
Deep Reinforcement Learning for Multi-Driver
Vehicle Dispatching and Repositioning Problem

John Holler∗†, Risto Vuorio∗†, Zhiwei Qin‡, Xiaocheng Tang‡, Yan Jiao‡, Tiancheng Jin†,
Satinder Singh†, Chenxi Wang‡ and Jieping Ye‡

∗Equal Contribution, †University of Michigan, ‡Didi Chuxing
{johnholl, riv, jintia, baveja}@umich.edu

{qinzhiwei, xiaochengtang, yanjiao, wangchenxi, yejieping}@didiglobal.com

Abstract—Order dispatching and driver repositioning (also
known as fleet management) in the face of spatially and tem-
porally varying supply and demand are central to a ride-sharing
platform marketplace. Hand-crafting heuristic solutions that
account for the dynamics in these resource allocation problems
is difficult, and may be better handled by an end-to-end machine
learning method. Previous works have explored machine learning
methods to the problem from a high-level perspective, where the
learning method is responsible for either repositioning the drivers
or dispatching orders, and as a further simplification, the drivers
are considered independent agents maximizing their own reward
functions. In this paper we present a deep reinforcement learning
approach for tackling the full fleet management and dispatching
problems. In addition to treating the drivers as individual agents,
we consider the problem from a system-centric perspective, where
a central fleet management agent is responsible for decision-
making for all drivers.

Keywords-reinforcement learning, ride-sharing, fleet manage-
ment, order dispatching

I. INTRODUCTION

The order dispatching and fleet management system at a
ride-sharing company must make decisions both for assigning
available drivers to nearby passengers (hereby called orders)
and for repositioning drivers who have no nearby orders. These
decisions have short-term effects on the revenue generated
by the drivers and driver availability. In the long term they
change the distribution of drivers across the city, which in
turn has a critical impact on how well future orders can be
served. Provident algorithmic solutions, which account for the
short term and long-term consequences of their decisions can
improve the quality of service of the ride-sharing platforms
and are thus an important area of research.

Recent works [1], [2] have successfully applied Deep Rein-
forcement Learning (RL) techniques to dispatching problems,
such as the Traveling Salesman Problem (TSP) and the more
general Vehicle Routing Problem (VRP) [3], however they
have primarily focused on static (i.e. those where all orders
are known up front) and/or single-driver dispatching problems.
In contrast to these problems, the fleet management and
order dispatching problem ride-sharing platforms face has
multiple drivers and dynamically changing supply and demand
conditions. We refer to this dynamic dispatching and fleet
management problem as the Multi-Driver Vehicle Dispatching
and Repositioning Problem (MDVDRP).

The planning problem presented by the MDVDRP is related
to the VRPs, but the complexity comes from the dynamic
nature of the assignment scenario rather than the intractability
of computing the exact solution. Drivers and orders appear
in the assignment system at random points in time. In this
dynamic assignment setting, assignment decisions are made
based on the current driver-order situation, without exact
information about future orders. A high performing assignment
solution needs to account for unknown future supply and
demand conditions.

In realistic instances of the MDVDRP, the decision-making
continues 24 hours a day and may involve thousands of
drivers and tens of thousands of customers. Accounting for
the spatially and temporally varying supply and demand condi-
tions makes hand-crafting heuristic solutions to these scenarios
challenging. In this paper, we explore a deep reinforcement
learning approach to the MDVDRP. The contributions of our
work can be summarized as follows. (i) We introduce a new
reinforcement learning problem: the MDVDRP, which is mo-
tivated by the needs of real-world ride-sharing platforms. (ii)
We propose a novel network architecture for decision-making
in a realistic problem setting with variable sized observation
and action spaces. (iii) We provide empirical analysis of value-
based and actor-critic methods on instances of the MDVDRP,
including instances based on real-world data.

