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Abstract

Most research on probabilistic commitments focuses on com-
mitments to achieve enabling preconditions for other agents.
Our work reveals that probabilistic commitments to instead
maintain preconditions for others are surprisingly harder to
use well than their achievement counterparts, despite strong
semantic similarities. We isolate the key difference as being
not in how the commitment provider is constrained, but rather
in how the commitment recipient can locally use the commit-
ment specification to approximately model the provider’s ef-
fects on the preconditions of interest. Our theoretic analyses
show that we can more tightly bound the potential subopti-
mality due to approximate modeling for achievement than for
maintenance commitments. We empirically evaluate alterna-
tive approximate modeling strategies, confirming that prob-
abilistic maintenance commitments are qualitatively more
challenging for the recipient to model well, and indicating the
need for more detailed specifications that can sacrifice some
of the agents’ autonomy.

Introduction
In multiagent systems, agents are often interdependent in
that what one agent does can help or hinder another. In a co-
operative system, agents can mutually benefit from helping
each other. Specifically, we focus on interdependency where
an agent (the commitment provider) makes a social com-
mitment (Singh 1999; Kalia, Zhang, and Singh 2014) to an-
other (the commitment recipient). In essence, a commitment
abstracts the effect that the provider’s behavior has on the
recipient’s local environment, simplifying the coordination
between the agents. When stochasticity is inherent in the en-
vironment, the provider cannot guarantee to bring about the
outcomes the recipient wants, and in fact could discover af-
ter committing that its plan to pursue the outcomes is more
costly or risky than it had previously realized. Under such
circumstances, commitments are conditional (Singh 2008).
And when the conditions are expensive for the provider to
enumerate and/or the recipient to observe, the likelihood of
their holding can be summarized numerically, leading to a
probabilistic commitment.
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Prior work has focused on semantics and mechanisms for
the provider to follow to faithfully pursue its commitments
despite uncertainty (Jennings 1993; Xing and Singh 2001;
Winikoff 2006; Durfee and Singh 2016). The previous work
held that a probabilistic commitment should be considered
fulfilled if the provider’s actions would have brought about
the desired outcome by the promised time with at least the
promised probability, even if in a particular instance the
desired outcome was not realized. In this vein, the focus
was largely on the provider’s pursuit of achievement com-
mitments (Xuan and Lesser 1999; Maheswaran et al. 2008;
Witwicki and Durfee 2009; Zhang et al. 2016), where the
provider commits to changing some features of the state
in a way desired by the recipient with some probability by
some time. For example, the recipient plans to take an action
(e.g., move from one room to another) with a precondition
(e.g., the door separating rooms is open) that the provider
has promised to likely enable by some deadline.

This paper also considers another form of commitment, a
maintenance commitment, where the provider instead com-
mits to courses of action that, up until a promised time, are
sufficiently unlikely to change features that are already the
way the recipient wants them maintained. After that time,
the provider can freely change the features. For example, a
door the recipient wants open might initially be so, but the
provider wants to close it to clean behind it during house-
keeping tasks. The provider could postpone closing it (clean
elsewhere first), but by changing other doors while cleaning
elsewhere it might accidentally introduce a draft that could
prematurely close the door the recipient wants left open.

Even though decision-theoretic formulations of, and rea-
soning methods for, achievement and maintenance com-
mitments are nearly identical, prior work has found it
much harder to successfully coordinate for maintenance than
achievement (Clement and Schaffer 2008; Goldman et al.
2008; Hiatt 2009). In the past, it has been assumed that the
difficulty lies on the provider’s side—that it might be inher-
ently harder for a provider to find good policies that main-
tain a feature than to change it. However, in this paper we
claim (and justify) that instead the challenge actually lies on
the recipient’s side: that a maintenance commitment is fun-
damentally harder for the recipient to model safely than an



achievement commitment is.
We substantiate this claim theoretically and empirically.

We begin by analyzing a straightforward strategy, adopted
in previous work, where the recipient models an achieve-
ment commitment pessimistically by assuming the feature
will not (probabilistically) attain its desired value any ear-
lier than the commitment’s promised time. We show ana-
lytically that the worst-case suboptimality induced by such
pessimism can be bounded fairly tightly. For the mainte-
nance counterpart, however, we show that no comparable
pessimistic model, and hence no bound on suboptimality,
exists. We also empirically measure suboptimality for sev-
eral alternative modeling strategies, and the results show that
there is no model the recipient can adopt for maintenance
commitments that safely limits the suboptimality of coor-
dination with the provider. Our results suggest that success-
ful maintenance commitments will generally require that the
provider’s and recipient’s plans need to be more tightly cou-
pled than for achievement commitments.

