Soft Dynamic Programming Algorithms:
Convergence Proofs

Satinder P. Singh

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

singh@cs.umass.edu

Algorithms based on dynamic programming (DP) find optimal solutions to finite-state
optimal control tasks by iterating a “backup” operator that only considers the consequences
of executing the “best” action in a state. In many problem domains, the optimal solution
may be “brittle” and it may be desirable to find robust, if suboptimal, solutions that prefer
states that have many “good” actions to choose from, over states that have a single good
action. I present a family of iterative approximation algorithms constructed by replacing
the “hard” max operator in classical DP algorithms by a “soft” generalized means of order p
operator (Rivest [8]) (e.g., a non-linearly weighted [, norm). The soft DP algorithms converge
to solutions that are more robust than solutions found by classical DP algorithms. I prove
that for each index p > 1, the corresponding soft DP algorithm converges to a unique fixed
point, and that the approximate but robust solution gets uniformly better as the index p is
increased, converging in the limit (p — oo0) to the optimal solution determined by classical

DP algorithms.

Based on Poster at CLNL-93

Soft Dynamic Programming Algorithms:
Convergence Proofs

Satinder P. Singh

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

satinder@cs.umass.edu

1 Introduction

Optimal control problems are characterized by the fact that control decisions taken at
the present time affect the behavior of the controlled system at future times. Therefore, the
solution is not just a decision at the present time instant, but a sequence of decisions over
the entire duration of control. The goal is to find an optimal control policy, i.e., a function
assigning actions (or decisions) to states, that optimizes an objective functional, such as
minimum time, or minimum cost. In many optimal control problems, the optimal solution
may be brittle in that it may not leave the controller any room for even the slightest error.
For example the minimum time solution in a navigation problem may take an expensive
robot over a narrow ridge where the slightest deviation from the optimal action can lead to
disaster.

In this paper we propose new algorithms that find solutions in which states that have
many “good” actions to choose from are preferred over states that have a single good action
choice. This robustness is achieved by potentially sacrificing optimality. Robustness can
be particularly important if the there is mismatch between the model and the real physical
system, or if the real system is non-stationary, or if availability of control actions varies with
time.

I thank Peter Dayan and Andrew Barto for their contributions to this paper. This work was supported by
the Air Force Office of Scientific Research, Bolling AFB, under Grant AFOSR-89-0526 and by the National
Science Foundation under Grant ECS-8912623.

2 Dynamic Programming Algorithms

Dynamic programming (DP) [2] provides an approach to solving optimal control problems
under general conditions. The DP solution specifies the optimal control at every state of
the system at every instant of time, and is often implemented as a feedback (closed-loop)
controller in which the state of the system is constantly measured and the corresponding
control applied. The DP approach is based on Bellman’s [2] Principle Of Optimality which
states that “an optimal policy has the property that whatever the initial state and decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” This converts the simultaneous determination of the entire
optimal control policy into a sequential determination. Subsequently, a number of iterative
improvement algorithms have been defined that organize their computation more efficiently
than exhaustive search through the space of closed-loop policies.

In searching for the optimal control policy, DP-based algorithms employ the maz opera-
tor that is a “hard” operator because it only considers the consequences of executing the best
action in a state and ignores the fact that all the other actions could be disastrous (see Equa-
tion 2). This paper introduces a family of iterative approximation algorithms constructed
by replacing the hard max operator in DP-based algorithms by “soft” generalized means [5]
of order p (e.g., a non-linearly weighted [, norm). These soft DP algorithms converge to
solutions that are more robust than those of classical DP. I prove that for each index p > 1,
the corresponding iterative algorithm converges to a unique fixed point, and that the approx-
imation gets uniformly better as the index p is increased, converging in the limit (p — o)
to the DP solution. The main contribution of this paper is the new family of approximation
algorithms and their convergence results. The implications for neural network researchers
are also discussed.