II. RELATED WORK

Recent machine learning approaches to dispatching and
routing problems operate according to an encoding-decoding
scheme, where information is first processed into a fixed-
sized representation, and then actions are decoded from this
representation [1], [4]. Pointer networks [5] offer an approx-
imate solution to traveling salesman problems by encoding
cities (in our terminology, orders) with a recurrent network,
and then producing a solution by sequentially “pointing” to
orders using an attention mechanism [6]. The network is
trained with a supervised loss function by imposing a fixed
ordering rule on decoded orders. Bello et al. propose training
an architecture similar to the pointer networks with policy
gradients instead of a supervised loss, which allows them to
dispense with the fixed ordering of the outputs during the
decoding phase [1]. Similarly, we use reinforcement learning
to train our networks. We follow an architecture related to [2],

which uses an attention mechanism for encoding the inputs.
We depart from their architecture in two ways. First, we
replace the input attention layers with layers that compute their
output elementwise. Second, we remove the recurrent network
used in the decoder.

In practice, order dispatching and fleet management prob-
lems are often solved with heuristic solutions. [7]. In Local
Policy Improvement [8], handcrafted heuristics are combined
with a machine learning method by summarizing supply and
demand patterns into a table and then using the learned pat-
terns to account for future gains in the real-time planner of the
dispatching solution. A fully machine learning based approach
to the dispatching problem is presented in [9], where deep Q-
learning is used for learning dispatching strategies from the
perspective of a single driver. We take these developments a
step further and learn fleet management and order dispatching
strategies end-to-end using reinforcement learning.

Another thread of related work comes from the multi-agent
reinforcement learning literature. Specifically, our single-
driver training approach is analogous to the “independent Q-
learning” training approach [10]. Multi-agent reinforcement
learning has also been investigated for order dispatching
in [11], where a grid-based algorithm is used and in fleet
management in [12]. Instead of operating on a grid, our
method is based on continuous coordinates, which makes it
more ready for deployment in the real-world.

III. METHOD

A. MDVDRP as a Reinforcement Learning Environment

The experiments presented in this paper are conducted in
a ride-sharing simulation environment. The environment is
designed to capture the dynamic supply and demand situ-
ation in ride-sharing platforms. The environment represents
customers as orders, which start and end in some coordinates.
Assigning a driver to the order immediately yields a reward
proportional to the price of the order. Drivers are represented
as points in the 2-D space and they can move by serving orders
or repositioning without an order. The drivers and orders
are generated following a Poisson process with parameters
depending on each scenario we consider.

Decision points are triggered whenever a driver becomes ac-
tive in the system, finishes an order or finishes a repositioning
action. Variable amounts of time may have passed between the
decision points when the simulator polls the policy for actions.
The simulation scenarios considered in the experiments mostly
depict the situation where there are more customers demanding
rides than there are drivers to serve them. In this setting, it is
natural to assume that only a single driver is available for
actions at any decision point. This assumption simplifies the
design of the policies by removing the need to choose which
driver to assign an order to. To prevent multiple drivers polling
for actions at exactly the same moment, we add random noise
with small variance to the duration of the reposition actions.

Assigning a driver to an order removes the order from the
system and makes the driver unavailable for instructions until
the order has been completed. At order completion the driver

is relocated to the order destination and made available for
assignments. Orders have a limited time window within which
they are valid. After the validity window has passed, the orders
will be removed from the system.

The policies may choose to move the drivers to different
directions for a fixed amount of time by selecting reposition
actions. The number of available reposition actions includes
actions that move the driver into one of the eight cardinal
directions for a fixed period of time and a stationary action.

The observation of the agents consists of the environment
time, the driver for which action is currently being selected
and all drivers and orders currently in the simulation. At time
t there is a collection of orders oit ∈ Ot, drivers djt ∈ Dt, with
exactly one available driver dselectedt . The state is given to the
neural network as st = (Ot,Dt, d

selected
t , t). The orders are

presented as 6 dimensional vectors consisting of the starting
and ending coordinates, price, and time waiting. Time waiting
is the difference between the current time and the creation
time. A driver is represented by a 6 dimensional vector: the
coordinates of the driver location, x and y components of its
reposition direction, time to order completion, and time to
reposition completion. If the driver is serving an order, its
location is set to the ending location of the order it is servicing.
If the driver is repositioning the driver location is updated at
each timestep, the reposition direction shows which way the
driver will move during the next timestep.

