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ABSTRACT
We provide efficient algorithms for finding approximate Bayes-
Nash equilibria (BNE) in graphical, specifically tree, games
of incomplete information. In such games an agent’s payoff
depends on its private type as well as on the actions of the
agents in its local neighborhood in the graph. We consider
two classes of such games: (1) arbitrary tree-games with dis-
crete types, and (2) tree-games with continuous types but
with constraints on the effect of type on payoffs. For each
class we present a message passing on the game-tree algo-
rithm that computes an ε-BNE in time polynomial in the
number of agents and the approximation parameter 1

ε
.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Algorithms

Keywords
Structured Games, Games of Incomplete Information, Ap-
proximate Bayes-Nash Equilibria

1. INTRODUCTION
Graphical representations for games were introduced by

Kearns, Littman, and Singh [6] to capture locality of in-
teraction among agents in a static general-sum game. The
nodes in a graphical game represent agents. A missing edge
between two nodes in the graph implies that the payoff of
each of the two agents is not directly dependent on the other
agent’s actions. Sparse connections in the game can be ex-
ploited to define compact payoff functions for the game. In
recent work on tree-games of complete information, various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’04,May 17–20, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-711-0/04/0005 ...$5.00.

authors have shown that the locality of interaction can also
be exploited to obtain computationally efficient algorithms
for computing Nash [8] and correlated equilibria [5]. Lo-
cality of interaction can arise from many sources, e.g., the
spatial organization of sales agents, the network connectivity
of computing devices, the social organization of a popula-
tion of animals, the work organization of businesses, etc.,
can all lead to sparsely connected graphical games and so
advances in computational methods for such games [14, 7]
are of obvious benefit.

Prior work on graphical games has focused on games of
complete information. In this paper, we consider graphical
games of incomplete information. In such games an agent’s
payoff depends not only on the actions of its neighbors but
also on its own private type [3]. Agents have to choose ac-
tions without knowledge of the private type of other agents.
Because of the incomplete information the relevant equilib-
rium concept is that of a Bayes-Nash equilibrium (BNE) in
which each agent plays a best response to the other agents in
expectation over their private types. Current algorithms for
computing BNE are impractical for general incomplete in-
formation games with many agents. Nevertheless, many im-
portant classes of games have incomplete information, e.g.,
sales agents may have private information about the cost
of providing services, computing devices in a network may
have private information about the status of local resources,
animals in a social network may have private information
about their value for relationships, etc.

Our main aim in this work is to find efficient algorithms for
computing approximate BNE by exploiting locality of inter-
action in tree-games of incomplete information. Through-
out we will assume that the number of actions available to
the agents is a constant and our primary concern will be to
scale efficiently with respect to the number of agents in the
game. Our main contributions in this work are as follows.
First, we consider general tree-games of incomplete informa-
tion with discrete types and provide a message passing algo-
rithm for computing an approximate BNE. Our algorithm
is a relatively straightforward adaptation of prior work [6]
on tree-games of complete information. Second, we consider
tree-games with continuous types which pose a more signif-
icant challenge because such games may in general not even
be finitely representable. We propose an interesting sub-
class of such games in which there always exist a compactly
representable BNE and provide a different message-passing
algorithm for computing an approximation to such a com-



pact BNE. Finally, we analyze both our algorithms and
prove that in their respective classes of games they find ε-
BNE in time polynomial in the number of agents and in the
approximation parameter 1

ε
.

The rest of this paper is organized as follows. We briefly
describe general incomplete information games and then de-
scribe graphical models for such games. Next, we present an
abstract message passing algorithm that computes all BNE
in tree-games. This abstract algorithm serves as a template
that we specialize in subsequent sections to provide efficient
algorithms for games with discrete types and then for games
with continuous types. We finish with a small illustrative
example and conclusions.

2. PRELIMINARIES
In this section we briefly describe incomplete information

games in general and then the straightforward extension of
graphical model representations [6] to such games.

2.1 Incomplete Information Games
We restrict attention to simultaneous-move, one-shot, nor-

mal form games exactly as in the prior work on graphical
models for games with complete information [6, 8]. The
main departure in this paper is that each agent also has a
private type known only to that agent. The payoff to an
agent x is not only a function of all the agents’ actions (as
in the usual complete information game) but also of the re-
alized private-type of agent x. The type of an agent may
be discrete or continuous. We consider discrete types in the
first half of this paper and continuous types in the second
half. As in the usual framework for such problems we will
assume that each agent’s realized type is chosen indepen-
dently from some commonly known distribution over types,
and that the payoff matrices for the agents are also com-
mon knowledge. These games have incomplete information
because each agent must choose its strategy, i.e., its proba-
bility distribution over its actions, without knowing the re-
alized types of all the other agents. An agent’s strategy, on
the other hand, will in general condition on its own realized
type.
Notation: Let the number of agents be denoted n. For
games with discrete-types, the realized type for each agent
is assumed to be chosen independently from some discrete
set T = {T1, T2, . . . , Tm} according to a distribution PT . For
games with continuous types, the realized type of each agent
is assumed to be chosen independently from some interval
T = [tl tu] according to some probability density pT . For
ease of exposition, we assume that all the agents have the
same set of actions A = {a1, a2, . . . , ad} available to them,
though our results extend trivially to the case where the

agents have their own action sets. We use −→a ,
−→
t , and −→µ

to denote the vector of actions, realized-types and strategies
of all the agents. Agent x’s strategy, µx, is in general a
type-conditional mixed-strategy , i.e., it is a mapping from
types to probability distributions over actions. So, µx(a|i)
is the probability of taking action a given that the realized-
type is i, and µx(·|i) is the mixed-strategy of agent x given
that its realized-type is i. We use the symbol σ to refer to
unconditional mixed-strategies and reserve the symbol µ for
type-conditional strategies. The payoff to agent x, denoted
Rx(−→a |tx), depends on its realized-type and the actions of
all the agents. Specifying an incomplete information game
requires defining the payoffs for each agent in the game, i.e.,

requires specifying O(nmdn) numbers (recall that n is the
number of agents, m is the number of discrete types and d

is the number of actions). Finally,
−→
t x, −→a x, and −→µ x will be

used to refer to the type, action, and strategy of agent x,

while
−→
t −x, −→a −x, and−→µ −x will be used to refer to the types,

actions, and strategies of all the agents excluding agent x.
Next we define the relevant equilibrium concepts in incom-

plete information games with discrete types. (Equations 1
and 2 below can be modified for the case of continuous types
by simply replacing summations over types with integrals.)
The expected payoff to agent x if it plays (unconditional)
mixed-strategy σ and its type is tx when the other agents
play according to −→µ −x is