Markovian Decision Tasks (MDTs) (e.g., [3]) are a subset of optimal control tasks im-
portant to learning researchers because many interesting sequential learning tasks can be
formulated as multi-stage MDTs. Let S be the set of states of the system and A be the set
of actions available to the controller. Executing action a € A in state z € S results in payoft
r(x,a) and causes a transition to state y with probability P,,(a). The objective functional,
Jn = E[X7_o7'r:], where 0 < v < 1 is the discount factor, n is the horizon or the number of
stages in the task, F is the expectation operator, and r; is the payoff received at time step ¢.

In this paper, I will develop approximations to DP algorithms for solving finite state,
infinite-horizon MDTs. Implications of relaxing these constraints are discussed in Section 4.
For stationary policy 7 : S — A, the return Vi (z) = E[X2,7v'r:(7)], where ri(7) is the
payoff received by the controller at time ¢t when the start state is and the policy = is
followed forever. An optimal policy 7* maximizes the return for each state. 1 will denote
Ve simply as V*.

For MDTs, Bellman’s Optimality Principle can be stated as follows; Va € S:

Vi(x) = max[r(z,a)+7) Puy(a)V"(y)]. (1)

a€A yes

Value Iteration (e.g., [3]) is an iterative improvement algorithm, V,41 = T'(V}), for computing

the optimal value function V*. V; is the estimate of V* at the ¢*

T (?R"’)m — (?R"’)'Sl is defined as follows:

iteration, and the operator

T(Vigr)(x) = max[r(z,a) + 7> Poy(a)Vi(y)] (2)

€ yeS

Note that the operator T in Equation 2 is “hard”. Following Rivest[8], who replaced the
min-max operators in game tree search with generalized means, I replace the max operator
with the generalized mean for the more general class of DP-based algorithms.

2.1 Facts about Generalized Means

Let A ={ay,a9,...,a,}, and A" = {daf,d),... al}. Define Ay = max{ay,aq,...,a,},
1
and [|Al| = max {|ai,|az],...,|a.|}. Define A, = [+ 37, (a;)"]7, called a generalized mean

of order p. The following facts are proved in Hardy et al. [5] under the conditions, 1 <1i < n,
a;,at € RF:

Fact 1. (Convergence) lim,— A, = Amax-

Fact 2. (Differentiability) While 8,%% is not defined, % = %[X—;]p_l for 0 < p < 0.

Fact 3. (Uniform Improvement) 0 < p < ¢ = A, < A, < Apay; further if 3¢, 5, s.t. a; # a;,
then 0 < p<¢= A, < A; < Anax-

Fact 4. (Monotonicity) if V¢, a; < a}, then A, < A7, In addition, if 37, s.t. a; < af, then
A, < AL

Fact 5. (Boundedness) If p > 1, and if ||[A — A'||.c < M, i.e., the two different sequences
of n numbers differ at most by M, then |A, — A7| < M. In addition, if p > 1, and A # A’,

then |[[A — A'|[.c <M = |A, — A}| < M. See Appendix for a proof.

3 New Iterative Fixed Point Algorithms

A family of iterative improvement algorithms, indexed by a scalar parameter p, can be
defined as Viyy = T,(V;), where the update operator T, : (R+)ISI — (R+)I5l;

1

Ty(Vier)(2) = {| A|Z[T(%G)Jrvszy(a)‘@(y)]p} . 3)

a€A yEeS

Note that even though in this abstract the new algorithms are developed by modifying the
Value Iteration algorithm, similar modifications can be made to most other DP algorithms
as well as reinforcement learning algorithms [1] that involve the max operator and are related
to DP, such as Watkins’s popular Q-learning [11] algorithm (see Appendix).

Fact 7. By the “Convergence” (Fact 1) property of the generalized mean operator, lim,_.. T, =

T.