To limit the number of orders considered by the policy at
each timestep, we impose a broadcasting radius dbcast on
the order assignment. This means that drivers may be only
paired with orders if they are within dbcast units of the driver.
Otherwise, the driver may only take a repositioning action.
The repositioning actions are not available to the drivers when
there are orders within broadcasting radius of them.

B. Reward Settings

The objective of the algorithms in the MDVDRP problem
is to maximize the cumulative reward defined by the environ-
ment. The environment rewards the agent for each assigned
order with a reward the size of the order price. Reposition
actions yield no reward. We consider two alternative reward
specifications corresponding to driver-centric and system-
centric perspectives. An visual overview of these concepts is
presented in Figure 1

In the driver-centric approach, we consider the MDVDRP
a reinforcement learning problem from the perspective of the
individual driver. In this setting, each driver is maximizing
their own expected revenue and there are no incentives for
co-operation. The trajectories taken by each driver in the en-
vironment are collected separately and the discounted returns
are computed on the individual trajectories. The individual
trajectories consist of timesteps that are consecutive from
the perspective of the driver but not necessarily from the
perspective of the environment as other drivers may have taken
actions between the actions of any single driver.

From the point of view of the ride-sharing platform, the
dispatching and repositioning problem is not about individual

Fig. 1. The above image shows a trajectory with four timesteps in an
MDVDRP instance with two drivers. The currently available driver is green,
dispatched driver is red, and the order that the available driver accepts at
time t is at and has price rt. The accepted order at time t is labeled
by its action name and price, (at, rt) and travels from the solid black
dot to the terminal arrow. Driver-centric transitions are indicated by blue
arrows above state, e.g. transition (s1, a1, r1, s3), which is driver-centric with
respect to driver 1. System-centric transitions are indicated by red arrows e.g.
transition(s1, a1, r1, s2), which transitions from a state where driver 1 is
available to a state where driver 2 is available.

drivers maximizing their own revenue but rather about the
platform maximizing the combined revenue across all drivers.
Therefore, it is important to consider optimizing the policies
from the perspective of the whole system. In this system-
centric approach, the expected cumulative reward across all
drivers is being maximized. This leads to the trajectories
experienced by the policy consisting of timesteps that are
consecutive from the perspective of the environment. For
example, if the driver i acts on the timestep t1 receiving reward
r1 and driver j takes an action on the timestep t2, the training
algorithm will consider the timesteps t1 and t2 consecutive.

C. Neural Network Architecture

We propose a neural network architecture for RL in environ-
ments with variable sized observation and action spaces. An
overview of the proposed network architecture is presented in
Figure 2. A learned pooling mechanism allows the network
to compute a fixed-sized global representation of the inputs,
which enables relating the features of each individual input to
the global state. In the environments we consider, the number
of actions depends on the number of orders in the observation
as described in III-A. We compute network outputs, one for
each action, in a manner similar to the weight computation in
the attention mechanism [6].

The network first computes order embeddings νio, order
pooling weights αi

o, driver embeddings νjd, and driver pooling
weights αj

d. The embeddings are length 128 vectors computed
by MLP emb

d and MLP emb
o , both of which have one hidden

layer of size 128 and ReLU activations. The scalar pooling
weights α are computed from the embeddings by MLPw

d

and MLPw
o . Both have hidden layer size 128 and tanh

activation, and sigmoid output activation. The global context
vector is computed as

[∑N
i=1 α

i
oν

i
o|
∑M

j=1 α
j
dν

j
d|νselectedd |t

]
,

where [a|b] denotes concatenation and t denotes time.
MLP assign, which has one hidden layer of size 64 and

ReLU activation, outputs values for the assignment actions.
MLP assign takes each order embedding concatenated with
the global context separately as input and produces a scalar
output for each input. The repositioning actions are computed

Fig. 2. Network Architecture. Driver and order embeddings νid, νjo and
their corresponding weights αi

d, αj
o are computed by MLP emb and MLPw

respectively. A fixed sized global representation of the orders and drivers is
computed by concatenating the sums of the weighted embeddings with the
selected driver embedding and the environment time. The fixed number of
outputs for the reposition actions are computed by MLP repo using the global
context as an input. MLPassign computes one output for each order using
the global context and each order embedding as an input.

by MLP repo with the same architecture as MLP assign.
MLP repo has one output for each reposition action and uses
the global context as its input.