Rx(σ,−→µ −x|tx) =
∑
−→
t −x

PT (
−→
t −x)

( ∑
−→a

σ(−→a x)

−→µ −x(−→a −x|
−→
t −x)Rx(−→a |tx)

)
(1)

and the expected payoff to agent x when the agents play
according to −→µ is

Rx(−→µ ) =
∑
tx

PT (tx)Rx(−→µ x(·|tx),−→µ −x|tx). (2)

For agent x, mixed strategy σ is said to be a best response
for type tx to −→µ , if

∀σ′ Rx(σ,−→µ −x|tx) ≥ Rx(σ′,−→µ −x|tx). (3)

A Bayes-Nash equilibrium or BNE [4] is a strategy vector
−→µ such that every agent is playing a best response to the
others, i.e.,

∀ agents x, and ∀µ′, Rx(−→µ ) ≥ Rx(µ′,−→µ −x) (4)

We also use the standard definition of approximate Bayes-
Nash equilibria. A mixed strategy σ is an ε-best-response
for agent x with type tx if for all mixed-strategies σ′:

Rx(σ,−→µ −x|tx) + ε ≥ Rx(σ′,−→µ −x|tx). (5)

Similarly, an ε-BNE is a strategy vector −→µ such that every
agent is playing an ε-best-response to the other agents, i.e.,

∀ agents x, and ∀µ′x, Rx(−→µ ) + ε ≥ Rx(µ′x,−→µ −x). (6)

Since BNE are simply Nash equilibria with respect to the
expanded strategy space and type distributions [4], it follows
from Nash’s original result [11] that BNE and hence ε-BNE
exist for all games of incomplete information [3].

The complexity of computing exact or even approximate
BNE in general incomplete information games is still un-
known. However a number of hardness results are available
for special cases, e.g., recently, Conitzer and Sandholm [2]
showed that determining whether a pure-strategy BNE ex-
ists is NP-hard. In this paper, we consider the special case
of static incomplete information games in which the inter-
action among the agents can be modeled using graphs that
are trees. We provide efficient algorithms for computing ap-
proximate BNE in two interesting and large classes of such
games.

Next we define the graphical models representation for
games with incomplete information.



2.2 Graphical Models for Incomplete Infor-
mation Games

Graphical models for games have nodes representing agents
and edges representing direct interaction between agents
(see Figures 1 and 3 for examples). In incomplete informa-
tion games each node’s agent has a private type chosen inde-
pendently from a known distribution over types. Each node
has a payoff matrix that defines the associated agent’s pay-
off as a function of its realized type as well as its neighbours
(including itself) actions. Thus the more sparse the graph
the more local the interaction among agents. Let the largest
number of neighbors in the graph be denoted k. Defining
the payoff matrices for a graphical game with discrete-types
takes O(nmdk) numbers. If k � n the graphical game for-
malism can lead to significantly more compact description
than the usual game formalism which takes O(nmdn) num-
bers. Nevertheless, graphical models for games constitute
a completely general representation of static incomplete-
information games because a complete graph is identical to
the usual static game representation. Accordingly, there
always exists a BNE for a graphical game of incomplete in-
formation.

The locality of interaction in graphical games can also be
exploited to reduce the amount of computation required to
compute various payoff related quantities as follows. Let
N x denote the set of neighbors of x including node x itself.
The neighbors of node x excluding node X are denotedN x

−x.
We can incorporate the neighborhood-based locality into the
various payoff definitions for general incomplete-information
games of the previous subsection. For example, Equation 1,
the expected payoff to agent x when its realized type is tx

and it plays mixed-strategy σ becomes

Rx(σ,−→µ Nx
−x
|tx) =

∑
−→
t Nx
−x

PT (
−→
t Nx

−x
)
( ∑
−→aNx

[
σ(−→a x)

−→µ Nx
−x

(−→a Nx
−x
|−→t Nx

−x
)Rx(−→a Nx |tx)

])
.

The equations (2, 3, 4, 5, and 6) for exact and approximate
best-response and BNE can be similarly modified to use N x.

2.3 Tree-Games of Incomplete Information
In this paper we focus on games in which the neighbor-

hood graph is a tree. Figures 1 and 3 show snippets of such
tree-games of incomplete information. Note that, as in Fig-
ure 3, we can always select an arbitrary node as the root and
orient the tree so that the root node is at the bottom and
leaves are at the top. Nodes along the path from a node x to
the root are downstream from x while nodes that are along
a path from x to any leaf node are upstream from x. The
unique downstream neighbor of a non-root node is its child
while the possibly many upstream neighbors of a non-leaf
node are its parents.

The key question asked in this paper is: can one exploit
the locality structure in tree-games of incomplete informa-
tion to develop efficient algorithms for computing approxi-
mate BNE? In the remainder of this paper, we present al-
gorithms and analyses that answers this question for two
classes of finite-agent tree-games: (1) those with discrete
types and no other constraints, and (2) those with contin-
uous types and additional constraints on the effect of the
type on payoff functions.