3.1 Convergence Results

Fact 8. For a discrete MDT the finite set of stationary policies form a partial order under
the relation >: 7 > 7' = Ve € 5, Vy(2) > Vu(x). If 0 <~ < 1, and a finite constant A € R
is added uniformly to all the payoffs, the partial order of the policies does not change.

Assumption 1. 0 <y < 1

Assumption 2. Ya € S,;Va € A, r(x,a) > 0. This is not a restriction for MDTs with
0 <~ < 1, because of Fact 8.

The development of the convergence proofs follows Bertsekas and Tsitsiklis [3] closely.
Throughout, I will assume that assumptions 1 and 2 hold. Note that assumption 2 guarantees
that the optimal value function will be non-negative.

Proposition 1. For all p > 1, the following hold for the mapping 7

(a) (Monotonicity) 7}, is monotone in the sense that ¥V, V' € (R*)5I:

V<V = T,(V)<T,(V",

Proof: Follows trivially from the monotonicity of the generalized mean (Fact 4).
(b) (Contraction Mapping) For all finite V, V' € (R+)I],
IT,(V) = T,(V)llee < e[V = V||,

where o < 1.

Proof: Clearly, 30 < M < oo, s.t. ||[V—=V'||l.oc < M. ThenVaz € S, —M < (V(z)—V'(z)) <
M. Substituting V'(y) + M for V(y) in Equation 3, we get

P

T,(V)(z) < {|A|Z z,a) +7 Y Pryla) V/()+M)]p})

a€A yEeS

and using the fact that P is a stochastic matrix,

T,(V)(@) < {|A|Z (2,0) + M 4% Pay)V(y >]}p. (1)

a€A yEeS

By symmetry, it is also true that:

T,(V')(z) < {|A|Z (z,a) +YM + 7Y Pry(a V(y)]p} : (5)

a€A yEeS

Using the boundedness of the generalized mean (Fact 5), Equations 4 and 5 imply that
Vaee S, T(V)(x) <T,(V)(x)+~yM, and that T,(V')(x) < T,(V)(x) +yM. That proves
Proposition 1(b).

Theorem 1: Under Assumptions 1 and 2, if the starting estimate V, € (RT)I°l, then Vp > 1,
the iteration Vi1 = T,(V;) converges to a unique fixed point V.

Proof: Using Proposition 1(b) and the contraction mapping theorem, the iterative algorithm
defined by FEquation 3 converges to a unique fixed point.

Corollary 1(a): Let V* be the optimal value function. Then lim,_., V' = V*.

Proof: Bertsekas and Tsitsiklis [3] show that the iteration V;11 = T'(V;), where the operator
T is as defined in Equation 2, converges to the optimal value function V*. Therefore,
lim, . T, =T = lim,_., Vp* = V*.

Theorem 2: 1<p<qg=V <V <V~

Proof: Consider the iteration by iteration estimates for a parallel implementation of the two
algorithms: V, .41 = T,(V,4) and V141 = T,(V,1), where the successive estimates have been
subscripted with the additional symbols p and ¢ in order to distinguish between the two
algorithms. Assume that V, o =V, o < Vo< v, and V, 0 =V, < Vi< v

Voo = V,o by construction,
Vor < Vo1 by Uniform Improvement (Fact 3); applied to each state,
Voe < V2 by Monotonicity (Fact 4); applied to each state,
*9
: oo "
Vor < V,: by Monotonicity (Fact 4); applied to each state.

We know that V. = V¥, and Voo = V. As shown above, 314 € (RO st Vi >
0,V,, < V,r < V*. By Theorem 1, we know that the fixed point is independent of Vj.
Therefore, V¥ < V> <V* (V1; € (?R"’)'SU.

Corollary 2(a): For any ¢ > 0, 3p > 1, such that V¢ > p, [|[V — V*||. < e

Proof: From Theorems 1 and 2 the sequence of vectors {V*} are bounded and converge to

V=. Corollary 2(a) is a property of bounded and convergent sequences.