D. Training Algorithms

We train the proposed network architecture on the MDV-
DRP using two modern reinforcement learning algorithms:
Deep Q-Networks (DQN) [13] and Proximal Policy Opti-
mization (PPO) [14]. We chose these two algorithms because
they represent widely used, modern methods in off-policy
and on-policy reinforcement learning. Many of the recent
successes in deep reinforcement learning have been achieved
using one of the two algorithms. DQN is a value-based, off-
policy reinforcement learning algorithm. PPO is an on-policy
actor-critic reinforcement learning algorithm. For information
about the differences of on-policy versus off-policy and value-
based versus actor-critic methods, we point the reader to [15].
For detailed descriptions on the DQN and PPO algorithms we
direct the reader to the respective papers.

As the simulation runs in continuous time, the time be-
tween consecutive timesteps may vary. Both algorithms use a
discounting factor γ to compute the discounted return, which
accounts for the future rewards. In continuous time settings,
the discounting factor for each timestep is γt

′−t, where t is
the time at the current observation and t′ in the next.

We found empirically that training using the system-centric
rewards is more challenging than using the driver-centric
rewards. We found the use of n-step Q-learning [16] helpful
for stabilizing the training of DQN when training on system-
centric rewards. In all of our DQN experiments with system-
centric reward we use 20-step Q-learning.

TABLE I
EXPERIMENTAL RESULTS. THE ALGORITHMS WERE EVALUATED MULTIPLE TIMES DURING THE TRAINING AT FIXED INTERVALS AND THE RESULTS OF

THE BEST EVALUATION STEP ACROSS ALL RANDOM SEEDS IS REPORTED ± STANDARD ERROR. THE REPORTED VALUES ARE AVERAGES OVER 5
EPISODES FOR HOT COLD AND REGIONAL DOMAINS AND OVER 20 EPISODES FOR HISTORICAL ORDERS DOMAIN. ALL THE SCORES THAT ARE WITHIN

STANDARD ERROR OF THE BEST SCORE ARE BOLDED IN THE TABLE.

Hot Cold Regional Historical Orders
Algorithm High Demand Low Demand High Demand Low Demand

MRM-simple 5359± 8 5189± 14 3597± 6 2964± 22 40001± 128
MPDM-simple 5917± 6 5713± 20 4258± 8 3328± 28 37960± 127
MRM-random 797± 30 949± 41 2150± 30 3039± 30 49563± 309

MPDM-random 1006± 35 1004± 50 4203± 19 3103± 33 46763± 241
MRM-demand 5351± 9 5449± 9 2161± 28 3262± 16 48805± 463

MPDM-demand 5883± 17 5658± 15 4252± 8 3343± 16 46635± 539
PPO System-Centric 7954± 17 5801± 29 4744± 2 3372± 33 50094± 162
DQN System-Centric 6323± 168 5278± 77 4735± 12 2831± 104 48532± 71
PPO Driver-Centric 7861± 23 5767± 10 4888± 2 3208± 16 53029± 45
DQN Driver-Centric 7883± 3 5855± 8 5006± 15 3349± 6 53255± 130

IV. EXPERIMENTS

We investigate the learning behavior of the proposed net-
work architecture in ride-sharing environments implemented
using the simulator described in III-A. We present results in
four environments to test and illustrate the dispatching and
repositioning strategies learned by the proposed approach. In
all environments, the geography is presented as a rectangle
with the longer side length set to one. The drivers move
at speed 0.1 and the broadcasting radius is set to 0.3. The
parameters specific to each environment are described in their
respective sections.