3. ABSTRACT-TREEBNE ALGORITHM
All of the algorithms we present in this paper are message-

passing algorithms, comprising a downwards pass from the
leaves to the root in which the space of possible BNE (ε-
BNE) are computed, and then an upwards pass from the
root to the leaves in which a random BNE (ε-BNE) is se-
lected. For ease of exposition, we first present an abstract
message-passing algorithm for computing all BNE in arbi-
trary tree-games of incomplete information. This algorithm,
which we call Abstract-TreeBNE, will be presented and
analyzed for correctness in purely conceptual terms without
regard to computational or representational feasibility. Sub-
sequently, we will define feasible algorithms by specializing
the Abstract-TreeBNE algorithm by filling in the missing
details for the two classes of tree-games of interest in this
paper.

Figure 1: A fragment of a tree-game G that shows
the induced game rooted at node x, denoted Gx

y=µy
,

obtained by fixing the strategy of the unique child
node y to µy.

Consider an arbitrary tree-game of incomplete informa-
tion. We will use the symbol G to denote both the game
as well as the oriented tree for that game (Figure 1 shows
a fragment of such a tree G). For any node x, let Gx be
the sub-tree rooted at node x, i.e., the subgraph induced by
the nodes that are upstream from x including node x itself
(see Figure 1). Let y be the child of x in the tree G. Note
that agent y only interacts directly with node x among the
nodes in Gx. If agent y plays according to strategy µy, then
we can define a subgame for the agents in Gx by collapsing
the payoff function Rx by one index, that of agent y, and by
fixing y’s strategy to µy. Effectively, fixing the strategy of
the unique child of a node in the tree G decouples the sub-
tree rooted at that node from the rest of the tree. Let the
game defined on Gx obtained by fixing y to µy be denoted
Gx

y=µy
. A BNE of the game Gx

y=µy
can be thought of as a

BNE upstream of x given that y plays µy.
The Abstract-TreeBNE algorithm is presented in Figure 2.

In addition, Figure 3 shows a pictorial example of the Abstract-
TreeBNE algorithm in action for a hypothetical game; it can
be used to follow along with the algorithm description. The
downwards pass starts at the leaves. Each node x sends to
its unique child y a binary-value table Dyx indexed by all



Algorithm Abstract-TreeBNE
Inputs: Tree game specification.
Output: A BNE for the game.

1. Compute a depth-first ordering for the nodes in the tree.

2. (Downstream Pass) For each node x in depth-first ordering (starting at the leaves):

(a) Let node y be the child of x (or nil if x is the root).

(b) Initialize D(µy, µx) to be 0 and the witness list for D(µy, µx) to be empty for all µy, µx.

(c) If x is a leaf node:

i. For all µy, µx, set D(µy, µx) to be 1 if and only if µx is a best-response for agent x to agent y playing µy (as
determined by the payoff matrix Rx).

(d) Else (x is an internal node):

i. Let −→w = w1, w2, . . . , wk be the parents of node x; let D(µx, µwi) be the table passed from wi to x on the
downstream pass.

ii. For all µx, µy, and all joint strategies −→µ −→w for agents −→w : If µx is a best response to y playing µy and
−→w playing −→µ −→w (as determined by the local payoff matrix Rx) and D(µx,−→µ wi) = 1 for i = 1, . . . , k, set
D(µy, µx) to be 1 and add −→µ −→w to the witness list for D(µy, µx).

(e) Pass the table D(µy, µx) from x to y.

3. (Upstream Pass) For each node x in reverse depth-first ordering (starting at the root):

(a) Let −→w = {w1, w2, . . . , wk} be the parents of x (or the empty list if x is a leaf); let y be the child of x (or nil if
x is root), and (µy, µx) the values passed from y to x on the upstream pass.

(b) Label x with the value µx.

(c) (Non-deterministically) Choose any witness −→µ −→w to D(µy, µx) = 1.

(d) For i = 1, . . . , k, pass (−→µ wi , µx) from x to wi.

Figure 2: The Abstract-TreeBNE algorithm. See text for details.

possible strategies of the agents y and x. The semantics of
the table is as follows: for any pair (µy, µx), Dyx(µy, µx) will
be 1 if and only if there exists an upstream-BNE in which x
plays µx for the subgame Gx

y=µy
. Recall that the strategy for

an agent is a mapping from types to the simplex of probabil-
ity distributions over actions and so it may not be possible
to represent the table Dyx compactly or even finitely for an
arbitrary tree-game. As noted already, for now we are sim-
ply presenting an abstract algorithm that assumes a finite
representation; later we will show how this assumption can
be met in two different classes of tree-games.

The downwards pass is initialized at the leaves of the tree
G, where the computation of the tables is straightforward.
If x is a leaf and if y is its unique child, then Dyx(µy, µx)
is 1 if and only if µx is a best response to the agent y play-
ing µy. This is straightforward because x’s payoff depends
only on its own type and on the actions of agents x and y
(step 2c of Figure 2). Next consider a non-leaf and non-root
node x with parents −→w = {w1, w2, . . . , wk} and child y. For
induction, assume that each wi sends the table Dx wi to x.
For each pair (µy, µx), Dyx(µy, µx) is set to 1 if and only if
there exists a vector of strategies−→µ −→w = {µw1 , µw2 , . . . , µwk}
(called a witness) for the parents −→w of x such that

1. Dx wi(µx, µwi) = 1 for all 1 ≤ i ≤ k, and

2. µx is a best-response to −→µ −→w and µy (recall that N x =
{x, y,−→w }).