Thus, the operator {T,} defines a family of iterative approximation algorithms to the
value iteration algorithm. As the parameter p is increased, the approximation to the optimal
value function becomes uniformly better. However, the true measure of interest is not how
closely the optimal value function is approximated, but how good is the greedy policy derived
from the approximations.

3.2 How good are the approximations in policy space ?

Fact 9. For any given finite action MDT, 3§ > 0, such that YV € (RT)IP s.t. ||V — V*||o <
%, any policy that is greedy with respect to V is optimal. See Appendix for proof.

2
value function, the policy derived from the approximation will be optimal. Define II,, to be
the set of stationary policies that are greedy with respect to V*. If = € II,, then Va € 5,

Fact 9 implies that as long as the estimated value function is within 5 of the optimal

and Ya € A, the immediate payoff for executing action n(x) summed with the expected
discounted value of the next state is > that for any other action a € A, i.e..:

Rz, m(2) + 7Y Poy(m(@)Vy(y) = Rlz,a)+7) Poy(a)V)(y).

yEeS yEeS
Let II* be the set of stationary optimal policies. Define I, = II, N II*.
Theorem 3: For any finite MDT, dp, where 1 <p < o0, s.t. V¢ > p, I, C II*.

Proof: Follows directly from Corollary 2(a) and Fact 9.

Theorem 3 implies that in practice there is no need for p T oo for the algorithm defined
by T, to yield optimal policies.

4 Discussion

DP-based learning algorithms defined using the max operator update the value of a state
based on the estimate derived from the “best” action from that state. Algorithms based on
the generalized mean, on the other hand, update the value of a state using some non-linearly
weighted average of the estimates derived from all the actions available in that state. Thus,
the latter will assign higher values to states that have many good actions over states that
have just one good action, and conversely will also penalize states for having any really
bad action at all. This may be advantageous for many tasks where there is a great deal of
uncertainity. Learning algorithms that increase the index p as more information accrues can
smoothly interpolate between considering the estimates from all the actions to considering
the estimate from the best action alone.

Another advantage of using the operator 7T, instead of 7' is that unlike 7', T}, is differen-
tiable, which makes it possible to compute the following derivative for neighboring states x
and y:

Vi) _ 1 5 { l()+ Eyes Pl V)] = OV } —

Wiy A V(e) aV(y)

a€A z€S

Note that one can use the chain rule to compute the above derivatives for states that are not
neighbors in the state graph of the MDT in much the same way as the backpropagation [9]
algorithm for multi-layer connectionist networks. Being able to compute derivatives allows
sensitivity analysis and may lead to some new ways of addressing the difficult exploration
versus control issue [10] in optimal control tasks. Indeed, the motivation for Rivest’s work [§],
which inspired this paper, was to use sensitivity analysis to address the analogous exploration
issue in game tree search. Note that derivatives of the values of states with respect to the
transition probabilities and the immediate payoffs can also be derived.

While the algorithms developed in this paper are restricted to discrete MDTs, similar
algorithms can be derived for the continuous case by using the integral form of the generalized
mean:

L)) = | [sl(ea)+y [Pa(@Viy)dydal,
a€A yEeS

where [., p(a)da = 1 is a weighting function analogous to the

ﬁ in the discrete (see
Equation 3) version. It is conjectured that convergence results similar to the ones derived
for the discrete case can be derived for continuous state MDTs.

As discussed by Rivest [8], other forms of generalized means exist, e.g., for any continuous
monotone increasing function, f, we can consider mean values of the form f~ (L 7, f(a;)).
In particular, the exponential function can be used to derive an interesting alternative se-
In(5; 22‘;1)
value the approximation to the Hiax gets strictly better. Using H,, a family of alternative
iterative fixed point algorithms can be defined: Viiy = H)(V;). An advantage of using H,
is that it requires less computation than the operator T,. The operator H, is similar in

quence of operators, H), = , where A > 0. As the parameter X is increased in

spirit to the “soft-max” function used by Jacobs et al. [6] and may provide a probabilistic
framework for action selection in DP-based algorithms.