We compare the learned policies against two kinds of
baselines: myopic revenue maximization (MRM) and myopic
pickup distance minimization (MPDM) [7]. MRM always
assigns the highest value order to the closest available driver.
MPDM assigns orders to drivers in the order of shortest
distance first. Since the baselines do not account for repo-
sitioning, we test three variants of the baselines with different
repositioning heuristics. In the simple variants, broadcasting
distance is ignored and drivers can be assigned to orders across
the region. The drivers stay where they drop orders off until
they are assigned to the next order. In the random variants of
MRM and MPDM, if a driver has no orders within broadcast
distance, then a repositioning action is selected randomly. The
demand variants of MRM and MPDM apply a simple heuristic
on repositioning, by moving the drivers towards the nearest
order when an order is available but not within broadcasting
distance. If there is no order available, the demand variants
take random reposition actions.

We use the same neural network architecture for all variants
of the learning algorithms, except for the extra output layer
implementing the critic for PPO. We set the discount factor
γ = 0.99 for both algorithms. For DQN we use batch size of
32, replay buffer size 20000 and update on every timestep with
learning rate 0.0001. The exploration rate ε starts from 0.99
and we anneal it by 0.01 on each episode to the final value
0.1. We update the target network every 100 steps. The PPO
policy and value functions are updated 20 times every epoch

using 4000 consecutive timesteps as the training data. We
aim to keep hyperparameters unchanged between the different
environments but make slight changes for Distribute Domain
and the real data based domain. Those changes are explained
in the relevant sections. The results from the experiments can
be found in Table I and within the following sections.

A. Regional Domain

In our first experiment, we consider the Regional Domain,
which illustrates how a simple price differential can be ex-
ploited by learned policies but is missed by the myopic
dispatching and repositioning approaches. Intuitively, in this
domain, a good policy dedicates enough drivers to fully serve
the high-reward orders and serves the other orders with the
remaining drivers. In the Regional Domain, there are three
regions: left, center, and right. Equal numbers of orders are
generated between each pair of adjacent regions. All orders
yield a reward of 2 except those that go from right to center,
which yield a reward of 4. The high-level concept of the
domain is presented in Figure 3.

In the high demand version of the Regional Domain, the
best learned policy (Driver-Centric DQN) outperforms the
best performing baseline (MPDM-demand) by over a 15%
margin. The low demand variant proves to be challenging
for the learning algorithms. Here the demand is low enough
that over commitment to the high reward area can become a
problem as is the case for Driver-Centric PPO, which ends
up allocating 8 times more idle drivers to the high reward
area and as a consequence has 8% lower ratio of total orders
served compared to MPDM-demand. This policy leads to a
weak performance, and is in fact outperformed by the simple
and demand variants of MPDM.

B. Hot-Cold Domain

The Hot-Cold domain can be thought of as a ride-sharing
scenario with a busy area of downtown (“hot region”) sur-
rounded by suburbs with less traffic (“cold region”). Order
pickup locations are located uniformly along the top edge of
the simulation area. Half of the orders end uniformly along

(a) Regional Domain (b) Hot-Cold Domain

(c) Distribute Domain (d) Historical Orders Domain

Fig. 3. Conceptual drawings of the illustrative domains considered in the
experiments. The colored regions represent areas where orders are generated.
The solid arrows depict order starting and ending locations and the dotted
paths depict paths the drivers need to reposition along in order to get to the
orders. Best viewed in color. (a) Regional domain tests whether the policies
can learn to exploit price differences between otherwise similar orders. Each
square is labeled with its outgoing order value. (b) Hot-Cold Domain seeks
to evaluate the algorithms ability to learn allocating drivers to orders which
minimize driver idle time. All orders begin in the red bar, with their positions
generated uniformly randomly. For the destination, a fair coin is flipped to
decide whether the order ends in hot or cold, and then the exact position is
sampled uniformly randomly in the designated region. (c) Distribute Domain
requires the policies to anticipate that the orders are going to be created in the
two distant regions and allocate correct number of drivers to each. Figure (d)
represents an order generation pattern defined by the historical data and the
corresponding reposition strategy learned by the policy for an hour long time
window in Historical Data Domain. The graph is composed of 2d histogram
depicting the order generation pattern and arrow plots depicting the average
reposition movements in each histogram bin. The intensity of the arrow color
corresponds to the number of drivers who have been in each cell during the
time window.

the bottom edge of the area and half end uniformly in the
hot region. Order price is given by the distance between
order pickup and drop-off locations. Despite orders to the cold
region having higher prices, it is generally more advantageous
for drivers to stay in the hot region, since there they can
quickly pick up new orders. In other words, the advantage
is entirely temporal. An illustration of the Hot-Cold domain
is presented in Figure 3.