Note that there may be more than one witness for Dyx(µy, µx) =
1. In addition to computing the binary-valued function

Dyx on the downstream pass of the algorithm, x will also
keep a list of witnesses −→µ −→w for each pair (µy, µx) for which
Dyx is 1 (step 2(d)ii of Figure 2). These witness lists will
be used on the upwards pass. The downstream pass bot-
toms out at the root node, say z, which computes a special
binary-valued table Dz as follows. Let the parents of z be
−→y = {y1, y2, . . . , yk}. Given the messages Dzyi , Dz(µz)
is set to 1 if and only if there exists a vector of strategies
−→µ −→y = {µy1 , µy2 , . . . , µyk} such that Dzyi(µz, µyi) = 1 for
all 1 ≤ i ≤ k, and µz is a best response to −→µ −→y (and as
before, −→µ −→y is a witness to Dz(µz) = 1). How to compute
these downwards pass messages D is not clear; for the ab-
stract algorithm description, we assume that it can be done,
and describe two specific implementations later.

To see that the upstream-BNE semantics of the tables
are preserved by the abstract computation just described,
suppose that for some node x with child y and parents −→w =
{w1, w2, . . . , wk}, Dyx(µy, µx) was set to 1 for some witness
−→µ −→w . By construction, for all i, Dxwi(µx, µwi) must also be
1, and therefore by induction it must be the case that there
exists an upstream BNE in which wi plays µwi provided x
plays µx. In addition, by construction of Dyx, µx is a best
response of x to the strategies µy and −→µ −→w and thus µx and
−→µ −→w must be part of an upstream BNE provided y plays µy,
completing the induction argument. Finally, note that the
existence of a BNE ensures that none of the tables computed
during the downwards pass will be all 0.

The upstream pass starts at the root node z (with par-
ents −→y ) which can choose any µz for which Dz(µz) = 1 and



Figure 3: Illustrative view of the downwards and upwards passes of the Abstract-TreeBNE algorithm. In the
downwards pass each node sends to its unique child a binary function of its own and child node’s strategies.
With each entry in the function there is also a witness list of parent-nodes strategies that are part of an
upstream BNE. In the upwards pass entries from these witness lists are chosen to compute a BNE.

any witness −→µ −→y from the associated witness list. The node
z then passes (µz, µyi) to parent yi thereby telling agent yi

that z is going to play µz and that yi should play µyi . Induc-
tively if a node x with parents −→w receives an upstream mes-
sage (µy, µx) from its child y then it must be the case that
Dyx(µy, µx) = 1. Node x will then play µx and it can choose
from any witness −→µ −→w associated with Dyx(µy, µx) = 1 and
pass the message (µx, µwi) to parent wi. From the semantics
of the downwards pass messages it must be the case that µx

is a best response to µy and −→µ −→w . This upstream pass stops
at the leaves at which point every agent would have been
assigned a strategy that is a best response to the strategies
assigned to all the other agents.

In our description of Abstract-TreeBNE above, we have
left the choice of which witness to choose in the upstream
pass unconstrained. If the witness-choice in the upstream
pass is arbitrary, then Abstract-TreeBNE will return an ar-
bitrary BNE. Other choices of witnesses are possible, and
we discuss these in Section 4.1.2. Here, we wish to empha-
size that the tables and witnesses computed by Abstract-
TreeBNE represent all the BNE of the tree-game G. We
conclude this section with a theorem the proof of which is
in the constructive argument presented above.

Theorem 1 Algorithm Abstract-TreeBNE computes a
BNE for the tree-game of incomplete information G. Fur-
thermore, the tables and witness lists computed by the algo-

rithm represent all BNE of G.

4. COMPUTING APPROXIMATE BNE
The algorithm Abstract-TreeBNE presented above is in-

completely specified because the representation and com-
putation of the downwards pass tables were left unspeci-
fied. In this section we present our main results: efficient
algorithms for computing approximate BNE in two classes
of incomplete-information tree-games. First, we consider
games with discrete types and no other constraints, and then
we consider games with continuous types that are guaran-
teed to have BNE in a restricted class of strategies amenable
to efficient computation.

4.1 Discrete Types
Here we adapt the conceptual Abstract-TreeBNE algo-

rithm to compute ε-BNE in tree-games with discrete types.
The algorithm Approximate-TreeBNE takes as input a
parameter ε > 0 that specifies how good an approximation
to BNE we wish to find. As we show, the approximation
can be made arbitrarily precise with correspondingly greater
computational effort.

4.1.1 Approximate-TreeBNE Algorithm
The central idea in Approximate-TreeBNE(ε) is to dis-

cretize the unconditional strategy space so that instead of



playing arbitrary mixed strategies over actions, an agent can
choose actions only with probabilities that are multiples of τ ,
for some τ to be determined by analysis. For games in which
the agents have only two actions, the probability of playing
the first action ∈ {0, τ, 2τ, . . . , 1}. For games with d actions,
each action’s selection-probability is a multiple of τ with
the total summing to 1. The discretized type-conditional
strategies µ will then map each type to a discretized uncon-
ditional strategy. The number of different strategies for any

agent x then will be O
([

1
τ

]m(d−1))
. The number of entries

in the binary-valued tables Dyx will be determined by the
number of joint strategies of agents x and y and thus the

downstream-pass Dyx tables will be of size O
([

1
τ

]2m(d−1))
.

A witness list at a node can at most contain all the joint
strategies of the parent nodes and because the number of
parents is at most k − 1, the witness lists will be of size

O
([

1
τ

]m(d−1)(k−1))
.

Algorithm Approximate-TreeBNE(ε)

Inputs: Tree game specification, and the ap-
proximation parameter ε
Outputs: An ε-BNE for the game.

Do Abstract-TreeBNE with two changes

1. only consider type-conditional discretized (with
parameter τ defined in the text) strategies in
both the downstream and upstream passes

2. the requirement of best-response to set a 1 in the
downstream tables D is weakened to a require-
ment of ε-best response

Figure 4: The Approximate-TreeBNE algorithm.
The two modifications to Abstract-TreeBNE (see
Figure 2) required are listed here.