Related Work. The literature on protocols for the com-
mitment lifecycle focuses on (awareness of) the pro-
gression of agents’ joint commitment’s status, including
whether some have been abandoned to pursue more valuable
goals (Desai, Narendra, and Singh 2008; Günay, Liu, and
Zhang 2016; Pereira, Oren, and Meneguzzi 2017). We fo-
cus just on the “detached” stage where an agreed-upon com-
mitment is being actively pursued, and the pursuit requires
a sequence of actions, where some might not have desired
outcomes, or an agent’s priorities could change in the midst
of executing the sequence.

We adopt the probabilistic commitment framework (Xuan
and Lesser 1999; Witwicki and Durfee 2007; Bannazadeh
and Leon-Garcia 2010) that summarizes the likelihood the
commitment will be successfully discharged by a given time,
versus violated due to bad luck or a better option appear-
ing. Probabilities let a decision-theoretic recipient optimally
hedge for violations while waiting for the provider. Others
have adopted alternative frameworks, such as conditional
commitments (Singh 2012; Vokrı́nek, Komenda, and Pe-
choucek 2009) and contracting frameworks (Sandholm and
Lesser 2001), for managing the uncertainty when the com-
mitment is being pursued.

Preliminaries
In this section, we describe the decision-theoretic setting we
adopt for analyzing probabilistic commitments for the recip-
ient and the provider, including both achievement commit-
ments and maintenance commitments.

The recipient’s environment is modeled as a Markov
Decision Process (MDP) defined by the tuple M =
(S,A, P,R,H, s0) where S is the finite state space, A is
the finite action space, P : S × A → ∆(S) (∆(S) denotes
the set of all probability distributions over S) is the transition
function, R : S → R is the reward function, H is the finite
horizon, and s0 is the initial state. The state space is par-
titioned into disjoint sets by the time step, S =

⋃H
h=0 Sh,

where states in Sh only transition to states in Sh+1. The
MDP starts in s0 and terminates in SH . Given a policy π :

S → A and starting in the initial state, a random sequence
of transitions {(sh, ah, rh+1, sh+1)}H−1h=0 is generated by
ah = π(sh), sh+1 ∼ P (sh, ah), rh+1 = R(sh+1). The
value function of π is V πM (s) = E[

∑H
h′=h+1 rh′ |π, sh = s]

where h is such that s ∈ Sh. The optimal policy for M , de-
noted as π∗M , maximizes V πM for all s ∈ S, and its value
function V π

∗
M

M is abbreviated as V ∗M . The value of the initial
state is abbreviated as vπM := V πM (s0).

Similarly, the provider’s environment is modeled as an-
other MDP with a finite state space, a finite action space,
and a finite horizon. As one way to model the interaction be-
tween the provider and the recipient (Witwicki and Durfee
2010; Zhang et al. 2016), we assume that both the recipient’s
state and the provider’s state can be factored into state fea-
tures. The recipient’s state is factored as s = (l, u), where l
is the set of all the recipient’s state features locally controlled
by the recipient, and u is the set of the state features shared
with the provider. The provider’s state features, including u,
are all locally controlled by the provider. The provider and
the recipient are weakly coupled in the sense that the shared
state features u are only controllable by the provider. For-
mally, the dynamics of the recipient’s state can be factored
as

P (sh+1|sh, ah) =P ((lh+1, uh+1)|(lh, uh), ah)

=Pu(uh+1|uh)Pl (lh+1|(lh, uh), ah) .

We refer to Pu as the true influence that the provider ex-
erts on the recipient’s environment dynamics (Witwicki
and Durfee 2010; Oliehoek, Witwicki, and Kaelbling 2012;
Oliehoek, Spaan, and Witwicki 2015), which is the transi-
tion function of u that is fully determined by the provider’s
policy (it is not a function of ah). We assume that the re-
cipient’s reward function is dependent on l but not on u,
R(sh) = R((lh, uh)) = R(lh), such that the cumulative
reward of an episode is determined by the trajectory of l,
(l1, ..., lH). Note that though the value of uh does not di-
rectly affect the reward for time step h, it can enable action
choices that affect the value of lh+1 at the next time step.