The results in Table I suggest that learning to balance
serving the orders to hot and cold regions is straightforward for
the learning algorithms and all learning algorithms outperform
all baselines in the high demand variant of the environment.
As with the Regional domain, the challenges of training DQN
with system-centric rewards are apparent in the low demand
Hot-Cold domain, where it is outperformed by multiple base-
lines.

In all of the experiment configurations for Regional domain
and Hot-Cold domain, we found DQN to be more sample
efficient than PPO. DQN was trained for 1000 episodes and
PPO often took two to three times as many to achieve similar

TABLE II
DISTRIBUTE DOMAIN WITH 20 DRIVERS. THE COLUMNS CORRESPOND

TO TWO INSTANCES OF THE DISTRIBUTE DOMAIN. ONE WITH A UNEVEN
80/20 SPLIT OF ORDERS BETWEEN THE PATCHES AND THE OTHER WITH

AN EVEN SPLIT.

Algorithm 50/50 Served % 80/20 Served %
Optimal 100% 100%

Uniform Optimal 50% 80%
PPO System-Centric 100± 0.0% 93± .54%
DQN System-Centric 95± .11% 80± 3.42%
PPO Driver-Centric 96± .13% 92± .72%
DQN Driver-Centric 96± .13% 92± .72%

performance. On-policy methods are known to be less sample
efficient than off-policy methods and another contributing
factor may be the relatively low learning rate we used for
PPO.

C. Distribute Domain

While Hot-Cold domain tests an important aspect of learn-
ing - namely, the ability of the agents to reposition drivers to
locations where they can pick up new orders, this repositioning
behavior is quite simple in that it is uniform across drivers.
In order to test whether our methods can learn non-uniform
repositioning behavior, we introduce “distribution environ-
ments” where drivers must be repositioned so as to match
their spatial distribution with a fixed future order distribution.
A distribution environment operates in two phases. In the first
phase, the environment resets to a state with k drivers and no
orders, so drivers may only reposition during this phase. In
the second phase, k orders appear according to a fixed spatial
distribution. Each order matching action receives +1 reward.
Order destinations are placed away from start locations so that
each driver may only serve one order per episode. As a result,
the episodic return is proportional to the number of orders
served, so we may interpret the episode score as a measure
of how well the agent arranges driver supply in phase 1 with
order demand in phase 2. In our experiments, the distribution
of orders always consists of two small patches in the top left
and bottom right parts of the unit square. Refer to Figure 3 for
visualization. The order start locations are sampled uniformly
within each patch.

We found that training successful policies on the Distribute
Domains requires more random exploration than any of the
other environments. For DQN, we set the final ε = 0.2. For
PPO, we follow an annealing scheme similar to DQN where
we anneal the entropy coefficient from 0.7 to 0.01 over the
first 2000 epochs.

Results for distribute domains with 20 drivers are presented
in Table II. We include the optimal served percentage (which
is 100 %) and the “uniform optimal” served percentage.
This quantity reflects the maximum score one can obtain
if the repositioning behavior is uniform across drivers. The
results between driver and system-centric variants are mixed.
While system-centric PPO achieves a slight advantage over
the driver-centric variant, the relationship is flipped for DQN.

D. Historical Orders Domain

Solving the MDVDRP is motivated by the real-world need
of ride-sharing platforms to improve their marketplace for
drivers and passengers. To test our learning algorithms in a
more realistic setting, we consider an environment where the
order generation scheme is based on historical order data from
the GAIA dataset [17]. The dataset provides GPS records for
all orders served during a 30-day period in the city of Chengdu
in China. To limit computational demands, we choose a subset
of 10% of the orders in the dataset. The orders in the subset all
start and end in an area from the dataset that has approximately
twenty thousand orders per day. We then create 30 order
generation schemes, which correspond to the 30 days in the
dataset. Each episode in the environment corresponds to a
randomly sampled day from the dataset. The orders generated
during the episode appear exactly in the coordinates and at the
time defined by the data. We use a fixed number of drivers
(100), a 2 kilometre broadcast radius and a fixed speed (40
km/h).

