from the recurrent model disappears, while
the feedforward model keeps track of it.

31

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

1	

2	

3	

4	

5	

6	

7	

8	 ì	

è	

è	

è	

è	

è	

ì	

ì	

(a) Ms Pacman (1 ∼ 8 steps). The pacman, which is controlled by the player, moves from left to right in
the bottom corridor. The challenge in this game is that the shape of the pacman is very similar to that of the
enemies, and the enemies are randomly blinking.

32

naLinear	 Step	 naFf	 Feedforward	 Recurrent	 Ground	 Truth	 Ac7on	

45	

46	

47	

48	

49	

50	

51	

52	

é	

è	

é	

é	

no-‐op	

no-‐op	

no-‐op	

no-‐op	

(a) Ms Pacman (45 ∼ 52 steps).

33

F Prediction video on original images

Prediction

Step

Ground
Truth

1

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

ç ç + fire ë î + fire î + fire î + fire

ê ê í + fire í ç + fire ê

ê î + fire ê î + fire î + fire í

(b) Seaquest (1 ∼ 15 steps). Our model predicts the movement of the submarine and enemies correctly. It also
predicts disappearing objects when the submarine is heading for them.

34

Prediction

Step

Ground
Truth

153

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

154 155 156 157 158

159 160 161 162 163 164

165 166 167 168 169 170

é ç + fire ë + fire ë ê é

ë + fire é + fire ê + fire no-‐op é + fire ì

ì í + fire ê + fire ë ì ì

(c) Seaquest (153 ∼ 170 steps). The model generates new objects. Although the generated objects are not
correct, their shape and color are realistic. In this figure, the model predicts that the submarine dies when it
crashes with a ‘virtual’ enemy.

35

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

fire

firefire

è + fire 	 no-‐op è + fire è + fire ç

è + fire è + fire è + fire ç + fire è + fire è

è è è è + fire

(d) Space Invaders (1 ∼ 15 steps). The enemies move and change their shapes after 8 steps (see 3 ∼ 4-step
and 11 ∼ 12 step). This requires the model to capture the temporal depenendencies from the images in order
to make an accurate prediction.

36

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

154 155 156 157 158 159

160 161 162 163 164 165

166 167 168 169 170 171

fire

ç + fire ç + fireè

ç + fire fire ç + firefire è

ç firefire

firefire fire è + fire ç ç + fire

(e) Space Invaders (154 ∼ 171 steps). Although the model makes predictions errors in this long-term predic-
tions, they are still realistic in the sense that the objects are reasonably arranged in a 2D-grid and moving in the
right directions.

37

Prediction

Step

Ground
Truth

1

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

é

ê

ê ê

é é é éê

no-‐op é é é é

é é no-‐op é

(f) Freeway (1 ∼ 15 steps). The chicken controlled by the agent reaches the top lane in 3-step and starts a new
stage from the bottome lane. Whenever it starts a new stage, the agent cannot move the chicken for a while
(from 4-step to 12-step). Our model successfully handles this contraint.

38

Prediction

Step

Ground
Truth

483

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

484 485 486 487 488

489 490 491 492 493 494

495 496 497 498 499 500

é

ê

ê ê

é é é é

no-‐op éé é é

é é é

no-‐op

ê

(g) Freeway (483 ∼ 500 steps). The predictions over 500 steps are very accurate in this game domain.

39

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

no-‐op

è

è ê è

no-‐op no-‐op no-‐op ç no-‐op

no-‐op no-‐op è è no-‐op

no-‐op ç è

(h) QBert (1 ∼ 15 steps). The controlled object is orange-colored, while the enemy is green-colored. The
object moves between the thrid row and the fourth row and changes the color of the cube from blue to yellow,
while the enemy moves to the third row and changes the color back to blue. Our model not only predicts the
dynamic of the controllable object but also often predicts the movement of the enemy.

40

Prediction

Step

Ground
Truth

72

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

73 74 75 76 77

78 79 80 81 82 83

84 85 86 87 88 89

no-‐opno-‐op ç è è è

è no-‐op é no-‐opno-‐op no-‐op

no-‐op ê no-‐op é ê fire

(i) QBert (72 ∼ 89 steps). The model predicts the movement of the object controlled by the agent well, while
it is unable to predict the new object (the purple-colored ball).

41

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

í

íí

ç

î ê ç

è î í è

í é í í ê ê

ë

(j) Ms Pacman (1 ∼ 15 steps). Pacman moves and eats the blocks in the corridors. The model predicts the
changing score as Pacman eats blocks.

42

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

Prediction

Step

Ground
Truth

Action

95 96 97 98 99 100

101 102 103 104 105 106

107 108 109 110 111 112

ì

èno-‐op

ç

é í ê

í í í í

í í í í ê è

è

(k) Ms Pacman (95 ∼ 112 steps). As pacman goes to the left end of the screen in 102-step, it appears in the
right end of the screen in 104-step. This is an example of highly non-linear transformation, and requires the
model to consider the global spatial context to predict the pixels. However, our model does not predict the
movement of the enemies very well.

43