5 Conclusion

Several researchers are investigating the advantages of combining nonlinear neural net-
work based function approximation methods and traditional adaptive control techniques
(e.g., [T, 4]). The algorithms presented in this paper have the dual advantages of leading to
more robust solutions and of employing a differentiable backup operator. It is hoped that
these changes will pave the way for further progress in adapting DP algorithms and nonlinear
neural network techniques for learning to solve optimal control tasks.

Appendix
Proof for Fact 5:

It is known that if p > 1, [Y0 (a; + A)P]F < [0, (a:)P]7 + [0, (A0)?]7. Thus,

2 = (e
< (e MY
< (P + 3 0)
= A+ M

Thus A, < A7) 4+ M, and by symmetry, A7 < A, + M. Therefore, [A, — A7| < M.

Proof for Fact 9:

Vo € S5, let A— {x*(x)} be the set of non-optimal actions available in state .
If A—{r*(z)} # 0, then

m(z) = min |(R(z,77(2)) + 5) Pey(7(2)V(y)) = (R(z,a) + 5 3 Pey(a)V(y))].

a€A—{r*(z)} yes yes

else, m(x) = oo. Let 6 = minges{m(z)}. Note that 6 = 0 only if all actions are optimal in
every state; in such a case, § can be set to any non-zero value. Clearly, by perturbing the
optimal value function by less than %, the greedy action in any state will still be optimal.

Differentiable Approximations to Q-learning

Q-learning [11] is a DP-based algorithm that estimates Q-values, Q(x,a) that are defined
via the following equations:

Qa,a) = r(r,a)+7 3 Poyla)lmaxQ(y,d')]

yeS

Thus, Q-values associate scalars to state-action pairs instead of just the states. Given the
Q-values the optimal value function is easily defined as V*(x) = max,eca Q(2, a). Q-learning
is an asynchronous iterative improvement algorithm:

Qupr(w,a) = (1= aifz,a))Qu,a) + ai(z, a)[r(w, a) + 3 max Qy, a')],

where y is a sampled next state chosen with probability P,,(a). Note that Q-learning does
require knowledge of the state transition probabilities P to learn the Q-values. Generalized
means of order p can be used to define Q-values without using the non-differentiable max
operator:

Al

1

Q(:z;,a) = T(wva)‘FVZny(a) |A|

yeS

> Q(y,a’)p]

a'eA

The corresponding learning algorithm 1is:

ol L

1

Qua(w,a) = (1= arf2,0))Qu(@,a) + ar(@, a){r(z, a) + 7 7o

> Q(y,a’)p] }

a'eA

10

References

[1] A.G. Barto, R.S. Sutton, and C. Watkins. Sequential decision problems and neural networks.
In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 686—
693, San Mateo, CA, 1990. Morgan Kaufmann.

[2] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[3] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[4] W. Fun and M.I. Jordan. The moving basin: Effective action-search in adaptive control, 1992.
submitted to Neural Computation.

[6] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. University Press, Cambridge, Eng-
land, 2 edition, 1952.

[6] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1), 1991.

[7] M.I. Jordan and R.A. Jacobs. Learning to control an unstable system with forward modeling.

In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, San Mateo,
CA, 1990. Morgan Kaufmann.

[8] R.L. Rivest. Game tree searching by min/max approximation. Artificial Intelligence, 34:77-96,
1988.

[9] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error
propagation. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing:
Ezplorations in the Microstructure of Cognition, vol.1: Foundations. Bradford Books/MIT
Press, Cambridge, MA, 1986.

[10] R.S. Sutton. Integrating architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Proc. of the Seventh International Conference on Machine
Learning, pages 216-224, San Mateo, CA, 1990. Morgan Kaufmann.

[11] C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Univ., Cambridge,
England, 1989.