Similarly to the Hot-Cold domain, the reward for serving
an order is the distance from the order start location to the
drop-off location. Following from the reward definition, the
total reward each driver receives is directly correlated with
the total time they spend serving orders and thus inversely
correlated with the time spend waiting for orders and picking
up orders.

Driver-centric DQN and PPO are both capable of learning
strong dispatching and repositioning policies, which outper-
form all of the baselines by over 6%. The historical data do-
main also demonstrates the importance of redistributing drivers
during their downtime. The worst performing algorithms on
the historical data domain are the simple variants of MPDM
and MRM, which do not use reposition actions at all. In
contrast, the learned policies actively redistribute drivers back
to the populated areas as shown in Figure 3.

Finally, we observe that both DQN and PPO have trouble
learning competitive policies on this larger scale problem when
trained on the system-centric rewards. We hypothesize that
this is due to having more drivers complicating the already
challenging credit assignment problem. With more drivers
simultaneously acting in the environment, the time between
decision points becomes smaller and the effective discount
factor approaches one. Training with a discount factor close
to one can make the training unstable. To mitigate this effect
we use a smaller base discount factor γ = 0.9.

V. CONCLUSION

We performed a detailed empirical study of reinforcement
learning approaches to multi-driver vehicle dispatching and
repositioning problems. We studied driver-centric and system-
centric reward definitions and trained policies using DQN
and PPO algorithms. We found DQN to be more sample
efficient than PPO. On the other hand PPO was better able
to learn on system-centric rewards. Central to all of our
approaches was the network architecture we presented, which
leverages a global representation of state processed using

attention mechanisms. We found that, while one can construct
environments where the system-centric approach is superior,
typically driver-centric is better or at least competitive with
the system-centric approach. Furthermore we applied these
methods to environments built using real dispatching data, and
found that driver-centric approach is able to consistently beat
myopic dispatching and repositioning strategies.

REFERENCES

[1] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[2] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac, “Reinforcement
learning for solving the vehicle routing problem,” in Advances in
Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Curran Associates, Inc., 2018, pp. 9839–9849. [Online].
Available: http://papers.nips.cc/paper/8190-reinforcement-learning-for-
solving-the-vehicle-routing-problem.pdf

[3] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[4] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau,
“Learning heuristics for the tsp by policy gradient,” in Integration of
Constraint Programming, Artificial Intelligence, and Operations Re-
search, W.-J. van Hoeve, Ed. Cham: Springer International Publishing,
2018, pp. 170–181.

[5] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 2692–2700.

[6] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in neural information processing systems, 2014,
pp. 2204–2212.

[7] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, P. Gong, and J. Ye,
“A taxi order dispatch model based on combinatorial optimization,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 2151–2159.

[8] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and
J. Ye, “Large-scale order dispatch in on-demand ride-hailing platforms:
A learning and planning approach,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2018, pp. 905–913.

[9] Z. Wang, Z. Qin, X. Tang, J. Ye, and H. Zhu, “Deep reinforcement
learning with knowledge transfer for online rides order dispatching,” in
2018 IEEE International Conference on Data Mining (ICDM). IEEE,
2018, pp. 617–626.

[10] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 1998, 1998, pp. 746–752.

[11] M. Li, Z. Qin, Y. Jiao, Y. Yang, Z. Gong, J. Wang, C. Wang, G. Wu,
J. Ye et al., “Efficient ridesharing order dispatching with mean field
multi-agent reinforcement learning,” 2019.

[12] T. Oda and C. Joe-Wong, “Movi: A model-free approach to dynamic
fleet management,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 2708–2716.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[15] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[17] Didi Chuxing, “Didi launches gaia initiative to facilitate data-driven
research in transportation,” URL: http://www.didichuxing.com/en/press-
news/bgcitgfc.html, 2017.