Figure 4 presents the Approximate-TreeBNE algorithm
in terms of the two modifications it makes to the Abstract-
TreeBNE algorithm. One modification is to only consider
τ -discretized type-conditional strategies, thereby making all
the tables involved finitely representable. The second modi-
fication is in the semantics of the downstream D tables. The
new semantics is that Dyx(µy, µx) = 1 if and only if µx is a
ε-best-response for x to µy and µx is a part of an upstream
ε-BNE for the subgame Gx

y=µy
. With these two changes,

Approximate-TreeBNE(ε) will return an ε-BNE. Of course,
we have not yet shown that for any given ε we can always find
a τ for which an ε-BNE exists in the space of τ -discretized
type-conditional strategies, and that we can do all the com-
putations involved in Approximate-TreeBNE efficiently. To
this we turn next.

4.1.2 Analysis
Our main result is that Approximate-TreeBNE(ε) will re-

turn an ε-BNE with a running time that scales polynomially
in the total number of agents n as well as the approximation
parameter 1

ε
.

Theorem 2 For any ε > 0, let

τ ≤ min
(
ε/(dk(4k log k)), 2/(k log2(k/2)

)
.

Then Approximate-TreeBNE computes an ε-BNE for the tree-
game G. Furthermore, for every exact BNE, the tables and
witness lists computed by the algorithm contain an ε-BNE
that is within τ (in L1 norm) of this exact BNE. The run-
ning time of the algorithm scales polynomially in the total
number of agents and the accuracy parameter.

Proof Lemma 9 in the Appendix shows that if τ ≤
2/(k log2(k/2) then for every BNE in the tree-game G, the
nearest strategy on the τ -grid will be a dk(4k log k)τ -BNE.
We want the algorithm to find ε-BNE and so if we set

τ ≤ min
(
ε/(dk(4k log k)), 2/(k log2(k/2)

)
, then for every

BNE in the tree-game G, there will exist a correspond-
ing ε-BNE in the τ -discretized strategy space. The tables
and witness lists of Approximate-TreeBNE will represent
all the ε-BNE as this property is directly inherited from the
original Abstract-TreeBNE algorithm. Thus, Approximate-
TreeBNE will return an ε-BNE.

The running time of Approximate-TreeBNE is dominated
by the time to compute the D tables for the downwards
pass. Consider a node x with child node y and parent nodes
−→w . By assumption, the maximum number of neighbors of
any node in G is k. Computing table Dyx requires filling

out O
([

1
τ

]2m(d−1))
entries. Computing the binary value

of each entry involves considering all possible τ -discretized
strategies of the parents of x (the nodes in −→w ) to see if
there is any setting of the −→w strategies which make µx part
of an upstream ε-BNE if y plays µy. The maximum number

of strategies of the parents of x, −→w , is O
([

1
τ

]m(d−1)(k−1))
.

Thus the computation required to fill Dxy is of O
([

1
τ

]m(d−1)(k+1))
.

There are n such tables to fill out in the downwards pass and

so the total running time is O
(
n
[

1
τ

]m(d−1)(k+1))
. The up-

stream pass does not add to the order of the running time. �

Corollary 3 For discrete-type tree-games of incomplete in-
formation if the number of actions and discrete types is
held constant, then Approximate-TreeBNE(ε) computes an
ε-BNE in time polynomial in the size of the representation
and 1

ε
.

The running time of Approximate-TreeNash scales poly-
nomially with the accuracy parameter 1

ε
and the total num-

ber of agents n, but scales exponentially with the number
of actions d, the number of discrete types m and the max-
imum number of neighbors k. Of course, the size of the
representation itself scales exponentially with k (recall that
the number of entries in the payoff functions is O(nmdk).
Thus, if we can treat the number of actions and discrete
types to be a constant, Approximate-TreeBNE is polyno-
mial in the size of the tree-game representation and 1

ε
. We

note that a similar assumption about a constant number of
actions was needed for the similar result in the original pa-
per on complete information tree-games [6]. At the same
time, the exponential dependence on the number of types is
less than satisfactory and is in part the motivation for the
second half of the paper where arbitrary effects of types on
payoffs are disallowed.



Extensions: The results presented in this section assumed
that the upstream-pass of Approximate-TreeBNE chose ran-
domly from among the feasible witnesses at each step result-
ing in the output of a randomly selected ε-BNE. By appro-
priately augmenting the tables computed in the downstream
pass of our algorithm, it is possible to identify other kinds of
approximate BNE, e.g., those that maximize the expected
summed payoff to all agents, or those that maximize the
least expected payoff among all the agents. We leave the
details of these extensions to future work.

4.2 Continuous Types
Here we consider games where the real-valued types of

each player are chosen independently from some interval
T = [tl tu]. For such games it is reasonable to require that
types have some (usually compactly parameterized) struc-
tured effect on the payoffs of agents, for else just the def-
inition of the game could become unbounded. The main
question of interest in this section is whether there exist in-
teresting kinds of structure in the effect of types on payoffs
that can be exploited for computational efficiency (in addi-
tion to exploiting the locality structure already present in
tree-games). The hope is that the structured effect of types
on payoffs will allow us to search efficiently over some small
space of restricted strategies to find approximate BNE.

In particular, the class of payoff functions we consider
are those satisfying the single-crossing condition (SCC), as
defined by Athey [1], based on a relation studied by Milgrom
and Shannon [9]. Technically, SCC holds1 if for all −→a −x,
ax > a′x, and tx > t′x,

Rx(ax,−→a −x|t′x)−Rx(a′x,−→a −x|t′x) ≥ (>)0

implies Rx(ax,−→a −x|tx)−Rx(a′x,−→a −x|tx) ≥ (>)0.

In words, the SCC condition requires that the incremen-
tal payoff to x from raising its action crosses zero at most
once, from below, as a function of type. The key implication
of SCC, from our perspective, is that x must have a best-
response strategy that is increasing in type. If all agents’
payoffs satisfy SCC, moreover, and type distributions are
atomless, then the game must have a pure-strategy BNE
consisting of these monotone best-response strategies [1].