Commitment Semantics
A commitment is concerned with state features u that are
shared by both agents but only controllable by the provider.
Intuitively, a commitment provides partial information about
Pu from which the recipient can plan accordingly. In this
paper, we focus on the setting where u contains a single
state feature that takes binary value, letting u+, as opposed
to u−, be the value of u that is desirable for the recipient.
Intuitively, u+(u−) stands for an enabled (disabled) pre-
condition needed by the recipient. We will refer to u as
the commitment feature. Further, we assume that u can be
toggled at most once (Hindriks and van Riemsdijk 2007;
Witwicki and Durfee 2009; Zhang et al. 2016). In transac-
tional settings, a feature (e.g., possession of goods) chang-
ing only once is common, as it is in multiagent planning
domains where one agent enables a precondition needed by
an action of another. Some cooperative agent work requires
agents to return changed features to prior values (e.g., shut-
ting the door after opening and passing through it), and in



extreme cases where toggling reliably repeats (e.g., a traf-
fic light) there may be no need for explicit commitments.
While, in general, toggling more than once can be mod-
eled by a series of alternating achievement and maintenance
commitments, the fundamental differences between these
commitment types are most readily revealed and understood
without such complications, and so in what follows we con-
sider the two types separately.

Achievement Commitments. Let the initial state be fac-
tored as s0 = (l0, u0). For achievement commitments, the
initial value of the commitment feature is u−, i.e. u0 = u−.
The provider commits to pursuing a course of action that can
bring about the commitment feature desirable to the recipi-
ent with some minimum probability. Formally, an achieve-
ment commitment is defined by tuple ca = (Ta, pa), where
Ta is the achievement commitment time, and pa is the
achievement commitment probability (Witwicki and Durfee
2009; Zhang et al. 2016). The commitment semantics is that
the provider is to follow a policy that sets u to u+ by time
step Ta with at least probability pa, i.e.

Pr(uTa = u+|u0 = u−) ≥ pa. (1)
When planning with the achievement commitment, the
provider finds an optimal policy (one that maximizes its
local value) that respects the commitment’s semantics. A
straightforward way of doing so adopted in prior work solves
the provider’s planning problem using linear programming
(LP) (Altman 1999), where the commitment semantics are
captured simply by adding the above inequality as an ad-
ditional constraint to the LP (Witwicki and Durfee 2007;
Steinmetz, Hoffmann, and Buffet 2016).

Maintenance Commitments. As a reminder, a mainte-
nance commitment is appropriate in scenarios where the ini-
tial value of state feature u is desirable to the recipient, who
wants it to maintain its initial value for some interval of time
(e.g., (Hindriks and van Riemsdijk 2007; Duff, Thangara-
jah, and Harland 2014)), but where the provider might want
to take actions that could change it. Formally, a maintenance
commitment is defined by tuple cm = (Tm, pm), where Tm
is the maintenance commitment time, and pm is the main-
tenance commitment probability. Given such a maintenance
commitment, the provider is constrained to follow a policy
that keeps u unchanged for the first Tm time steps with at
least probability pm. Since u can be toggled at most once,
this is equivalent to probabilistically guaranteeing that u is
still u+ at the commitment time Tm, i.e.

Pr(uTm
= u0|u0 = u+) ≥ pm. (2)

As with an achievement commitment, the provider with
a maintenance commitment finds a policy that optimizes
its local value while respecting the commitment seman-
tics, again by including the commitment constraint in its
LP. Hence, from the provider’s perspective, achievement
and maintenance commitments are treated essentially iden-
tically.

The Approximate Influence
The similarity in how achievement and maintenance com-
mitments can be captured in the provider’s reasoning, com-

bined with the intuition that the provider’s reasoning is what
is challenging with commitments (since the provider is con-
strained by the commitment, while the recipient is not), sug-
gests that coordination using the two types of commitments
can be done similarly with similar effectiveness. But ex-
perience indicates otherwise (Clement and Schaffer 2008;
Goldman et al. 2008; Hiatt 2009). We now explain how this
is because achievement and maintenance commitments dif-
fer fundamentally from the recipient’s perspective.

As we have seen, the commitment specification and se-
mantics constrain the provider’s policy based on a single
future timestep: at that timestep, the value of u will (still)
be u+ with at least the promised probability. By not com-
mitting to the probabilities at intervening (and subsequent)
timesteps, the provider retains flexibility to revise its policy
on the fly (for example, if its reward function changes be-
cause of a new goal). Our prior work has shown the value
to the provider of having such flexibility (Zhang et al. 2016;
Zhang, Singh, and Durfee 2017).