It follows that for games satisfying SCC, we can restrict
attention to what we call monotone threshold pure strategies.
In a threshold strategy, the agent plays pure actions for all
possible types, and each action is assigned to at most one
interval in the type space T . Equivalently, in such a strat-
egy each pure action is either not played at all or is played
deterministically in one contiguous region of type space and
nowhere else. We refer to these as threshold strategies be-
cause the points in type-space at which the strategy switches
to a new pure action constitute thresholds. In a monotone
threshold strategy, we further have that ax ≥ a′x, where ax

is the pure action assigned to type tx and a′x the action
assigned to t′x ≤ tx.

Many different classes of interesting games satisfy SCC,
and therefore have BNE in which each agent plays monotone
threshold pure strategies. Examples include certain kinds of
first-price auctions, all-pay auctions, noisy signaling games,
oligopoly games with incomplete information about costs or

1Athey presents a more general definition that allows that
types be affiliated. The version here is a special case for our
assumption of independent type distributions.

demand, and several other games of economic interest [1,
10, 13]. In Section 4.2.3, we illustrate our algorithm with a
simple example that has payoffs additive in action and type,
directly satisfying SCC.

4.2.1 Threshold-TreeBNE Algorithm
As discussed in Section 4.1, we can specialize the Abstract-

TreeBNE algorithm to cover mixed strategies and discrete
types by discretizing the mixed-strategy space. Here we
specialize the Abstract-TreeBNE algorithm for continuous
types by discretizing the type space. Since we need con-
sider only pure actions, no further discretization is required
for the strategy space. Our Threshold-TreeBNE algorithm,
specified briefly in Figure 5, takes as input an accuracy pa-
rameter ε that specifies how good an approximation to a
BNE we wish to find. As for the case of discrete types we
will map ε to a discretization parameter τ and show that
the resulting algorithm returns as output an ε-BNE. As be-
fore, the approximation can be made arbitrarily precise with
correspondingly greater effort.

The central idea in Threshold-TreeBNE(ε) is to discretize
the type-interval T = [tl tu] so that agents are restricted
to playing threshold pure strategies in which the thresholds
are constrained to take on values of the form tl + cτ ≤ tu

(where c is some integer and τ is the discretization parameter
to be determined by analysis). With d actions, the maxi-
mum number of possible thresholds is d − 1 and therefore
with τ -discretization the maximum number of different pos-

sible strategies available to an agent is of size O
([

1
τ

]d−1)
.

This allows the binary valued tables Dyx of the Abstract-
TreeBNE algorithm to have finite representations of size

O
([

1
τ

]2(d−1))
and the witness lists to have a finite repre-

sentation of size O
([

1
τ

](d−1)(k−1))
Algorithm Threshold-TreeBNE(ε)
Inputs: Specification of threshold pure-strategy
tree-game, and the approximation parameter ε
Output: A threshold pure-strategy ε-BNE for the
game.

Do Abstract-TreeBNE with two change

1. only consider discretized-type (with parameter
τ defined in the text) threshold pure strategies
in both the downstream and upstream passes

2. the requirement of the best-response to set a 1
in the downstream tables D is weakened to a
requirement of ε-best response.

Figure 5: The Threshold-TreeBNE algorithm. The
two modifications to Abstract-TreeBNE (see Fig-
ure 2) required are listed here.

As in the case of Approximate-TreeBNE, the Threshold-
TreeBNE makes two modifications to the Abstract-TreeBNE.
One modification is to only consider τ -discretized threshold
pure strategies in all the steps of Figure 2. This makes
all the tables involved in the downstream and upstream
passes finitely representable. The second modification is to
replace the upstream-BNE semantics of the D tables with



an upstream-ε-BNE semantics. This change replaces the re-
quirement of best-response in steps 2(c)i and 2(d)ii of Fig-
ure 2 with a requirement of ε-best-response. With these two
modifications, Threshold-TreeBNE will return an ε-BNE. In
the next section we show how to compute τ from ε and the
game parameters, as well as how all the computations in-
volved in our algorithm can be done efficiently.

4.2.2 Analysis
Our main result is that Threshold-TreeBNE will return an

ε-BNE in threshold pure-strategy tree-games with a running
time that scales polynomially in the total number of agents
n as well as the approximation parameter 1

ε
. Recalling our

assumption of a constant number of actions we will also
show that Threshold-TreeBNE is polynomial in the size of
the representation.

Theorem 4 For any ε > 0, let

τ <
ε

4dkρt
,

where ρt is an upper-bound on the type-density pT . Then
Threshold-TreeBNE will compute an ε-BNE for any tree-
game of incomplete information that has a threshold pure-
strategy BNE. Furthermore, for every exact threshold pure-
strategy BNE, the tables and witness lists computed by the
algorithm contain an ε-BNE that is within τ (in L1 norm)
of this exact BNE. The running time of the algorithm is
polynomial in the total number of agents and the accuracy
parameter 1

ε
.

Proof Lemma 10 in the Appendix proves that for any ε >
0, if τ < ε

4dkρt
, then there exists a threshold pure-strategy

ε-BNE in the search space of the algorithm. The tables and
witness lists of Threshold-TreeBNE will represent all the ε-
BNE that are in the space searched by the algorithm as this
property is directly inherited from the original Abstract-
TreeBNE algorithm. Thus, Threshold-TreeBNE will return
an ε-BNE.

The running time of the algorithm is dominated by the
time to compute the type-discretized D tables for the down-

wards pass. Each D table will have at most O
([

1
τ

]2(d−1))
entries to fill. Consider a node x with child node y and
parent nodes −→w in the tree. By assumption, the maximum
number of parents of any node is k − 1. Computing each
entry in the Dyx table potentially requires considering all
possible joint strategies of −→w . Therefore, the running time

of Treshold-TreeBNE is of O
(
n
[

1
τ

](d−1)(k+1))
�

So far we have successfully avoided having to describe the
size of the representation of a threshold pure-strategy game.
Given that the main constraint in such games is in the ef-
fect of types on payoffs, we will continue to assume that the
payoff for a node must at least consider all possible actions
for the neighbors of that node, i.e., the size of the repre-
sentation would at least be of O(ndk). Therefore, recalling
our assumption of a constant number of actions, we get the
following corollary.

Corollary 5 Threshold-TreeBNE computes an ε-BNE for
threshold pure-strategy games in time polynomial in the size
of the representation and 1

ε
.

The value of τ specified in the condition of Theorem 4
is required if one wants to guarantee that for every ex-

act threshold pure-strategy BNE, Threshold-TreeBNE com-
putes a threshold pure-strategy ε-BNE that is close to it. If
the goal is instead to just compute any one ε-BNE, then one
may be able to use a much larger value of τ with a resulting
reduction in the running time of the algorithm. Of course,
if one uses too large a value of τ , then Threshold-TreeBNE
may return nothing. The following corollary suggests that
one can search for an appropriate value of τ by starting with
a large value and decreasing it until an ε-BNE is found.

Corollary 6 For all ε, τ > 0 and for any threshold pure-
strategy tree-game, Threshold-TreeBNE(ε, τ) runs in time
polynomial in the number of agents, 1

ε
and 1

τ
and either

computes an ε-BNE or returns with no answer.

4.2.3 An Example
We illustrate Threshold-TreeBNE by defining a simple

class of games satisfying SCC, and presenting numeric re-
sults for a specific instance. Consider n-agent 2-action games
in which the actions can intuitively be thought of as “en-
gage” and “null”. If the agent chooses to engage it incurs
a private cost that subtracts from the payoff obtained as a
function of the joint action of all the agents. If instead it
chooses the null action, the private cost has no effect. Fi-
nally, we assume the types are real-valued and chosen inde-
pendently for each agent from an atomless distribution over
a finite interval [tl tu]. We denote these games as additive-
type games. An example of such a game would be where the
agents can accept or reject a job in a marketplace for jobs
and where their type is their private cost for fulfilling a job;
they pay the cost only if they accept the job. The expected
payoff to an agent x with continuous type tx when the other
agents are playing according to strategy −→µ is defined as fol-
lows:

Rx(engage,−→µ −x|tx) = Rx(engage,−→µ −x)− tx

Rx(null,−→µ −x|tx) = Rx(null,−→µ −x)

It is easy to see that additive-type games respect SCC, and
thus the Threshold-TreeBNE algorithm can be used to com-
pute their ε-BNE.

Figure 6 shows a specific illustrative example of an additive-
type game. Seven agents have been invited to a party and
must choose to attend or not. Each agent either likes or
dislikes its neighbors in the graph and has no opinion about
non-neighbors. The payoff to each agent increases with the
number of agents it likes attending and decreases with the
number of agents it dislikes attending. There is a private
cost for each agent that attends in the range [−1 1].

We ran Threshold-TreeBNE for an ε value of 0.03 for var-
ious values of τ as discussed at the end of Section 4.2.2. For
τ equal to 0.5 the algorithm found two equilibria (shown in
Table 1 as Equilibrium 1 and Equilibrium 2). For τ equal
to 0.25 the algorithm found all three equilibria shown in Ta-
ble 1. The payoff matrices for our game were chosen to set
up an interesting dynamic between agents 2 and 4. Agent 2
has a positive reward for not going but it really likes agent 4
and so if agent 4 goes it makes it more likely that agent 2 will
also go (depending on what its other neighbors do). This
dynamic is reflected in the threshold pure-strategy equilibria
of Table 1.



Figure 6: The above graph details the “party” game.
Seven players have been invited to a party and must
decide whether to attend. Each player has a like or
dislike of their neighbors on the graph (written next
to the node, e.g., agent 2 dislikes agents 1 and 5 but
likes 4). Attending the party incurs a private cost
to an agent chosen uniformly at random from the
interval [−1 1]. The payoff to a player for not at-
tending is independent of the actions of the other
players and is shown next to the nodes in square
brackets (e.g., agent 2 has payoff of 1 for not attend-
ing). An attendee’s payoff is incremented for every
agent she likes at the party and is decremented for
every agent she dislikes at the party.

5. EXTENSIONS
There are a number of extensions to this paper, briefly

itemized here, that we will explore as future work.

• Arbitrary graphical games can be converted into tree
games by merging nodes into cluster-nodes. We will
extend both Approximate-TreeBNE and Threshold-
TreeBNE to sparsely connected graphical games albeit
at the expense of exponential computation in the max-
imal size of the cluster-nodes.

• Ortiz and Kearns [12] showed that an iterative ver-
sion of the message passing algorithm for tree-games of
complete information worked in practice on complete-
information loopy graphical games. A similar exten-
sion of our algorithms may generalize them to graphi-
cal games of incomplete information.

ε = 0.03 Equilibrium 1 Equilibrium 2 Equilibrium 3
Agent 1 go go go
Agent 2 not go t < 0.5, go t < 0.25, go
Agent 3 go go go
Agent 4 t < 0.5, go go go
Agent 5 go t < 0.5 go t < 0.75, go
Agent 6 go go go
Agent 7 t < 0.5, go t < 0.5, go t < 0.5, go

Table 1: Results for party game of Figure 6.

• Dynamic graphical games are extensions of static graph-
ical games in which the agents actions influence not
just the payoffs but also the stochastic evolution of
the dynamics of a system. Extending our algorithms
to such games poses a significant challenge and is the
main focus of our current research on algorithms for
graphical games.