The commitment specification is also the only informa-
tion that the recipient has about Pu, and while information
about only a single future timestep might give the provider
flexibility, it imposes uncertainty on the recipient. That is,
while the recipient knows something about Pu at the com-
mitment’s timestep (that the probability of u+ is at least the
given value), and that the probability changes monotonically
(due to u toggling at most once), it can only guess at the val-
ues of influence at other timesteps. We notate the approxi-
mate influence that it uses for its planning as P̂u.

We are specifically interested in the quality of the recipi-
ent’s plan computed from approximate influence P̂u when
evaluated in (true) influence Pu. Formally, given P̂u, let
M̂ = (S,A, P̂ , R,H, s0) be the approximate model that
only differs from M in terms of the dynamics of u, i.e.
P̂ = (Pl, P̂u). The quality of P̂u is evaluated using the dif-
ference between the value of the optimal policy for M̂ and
the value of the optimal policy forM when both policies are
evaluated in M starting in s0, i.e.

Suboptimality : v∗M − v
π∗
M̂

M .

Note that when the support of Pu is not fully contained in the
support of P̂u, the recipient’s policy π∗

M̂
can associate zero

occupancy (hence plan no action) for certain states when ex-

ecuted inM , which makes V
π∗
M̂

M ill-defined. In this paper, we
resolve this by re-planning: during execution of π∗

M̂
in M ,

the recipient re-plans from any zero occupancy state that it
happens to reach.

Previous work chooses an intuitive and straightforward
approximate influence for achievement commitments that
models a single branch, at the commitment time, for when
u− probabilistically toggles to u+ (Witwicki and Durfee
2010; Zhang et al. 2016). Modelling the commitment with a
single branch for toggling to u+ at the latest possible time ig-
nores possibilities of being enabled earlier than the deadline
and of being enabled serendipitously after the deadline. Such
an approximate influence models the achievement commit-
ment pessimistically, in the sense that it minimizes the ex-



pected duration of u being enabled over all influences that
respect the achievement commitment semantics (Eq. (1)):

min
Pu∼ (1)

EPu

[∑H
h=0 1{uh=u+}

]
where Pu ∼ (1) means influence Pu satisfies Eq. (1), and
1E is the indicator function that takes value one if event E
occurs and zero otherwise. We refer to this model as the min-
imal enable duration influence, as formalized in Definition
1.

Definition 1. Given achievement commitment ca =
(Ta, pa), its minimal enable duration influence P̂min+

u,ca tog-
gles u in the transition from time step h = Ta− 1 to h = Ta
with probability pa, and does not toggle u at any other time
step.

For maintenance commitments, the counterpart mini-
mizes the expected enablement duration over all influ-
ences that respect the maintenance commitment semantics
(Eq. (2)):

min
Pu∼ (2)

EPu

[∑H
h=0 1{uh=u+}

]
.

The minimizer models a probabilistic toggling to u− at the
earliest possible time, and a deterministic toggling to u− (if
it had not toggled earlier) after the commitment time, as for-
malized in Definition 2.

Definition 2. Given maintenance commitment cm =
(Tm, pm), its minimal enable duration influence P̂min+

u,cm tog-
gles u in the transition from time step h = 0 to h = 1
with probability 1 − pm, and (unless already toggled) from
h = Tm to h = Tm + 1 with probability one. It does not
toggle u at any other time step.

Theoretical Analysis
In this section, we derive bounds on the suboptimality of the
minimal enable duration influence. Our analyses make the
following two assumptions. Assumption 1 intuitively says
that u+ establishes a precondition for an action that would
be irrational to take when u− holds. For example, if u+ is
a door being open, then the action of moving into the door-
way could be part of an optimal plan, but taking that action
if the door is closed (u−) never is. Assumption 2 is a simpli-
fying assumption for our analyses stating the true influence
agrees with the minimal enable duration influence after the
commitment time, so that any suboptimality is caused by the
imperfect modeling up until the commitment time.

Assumption 1. Let s− = (l, u−) and s+ = (l, u+) be a
pair of states that only differ in u. For any M with arbitrary
influence Pu, we have

Pl
(
·|s−, π∗M (s−)

)
= Pl

(
·|s+, π∗M (s−)

)
.

Assumption 2. Pu(uh+1|uh) agrees with the minimal en-
able duration influence for h ≥ T , where T is the commit-
ment time.

To derive bounds on achievement and maintenance com-
mitments, we will make use of the following lemma, where

M+ (M−) is defined as the recipient’s MDP identical to M
except that u is always set to u+(u−). Lemma 1 directly fol-
lows from Assumption 1, stating that the value of M− is no
more than that of M+ and the value of any M is between
the two.
Lemma 1. For anyM with arbitrary influence Pu and initial
value of u, we have v∗M− ≤ v

∗
M ≤ v∗M+ .

Proof. Let’s first consider the case in which Pu toggles u
only at a single time step. We show v∗M− ≤ v∗M by con-
structing a policy in M for which the value is v∗M− by
mimicking π∗M− . Whether u is initially u− and later tog-
gled to u+ or vice versa, we can construct a policy πM
that chooses the same actions as π∗M− assuming u = u−

throughout the episode. Formally, for any s− = (l, u−), let-
ting s+ = (l, u+),

πM (s+) = πM (s−) = π∗M−(s−).

By Assumption 1, πM in M yields the same distribution
over the trajectory of l as π∗M− inM−, and therefore vπM

M =
v∗M− since the cumulative reward only depends on the tra-
jectory of l.

Similarly, we show v∗M ≤ v∗M+ by constructing a policy
πM+ in M+ for which the value is v∗M by mimicking π∗M .
Formally, for time steps when u = u− inM , let πM+(s+) =
π∗M (s−). For time steps when u = u+ inM , let πM+(s+) =
π∗M (s+), where s− = (l, u−), s+ = (l, u+).

When Pu toggles u at K > 1 time steps, we can decom-
pose the value function for Pu as the weighted average of K
value functions corresponding to the K influences that tog-
gle u at a single time step, and the weights of the average are
the toggling probabilities of Pu at these K time steps.

Bounding Suboptimality for Achievement
Here, we derive Theorem 1 that bounds the suboptimality for
achievement commitments as the difference between v∗M−
and v∗M+ . We use Assumptions 1 and 2, and Lemma 2 which
states that, for achievement commitments, the possible ways
the true influence differs from the minimal enable duration
influence can only improve the expected value.
Lemma 2. Given achievement commitment ca = (Ta, pa),

let P̂u = P̂min+
u,ca , then we have v

π∗
M̂

M ≥ vπ
∗
M̂

M̂
where influence

Pu in M respects the commitment semantics of ca.

Proof. For achievement commitments, the initial value of u
is u−. Let Pu(t) be the probability that u is enabled to u+ at
t in influence Pu, and vπt be the initial state’s value under π
when u is enabled from u− to u+ at t with probability one.

By Assumption 2, v
π∗
M̂

M and v
π∗
M̂

M̂
can be decomposed as

v
π∗
M̂

M =
∑Ta

t=1 Pu(t)v
π∗
M̂
t + (1− pa)v

π∗
M̂

M− ,

v
π∗
M̂

M̂
= pav

π∗
M̂

Ta
+ (1− pa)v

π∗
M̂

M− .

When u is enabled at t in M , π∗
M̂

can be executed as if u is
not enabled, by Assumption 1, yielding identical trajectory
distribution of l (therefore value) as in M̂ . Therefore, the



…...
0 1 L0=5 L=14

...

0 1 L0=5 L=14
... …...

Approx. influence policy 
Optimal policy

Figure 1: 1D Walk. Top: Example in the proof of Theorem
1. Bottom: Example in the proof of Theorem 2.

recipient’s re-planning at t when u = u+ will derive a better
policy if possible. Therefore, the value of executing π∗

M̂
in

M is no less than that in M̂ , i.e. v
π∗
M̂
t ≥ vπ

∗
M̂

Ta
. Therefore,

v
π∗
M̂

M =
∑Ta

t=1 Pu(t)v
π∗
M̂
t + (1− pa)v

π∗
M̂

M−

≥
∑Ta

t=1 Pu(t)v
π∗
M̂

Ta
+ (1− pa)v

π∗
M̂

M−

≥pav
π∗
M̂

Ta
+ (1− pa)v

π∗
M̂

M− (commitment semantics)

=v
π∗
M̂

M̂
.

Theorem 1. Given achievement commitment ca, let P̂u =
P̂min+
u,ca . The suboptimality can be bounded as

v∗M − v
π∗
M̂

M ≤ v∗M+ − v∗M− (3)

where influence Pu in M respects the commitment seman-
tics of ca. Further, there exists an achievement commitment
for which the equality is attained.

Proof. The derivation of the bound in Eq. (3) is straightfor-
ward from Lemma 2:

v∗M − v
π∗
M̂

M ≤ v∗M+ − v
π∗
M̂

M̂
≤ v∗M+ − v∗M− .

Next, we use a simple illustrative example to give an
achievement commitment for which the equality is attained.

Example: An Achievement Commitment in 1D Walk.
Consider the example of a 1D walk on [0, L], as shown in
Figure 1(top), where the recipient starts at L0 and can move
right, left, or stay still. There is a gate between 0 and 1
for which u+ denotes the state of open and u− closed. The
provider toggles the gate stochastically according to Pu. For
each time step the recipient stays at either end, it gets a re-
ward of +1. Hence, the optimal policy is to reach either end
as soon as possible in expectation. We assume 1 ≤ L0 <
L/2 to avoid the uninteresting case of v∗M− = v∗M+ . A neg-
ative reward of -1 is incurred when bumping into the closed
gate, which makes Assumption 1 hold.

Here, we derive an achievement commitment for which
the bound in Theorem 1 is attained. Consider L = 14, L0 =
5, H = 15, achievement commitment (Ta = L − L0 =
9, pa = 1), and the true influence Pu in M that toggles the
gate to open at t = 4 with probability pa = 1. The optimal
policy in M is to move left to 0. Therefore, v∗M = v∗M+ =
H −L0 = 10. Given the minimal enable duration influence,

moving right to L (arriving at time 9) is faster than waiting
for the gate to toggle at Ta = 9 and then reaching location 0
at time 10. Had the recipient known the gate would toggle at
time 4, it would have moved left, but by the time it toggles at
time 4 the recipient is at location 9, and continuing on to L is

the faster choice. Therefore v
π∗
M̂

M = v∗M− = H−(L−L0) =
6, and the bound in Theorem 1 is attained.

Bounding Suboptimality for Maintenance
We next ask if the bound in Eq. (3) on suboptimality in
achievement commitments also holds for maintenance com-
mitments. Unfortunately, as stated in Theorem 2, the optimal
policy of the minimal enable duration influence for mainte-
nance commitments can be arbitrarily bad when evaluated
in the true influence, incurring a suboptimality exceeding the
bound in Eq. (3). We give an example for an existence proof.

Theorem 2. Consider P̂u = P̂min+
u,cm to be the approximate

influence when modelling the maintenance commitment in
M̂ . There exists an MDPM and a maintenance commitment
cm, such that the true influence Pu in M respects the com-

mitment semantics of cm, v∗M = v∗M+ , v∗M− > v
π∗
M̂

M = 0,
and therefore the suboptimality

v∗M − v
π∗
M̂

M = v∗M+ (4)

exceeds the bound in Eq. (3).

Proof. As an existence proof, we give an example of a main-
tenance commitment in 1D Walk for which v∗M = v∗M+ and

v∗M− > v
π∗
M̂

M = 0.
Consider 1D Walk with the same L = 14, L0 = 5, H =

15 as in the example for Theorem 1. Consider maintenance
commitment (Tm = 7, pm = 0), and Pu toggles the gate to
closed at t = 6 with probability 1 − pm = 1. As shown in
Figure 1(bottom), the optimal policy should take 5 steps to
move directly to 0, for which the value is v∗M = v∗M+ . We
have computed for Theorem 1 that v∗M− = 6. With proba-
bility 1− pm = 1, the gate is closed at t = 6, and π∗

M̂
takes

19 > H steps to reach L = 14. Thus, v∗M− > v
π∗
M̂

M = 0.

In the example used in the existence proof above, the max-
imum suboptimality is incurred with maintenance commit-
ment probability pm = 0 (a no-guarantee commitment), be-
cause this is when the recipient is most uncertain about the
influence and will be most negatively affected by the uncer-
tainty. Note that for achievement, a no-guarantee commit-
ment still falls within the Theorem 1 bound.

Comparing the bound Eq. (3) in Theorem 1 with the
bound Eq. (4) in Theorem 2 reveals a fundamental differ-
ence between achievement and maintenance commitments:
maintenance commitments are inherently less tolerant to an
unexpected change in the commitment feature. For achieve-
ment commitments, the easily-constructed minimal enable
duration influence has the property of being pessimistic, in
that any unexpected changes to the feature, if they impact
the recipient at all, can only improve the expected value.
Thus, if despite its minimal enable duration influence ap-
proximation, a recipient has chosen to follow a policy that



exploits the commitment, it can never experience a true in-
fluence that would lead it to regret having done so. The same
cannot be said for maintenance commitments. There, the
easily-constructed minimal enable duration influence is not
pessimistic—it does not guarantee that any deviations from
the influence can only improve the expected value. As our
theoretical results show, the minimal enable duration influ-
ence assuming toggling from u+ to u− right away can still
lead to negative surprises, since if the toggling does not im-
mediately occur the influence suggests that it is safe to as-
sume no toggling until Tm, but that is not true since toggling
could happen sooner, after the recipient has incurred cost for
a policy that would need to be abandoned. In the example
for Theorem 2, the worst time for toggling to u− is not right
away, but right before the precondition would be used (the
gate shutting just as the recipient was about to pass through).

Empirical Results
Our analyses suggest the minimal enable duration influence
might not be the best approximate influence for a recipi-
ent to adopt for maintenance commitments. In this section,
we identify several alternative heuristics to create approxi-
mate influences for the recipient, and evaluate them for both
maintenance and achievement commitments. We conduct
our evaluations in two domains: the same 1D Walk domain
as in our theoretical analysis, and a Gate Control problem
with a more interesting influence (violating Assumption 2).

1D Walk
As previously defined, the 1D Walk domain restricts the set
of influences to toggle u only at a single time step no later
than the commitment time, and agree with Assumption 2
thereafter. We denote the set of such influences as P1

u from
which Pu, P̂u are chosen. Besides using the minimal enable
duration influence to approximate the true influence, we con-
sider the following three heuristics for generating approxi-
mate influence P̂u ∈ P1

u:
Maximal enable duration. As opposed to the minimal
enable duration influence, the maximal enable duration
influence optimistically toggles u right after the initial
time step for achievement commitments, and at the com-
mitment time for maintenance commitments.
Minimal value timing. The toggling time minimizes the
optimal value over all possible influences in P1

u, i.e.
arg minP̂u∈P1

u
v∗
M̂

where P̂u is the influence in M̂ .

Minimax regret timing. The toggling time is chosen
based on the minimax regret principle. Formally,

arg min
P̂u∈P1

u

max
Pu∈P1

u

v∗M − v
π∗
M̂

M

where Pu, P̂u are the influences in M, M̂ , respectively.
The four heuristics include two simple, computationally in-
expensive heuristics (minimal and maximal enable dura-
tion), and two more complex and expensive heuristics (min-
imal value and minimax regret timing). Recall that our the-
oretical analysis suggests, for maintenance, the pessimistic
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(b) maintenance, Tm = 5
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(c) achievement, Ta = 7
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(e) achievement, Ta = 10
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(f) maintenance, Tm = 10

Figure 2: Suboptimality in 1D Walk. Markers on the curves
show the mean suboptimality over possible time steps of tog-
gling, Pu ∈ P1

u. Bars show the minimum and maximum.

time for toggling to u− is not right away, but right before
the recipient uses the precondition, and this causes the poor
performance of the minimal enable duration influence. We
hypothesize that the latter two heuristics can be more pes-
simistic (and thus better) than the minimal enable duration
influence by identifying the worst toggling time.

Results. Here we evaluate the suboptimality of our can-
didate heuristics for both achievement commitments and
maintenance commitments. The setting is the same as the
example for Theorem 1 except that the horizon is longer,
L = 14, L0 = 5, H = 30. Figure 2 shows the mean, min-
imum, and maximum suboptimality over all realizations of
Pu ∈ P1

u for commitment time Ta, Tm ∈ {5, 7, 10}. We
see that for achievement commitments, the suboptimality
of the minimal enable duration influence is comparable to
the two more sophisticated strategies, and the maximal en-
able duration influence incurs the most suboptimality over-
all. For maintenance commitments, however, the two expen-
sive strategies incur overall less suboptimality than the min-
imal and the maximal enable duration, yet it is difficult to
identify a single best heuristic that reliably reduces the sub-
optimality for all the maintenance commitments.
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Figure 3: Gate Control. Left: The provider. Cell C toggles
the gate. Right: The recipient.

Gate Control
In this domain, we are concerned with the more general sit-
uation in which Pu 6∈ P1

u can toggle u at more than one time
step by the commitment time, and even can toggle u after the
commitment time. We also consider approximate influences
P̂u that are not elements of P1

u.
As illustrated in Figure 3, the provider’s environment con-

tains four cells, A↔ B↔ C↔ D↔ A, that are connected
circularly. The provider can deterministically move to an ad-
jacent cell or stay in the current cell. Upon a transition, the
gate could toggle with probability 0.5 if the provider ends
up in cell C. In the achievement commitment scenario, the
provider gets a +1 reward if it ends up in cell C, and in
the maintenance commitment scenario it gets a +1 reward
if it ends up in cell A. For a given commitment, the provider
adopts a policy that aims to maximize its cumulative reward
while respecting the commitment semantics. The recipient
gets a -0.1 reward each time step. Upon reaching cell G, the
recipient gets a +1 reward and the episode ends.

Besides the four heuristics we considered for the 1D
Walk, we further consider the following two that choose an
approximate influence outside of the set P1

u:

Constant. This influence toggles u at every time step up
to the commitment time with a constant probability, and
the probability is chosen such that the overall probability
of toggling by the commitment time matches the commit-
ment probability. It agrees with the minimal enable dura-
tion influence after the commitment time.

Multi-timepoints. Besides the commitment time, the
provider also provides the recipient with the toggling
probabilities for other time steps T . Here, we consider
T =

{
1, bT2 c

}
, and the minimal enable duration heuristic

is then used to match the toggling probabilities at these
three time steps.

Results. We consider the combination of the following
scenarios: the provider can start in any one of the four cells;
and the toggling can happen in even, odd, or all time steps.
The time horizon is H = 10 for both the provider and the
recipient. This yields in total 12 (true) influences Pu. Figure
4 shows the mean, maximum, and minimum suboptimal-
ity for Ta, Tm ∈ {4, 6} over the 12 influences. Similar to
1D Walk, the results show that the minimal enable duration
influence is among the best for achievement commitments,
but it is difficult for maintenance commitments to identify a
best heuristic, besides the multi-timepoints, that reliably re-
duces the suboptimality for all commitment time/probability
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(b) maintenance, Tm = 4
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(c) achievement, Ta = 6
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Figure 4: Suboptimality in Gate Control. Markers on the
curves show the mean suboptimality over possible time steps
of toggling. Bars show the minimum and maximum.

pairs we consider. Using the multi-timepoints influence that
is more aligned with the true influence, the suboptimality
can be dramatically reduced for maintenance commitments,
but it has a less significant impact for achievement commit-
ments. This suggests that, unlike achievement commitments
where the cost is low for the provider to retain considerable
flexibility by only committing to a single time-probability
pair (leaving itself freedom to change its policy dynamically
so long as it meets or exceeds that target), maintenance com-
mitments greatly benefit from a provider planning with more
constraints on its influence, sacrificing flexibility in order to
improve the quality of the recipient’s expectations to reduce
the frequency and costs of negative surprises.

Conclusion
We have explained why the application of algorithmic and
representational strategies that have succeeded for proba-
bilistic commitments of achievement have failed for those
of maintenance, despite the fact that the two types of com-
mitments are identical except in their directions of precon-
dition toggling. Contrary to intuitions, the difficulty lies not
on the provider’s side, but as we have analytically and em-
pirically shown it lies in the recipient’s uncertainty in how
to approximate the provider’s influence that probabilistically
changes the precondition over time. Though this uncertainty
is present for both commitment types, we have proven that
the suboptimality it induces is effectively unbounded only
in the case of maintenance commitments, for which we have
also empirically shown that even sophisticated heuristic ap-
proximations of the influences fall short.

Knowing that approximating influences well is harder for
maintenance commitments can affect how multiagent sys-
tems are designed. While the customarily terse commit-
ment specification can be beneficial for achievement, in that



the flexibility it engenders to the provider outweighs the
bounded suboptimality it imposes on the recipient, it is a
liability for maintenance, where the recipient’s suboptimal-
ity is unbounded. As our experiments showed, performance
with maintenance commitments can rise with a more expres-
sive specification, where the provider and recipient adhere to
more narrowly-constraining influences. While our immedi-
ate plans are to study alternative heuristics for single- and
multi-step approximate influences more deeply, our hope is
that our results so far might prove illuminating to the broader
community designing specifications and protocols for apply-
ing commitment-based coordination to domains involving
both achievement and maintenance.
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