6. CONCLUSIONS
In this paper we considered two interesting and large classes

of incomplete information games: tree-games with discrete
types, and tree-games with continuous types that satisfy the
single crossing condition and are thus guaranteed to have
threshold pure-strategy BNE. Both of these classes contain
many interesting kinds of games. We presented analyses
that showed that our algorithms for the two cases compute
ε-BNE in time polynomial in the number of agents and the
approximation parameter 1

ε
.
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APPENDIX
Lemma 7 (From Kearns et.al. [6]) Let −→p ,−→q ∈ [0, 1]k

satisfy |pi−qi| < τ for all 1 ≤ i ≤ k, and let τ ≤ 2/(k log2(k/2).
Then |Πk

i=1pi −Πk
i=1qk| ≤ (2k log k)τ .

Lemma 8 If −→µ and
−→
µ′ are such that for all agents x and

all types tx, |µx(·|tx) − µ′x(·|tx)| ≤ τ , then |Rx(−→µ Nx) −
Rx(

−→
µ′Nx)| ≤ dk(2k log k)τ .

Proof Recall that

Rx(−→µ Nx) =
∑
−→
t Nx

PT (
−→
t Nx)

∑
−→aNx

−→µ Nx(−→a Nx |−→t Nx)Rx(−→a Nx)

and therefore

|Rx(−→µ Nx)−Rx(
−→
µ′Nx)| =

∑
−→
t Nx

PT (
−→
t Nx)

∑
−→aNx

|Rx(−→a Nx)|

∣∣∣[−→µ Nx(−→a Nx |−→t Nx)−−→µ Nx(−→a Nx |−→t Nx)
]∣∣∣

≤
∑
−→
t Nx

PT (
−→
t Nx)

∑
−→aNx

|Rx(−→a Nx)|(2k log k)τ

≤ dk(2k log k)τ

where we have used the assumption that the payoff function
is bounded in absolute value by 1. �

Lemma 9 Let −→µ be a BNE for the tree-game G, and let
−→
µ′

be the nearest (in L1 metric) strategy on the τ -grid. Then

provided τ ≤ 2/(k log2(k/2),
−→
µ′ is a dk(4k log k)τ -BNE of

the tree-game G.

Proof Let strategy η be a best-response for agent x to−→
µ′ . To obtain our result we need to bound Rx(η,

−→
µ′Nx

−x
)−

Rx(
−→
µ′Nx) > 0. By Lemma 8, we have that

|Rx(η,
−→
µ′Nx

−x
)−Rx(η,−→µ Nx

−x
)| ≤ dk(2k log k)τ.

Since −→µ is a BNE, Rx(−→µ Nx) ≥ Rx(η,−→µ Nx
−x

). Thus,

Rx(η,
−→
µ′Nx

−x
) ≤ Rx(−→µ Nx) + dk(2k log k)τ.

At the same time, again by Lemma 8,

Rx(
−→
µ′Nx) ≥ Rx(−→µ Nx)− dk(2k log k)τ,

and thus Rx(η,
−→
µ′Nx

−x
)−Rx(

−→
µ′Nx) ≤ dk(4k log k)τ . �

Lemma 10 If a threshold pure-strategy BNE exists for a
tree-game, G, of incomplete information in which each agent’s
real-valued type is chosen independently from the interval
T = [tl tu] according to some probability density pT , then
there exists a threshold pure-strategy ε-BNE if we discretize
the types with grid-spacing τ ≤ ε

4dkρt
(where k is the max-

imum neighborhood size, and ρt is an upper-bound on the
density pT ).

Figure 7: An example of the effect of discretization
of types on a threshold pure strategy. The strategy
on top is an undiscretized strategy while the strat-
egy at the bottom is its discretized version. The two
strategies differ on the intervals shown as hashed-
rectangles.

Proof Let −→µ be a threshold pure-strategy BNE for the
game G in the statement of the lemma. Let −→µ ′ be the
nearest (in L1 metric) strategy on the τ -grid over types;
this is defined by mapping each threshold to the nearest
grid point in types and preserving the pure-actions in the
associated τ -perturbed intervals. Figure 7 shows a pictorial

example of mapping −→µ to
−→
µ′ — the strategy shown on top

is −→µ and the one at the bottom is
−→
µ′ . We will show that if

τ satisfies the condition in the lemma, −→µ ′ is a ε-BNE.

For any threshold pure strategy
−→
θ , let

−→
θ ′ be its nearest

pure strategy on the τ -grid over types. Then, for any agent
x,

|Rx(
−→
θ Nx)−Rx(

−→
θ ′Nx)| ≤

E−→t Nx
|Rx(−→a Nx |

−→
θ Nx ,

−→
t Nx)−Rx(−→a Nx |

−→
θ ′Nx ,

−→
t Nx)|

≤ 2dτρtk (7)

where ρt is the maximum density at any type, d is the num-
ber of actions, and k is the size of the largest neighborhood
in tree-game G. The last step of Equation 7 follows from
the fact that there is no difference in the joint actions for
the two strategies except for joint types in which at least
one agent falls into a region resulting from the perturbed
thresholds, and that the probability that at least one of the k
neighboring-agents falls into such a region is upper-bounded
by dτρtk (we also assume, w.l.o.g., that the maximum ab-
solute payoff is bounded by 1). The intervals in type-space
in which the discretized version of a strategy differs from
the original strategy are shown with hashed-rectangles in
Figure 7.

To obtain the result, we need to bound |Rx(ηx,−→µ ′Nx
−x

)−
Rx(−→µ ′Nx)| for any strategy ηx for agent x. We know from
Equation 7 that

|Rx(ηx,−→µ ′Nx
−x

)−Rx(ηx,−→µ Nx
−x

)| ≤ 2dτρtk

which implies that

Rx(ηx,−→µ ′Nx
−x

) ≤ Rx(ηx,−→µ Nx
−x

) + 2dτρtk

which because −→µ is a BNE =⇒
Rx(ηx,−→µ ′Nx

−x
) ≤ Rx(−→µ Nx) + 2dτρtk

which from equation 7 =⇒
Rx(ηx,−→µ ′Nx

−x
) ≤ Rx(−→µ ′Nx) + 4dτρtk

We get τ by setting 4dτρtk ≤ ε. �


