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Abstract

Reinforcement learning (RL) research typi-
cally develops algorithms for helping an RL
agent best achieve its goals—however they
came to be defined—while ignoring the re-
lationship of those goals to the goals of the
agent designer. We extend agent design to
include the meta-optimization problem of se-
lecting internal agent goals (rewards) which
optimize the designer’s goals. Our claim is
that well-designed internal rewards can help
improve the performance of RL agents which
are computationally bounded in some way (as
practical agents are). We present a formal
framework for understanding both bounded
agents and the meta-optimization problem,
and we empirically demonstrate several in-
stances of common agent bounds being miti-
gated by general internal reward functions.

1. Introduction

Consider the problem of an agent designer building
an artificial agent to act autonomously in some se-
quential decision making environment. The designer’s
goals and purposes implicitly define a preference over
possible behaviors of the agent. In most complex and
partially known environments, the optimal behavior
of the agent will not be known to the designer and
hence cannot be hardwired into the agent. Instead, a
common and often more-robust approach is to build
into the agent its own internal goals (along with other
knowledge that the designer has).

Should the artificial agent’s goals be the same as the
agent designer’s goals? This question is seldom asked.
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Rather, most research on autonomous agents focuses
on algorithms and architectures for achieving agent
goals—however they came to be defined. Yet, there
is always an agent designer with his or her own goals,
and they have to be translated somehow into agent
goals. Confounding the agent’s and designer’s goals,
i.e., assuming that they are the same, is of course a
powerful and simple constraint on agent design, and
so there is a cost to violating this assumption in terms
of increased complexity of the design process. It is
therefore important that we understand when and why
violating this assumption—what we call breaking the
confound—may improve agent performance with re-
spect to the designer’s goals. In this paper, we take
first steps toward formalizing and empirically support-
ing a claim about the conditions under which breaking
the confound is beneficial: optimizing internal rewards
can lead to improved performance in RL agents with
computational bounds. In such cases of improved per-
formance, we say that internal rewards mitigate agent
boundedness. We can state this claim more strongly as
a directive for agent design: because agents are often
limited in some way, they should often be given goals
(rewards) that are distinct from the designer’s goals,
and the nature of these distinct goals depends directly
on the nature of the bounds.

In the main body of this paper we provide several em-
pirical illustrations supporting the generality of this
claim by showing how internal rewards mitigate spe-
cific aspects of boundedness that arise naturally in
current practice in the design of both model-free and
model-based learning agents. These bounds include
limits on planning depth, limits on state or model rep-
resentation, and limits arising from choices of func-
tion approximation and learning algorithms. To help
sharpen our claims and provide a general framework
in which to understand our empirical results, we turn
next to defining unbounded and bounded agents and
performance gaps between them.
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2. On Boundedness & Performance

We first briefly define the environment dynamics and
the unconventional separation of agent designer’s goals
and the RL agent’s goals, then identify performance
differences between classes of agents.

Dynamics. At each time step, an agent G receives
an observation o ∈ O from its environment M , takes
an action a ∈ A, and repeats this process until a time
horizon. The state at time step k, denoted hk, is the
history of interaction o1a1 · · · ok−1ak−1ok to time step
k. The transition dynamics define a probability dis-
tribution over possible next states hk+1 as a function
of hk and ak. Although representations of state more
compact than full histories are used in practice, for
this discussion it is convenient to use history as state
for complete generality.

Agent Designer’s Goals. We represent the agent
designer’s goals using an objective reward function RE
that maps states to scalar reward values, and a cumu-
lative measure, FE , that defines how the reward along
a trajectory of states is accumulated. Common choices
for FE include summed reward over a finite (fixed or
random) horizon, and the average or discounted re-
ward over an infinite horizon. Together, RE and FE
define an objective return function FRE which in the
average reward case, for example, defines the return for
history h∞, as FRE (h∞) = limN→∞

1
N

∑N
i=1RE(h

i
∞),

where hik is the ith state in a history of length k. The
designer’s goal then is to design an agent whose be-
havior maximizes the expected objective return.

RL Agent’s Goals. Our main departure from the
conventional framing of the RL problem is allowing
the agent’s goals to be defined independently of the
designer’s goals. Specifically, the designer sets an in-
ternal reward RI and cumulative measure FI for the
agent which together define an internal return func-
tion FRI . We will refer to the conventional setting of
RI = RE and FRI = FRE as confounded reward and
return functions respectively. The RL agent’s goal is
to behave so as to maximize its expected internal re-
turn, regardless of how it came to be defined.

The design space of agents. Extensionally, an
agent G is a mapping from histories to (possibly dis-
tributions over) actions. Intensionally, agents are de-
fined via some parameters such as learning and ex-
ploration rates for Q-learning agents, planning depth
for look-ahead-based planning agents, etc. Let all the
conventional parameters of agent design be denoted θ;
thus, in conventional RL G(θ) fully specifies an agent.
The unbounded agent parameter space, denoted by Θ̄,
corresponds to the most general space of agents—

extensionally, the space of all possible mappings from
histories to actions. In most practical cases, because
of computational resource constraints, the designer’s
search for good agents will be limited to some much
smaller bounded set of agent parameters denoted Θ,
such that Θ ⊂ Θ̄.

In our new framing of the problem, the internal return
function FRI is another important parameter of agent
design; thus G(FRI , θ) fully specifies an agent in this
paper. The internal reward function is chosen from
a set of possible internal return functions FR, here-
after assumed to contain FRE . While FR may also be
bounded or unbounded, this distinction is not needed
for our claims and henceforth we let it be whatever
(bounded) set is available to the designer. Any spe-
cific agentG(FR, θ) in the environmentM will produce
a distribution over histories h ∼ 〈G(FR, θ),M〉.

To sharpen our notions of performance differences be-
tween bounded and unbounded agents, it is useful to
consider the six types of agents defined in Table 1.
Each agent, labeled A–F, is defined as a solution to a
meta-optimization problem constrained by choices of
reward function space FR and agent parameter space
Θ. The quantity optimized is always the expected ob-
jective return FRE , though only agents A, B and C are
constrained to use FRE internally.

The conventional agent A = G(FRE , θ) is the usual
agent in an RL setting where θ are the agent param-
eters the designer favors, usually based on prior expe-
rience or partial search over some very limited Θ. It
is a designer’s attempt at building a θ-optimal agent
B. Both A and B agents are given the (confounded)
objective return. Finding the true θ-optimal agent
for rich Θ is usually intractable. The θ-unbounded
agent C is the best agent in principle that uses the ob-
jective return. An F -optimal agent D is the agent that
breaks the confound by optimizing internal reward but
uses whatever conventional parameters θ the designer
prefers. A boundedly optimal agent E is the best an
agent designer could hope to achieve; it is a solution
to the joint optimization over the space (FR,Θ). The
parameters θ for agents C and F are the best from the
unbounded set Θ̄; the parameters for agents B and
E are the best from the bounded set Θ. There is no
better agent than the unbounded agent F.

The performance gaps among agents. It should
be clear from the definitions in Table 1 that the fol-
lowing partial ordering holds among the performance
of agents: A�B�C�F, A�D�E�F, and B�E. The
performance difference or gap of primary theoretical
interest in this paper is the difference between the θ-
optimal agent B and the θ-unbounded agent C. With-
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Table 1. Six types of agents constructed as solutions to meta-optimization problems defined by constraints on
the internal reward function space (rows) and the agent’s conventional parameter space (columns).

Fixed θ Bounded Unbounded
G(·, θ) G(·, θ∗ ∈ Θ) G(·, θ̄∗ ∈ Θ̄)

Confounded reward (A) Conventional agent (B) θ-optimal agent (C) θ-unbounded agent
G(FRE , ·) G(FRE , θ) G(FRE , θ

∗
E)

b G(FRE , θ̄
∗
E)

c

Unconfounded reward (D) F -optimal agent (E) Boundedly optimal agent (F) Unbounded agent
G(F ∗RI ∈ FR, ·) G(F ∗RI , θ)

d G(F ∗RI , θ
∗
I )e G(F ∗RI , θ̄

∗
I )f

b θ∗E = arg maxθ∈Θ E[FRE (h)|h ∼ 〈G(FRE , θ),M〉]
c θ̄∗E = arg maxθ̄∈Θ̄ E[FRE (h)|h ∼ 〈G(FRE , θ̄),M〉]
d F ∗RI = arg maxFR∈FR E[FRE (h)|h ∼ 〈G(FR, θ),M〉]
e (F ∗RI , θ

∗
I ) = arg maxFR∈FR;θ∈Θ E[FRE (h)|h ∼ 〈G(FR, θ),M〉]

f (F ∗RI , θ̄
∗
I ) = arg maxFR∈FR;θ̄∈Θ̄ E[FRE (h)|h ∼ 〈G(FR, θ̄),M〉]

out breaking the confound, B is the best agent the
designer could build within bounds and C is the best
agent the designer could have built without bounds.

The title of this paper, internal rewards mitigate agent
boundedness, refers to our conjecture that for many
environments and available parameters Θ, the per-
formance of the boundedly-optimal agent E will be
strictly greater than that of the θ-optimal agent B; that
is, the performance of E mitigates the gap between
bounded agent B and unbounded agent C: B≺E�C.
It is intractable, however, to find θ∗. Thus, in our em-
pirical work, we will approximate the demonstration
of mitigation of the performance gap of interest by re-
placing the θ-optimal agent B with the conventional
agent A, and the boundedly optimal agent E with our
best approximation of the F -optimal agent D. Better
choices of θ in the conventional agent yield tighter ap-
proximations of the gap of interest.

We conjecture that there is no performance difference
between E and F, because unbounded agents will be
able to optimally maximize confounded return and
thus there will be no need to break the confound. The
implications of this conjecture are important: as the
set of available agents expands (Θ approaches Θ̄), the
opportunity for internal rewards to help diminishes.

3. Empirical Demonstrations

We describe here five experiments designed to illus-
trate the mitigation of agent bounds by internal re-
ward. The first four experiments involve model-based
learning agents in foraging domains with bounds on
planning depth, state representation, or model repre-
sentation. The fifth experiment, a version of the ac-
robot problem (Sutton & Barto, 1998), extends our
empirical work to domains not constructed by us, and
to learning agents with function approximation.

Each experiment has the same structure: (1) We in-
vestigate the performance of an agent with some spe-
cific bound in an environment which reveals the per-
formance limitations that arise from that bound. Such
agents are instances of the conventional agents A in
Table 1. (2) We formulate a space of internal rewards
as a scalar mapping from (mostly M -independent) fea-
tures that are motivated by their potential to over-
come the bounds represented by θ. (3) Through
search of this space by directly simulating agents in
their environments1, we approximate F ∗RI and com-
pare the performances of the approximate F -optimal
agent G(F̂ ∗RI , θ), the agent with confounded reward,
and the unbounded agent (if available). In some cases,
we are able to do (1)–(3) while also varying the agent
bound parametrically.

3.1. Experiment 1: Mitigating bounds on
planning depth

The objective of this experiment is to show that inter-
nal rewards based on recency features (how recently
each action has been taken in each state) can mitigate
limitations of bounded planning depth by encouraging
systematic exploration. We will also provide an em-
pirical demonstration that an unbounded agent may
not benefit from breaking the confound.

The environment and designer’s goals. Consider
the 3-Corridor foraging environment illustrated in Fig-
ure 1(a). The environment consists of a 3 × 3 grid
world with 3 dead-end corridors (rows) separated by
impassable walls. The (bird) agent has four available

1Our optimization procedure adaptively samples reward
vectors in the unit sphere, as it can be shown that for the
(linear) form of the reward functions and for the agents pre-
sented here, searching this subset is equivalent to searching
the entire space. We further approximate infinite-horizon
average returns with returns over long finite horizons.
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actions which deterministically move the agent in each
of the cardinal directions. If the intended direction is
blocked by a wall or the boundary, the action results
in no movement. There is a (worm) food source ran-
domly located in one of the three right-most locations
at the end of each corridor. The agent has an eat

action, which consumes the worm when the agent is
at the worm’s location. After the agent consumes the
worm, the agent becomes satiated for 1 time step, and
the worm disappears. Immediately, a new worm ap-
pears randomly in one of the other two potential worm
locations. At all other time steps, the agent is hungry.
The agent observes the entire state: the agent’s loca-
tion, whether it is hungry, and the worm’s location.

The designer’s goal is to maximize worms eaten. Thus,
the objective reward function RE provides a reward of
1.0 when the agent eats a worm (i.e., is satiated) in
the current observation, and a reward of 0 otherwise.
We use the infinite-horizon average return function.

The agent and its bounds. Let Gd (short for
G(RI , d)) denote a depth-d planning model-based
learning agent—an agent that acts greedily with
respect to the d-step action-value function Qd(s, a) =∑
s′∈S T̂ (s′|s, a)[RI(s, a, s

′) + γmaxa′ Qd−1(s′, a′)]

where Q0(s, a)
def
= 0. (The agents use γ = 0.99 unless

noted otherwise.) If the values of multiple actions are
equivalent, the agent selects randomly among them.
The transition-dynamics estimates, T̂ , come from an
estimated MDP transition model (updated after every
action) based on the empirical transition probabilities
between assumed-Markov observations. Specifically,
let ns,a be the number of times that action a was
taken in state s. Let ns,a,s′ be the number of times
that s′ was reached after taking action a in state s.
The agent models the probability of reaching s′ after
taking a in state s as T̂ (s′|s, a) =

ns,a,s′

ns,a
.2

Thus, agent Gd is a simple example of a computation-
bounded agent in which the depth d is a parameter
controlling the degree of boundedness. More specif-
ically, agent G0 is a random agent, because its Q-
function is a constant 0; agent G1 acts greedily with
respect to its reward, and agent G∞ is an unbounded-
depth planning agent, computing the optimal value
function with respect to its current model and inter-
nal reward function. In experiment 1’s environment,
the largest (over all states) look-ahead needed to ob-
tain objective reward is 8. Thus we explore agents
with planning depths between 0 and 9, where G8,9 are
equivalent to G∞. Crucially, it is the inability of agent

2Before an observation-action pair is experienced (i.e.,
when ns,a = 0) the transition model is initialized to the

identity function: T̂ (s′|s, a) = 1 iff s′ = s.
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Figure 1. (a) Foraging domain used in Experiments 1 and
2. (b) Results from Experiment 1 on limited-depth plan-
ning, showing performance gains from using optimal inter-
nal rewards as a function of planning depth bound.

Gd<8 to encounter a confounded reward during plan-
ning from some states that we wish to mitigate via
internal rewards.

Internal reward space. The general form of
the rewards in all the experiments is RI(s, a, s

′) =
βTφ(s, a, s′, h,G), where β is a parameter vector, and
φ is a vector of features that may depend on states s
and s′, the action a, features of history h, and in some
cases on internal variables specific to the agent G.

Our choice of features for this domain is driven by
the following intuition. If an agent Gd<8 is more than
d steps away from the worm, what action should it
take? The agent could take random actions to ex-
plore randomly to achieve a state that is within d steps
from the worm, but this will be inefficient. A good re-
ward function would lead to some kind of systematic
and persistent exploration and would thus be far more
efficient. Specifically, we consider the reward space
RI(s, a) = βEφE(s) + βcφc(s, a, h), where βE and βc
are the two parameters, feature φE(s) is 1 when the
agent is satiated in state s and 0 otherwise, and fea-
ture φc(s, a, h) = 1 − 1

c(s,a,h) , where c(s, a, h) is the

number of time steps since the agent previously exe-
cuted action a in state s within history h. Feature φc
captures recency; the feature’s value is high when the
agent has not taken the indicated state-action pair re-
cently. When βc is positive, the agent is rewarded for
taking actions that it has not taken recently from the
current state. Note that when βE = 1 and βc = 0, the
internal reward is the confounded reward function.

Results. At each depth d ∈ {0, 1, · · · , 9}, we sepa-
rately optimized the internal reward function as mea-
sured by the mean objective return obtained during
a 10,000 step horizon. We then evaluated the con-
founded reward function RE and the approximate best
internal reward R̂∗Id at each depth d for 200,000 steps,
averaged over 200 trials, to estimate the expected
asymptotic objective return of each reward function.

As can be seen in Figure 1(b), the internal reward func-
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Table 2. Results from Experiment 2 on the Bounded-State
Agent in the Foraging Environment.

Agent type βE βc E[RE ] per step
Random 0 0 0.0060 ± 2.46e-5
Conventional; FRE 1 0 8.6e-6 ± 4.55e-7
F -Optimal; FR̂∗

I
0.147 0.989 0.0745 ± 2.15e-4

Unbounded N/A N/A 0.1153 ± 2.90e-5

tion R̂∗Id performs at least as well as the objective re-
ward function at all planning depths. When the plan-
ning depth is 0, both agents do not plan and simply act
randomly. When the planning depth is 8 or more, the
agent is in effect unbounded for this environment and
the confounded reward acts optimally and no internal
reward can do better. Between these two extremes,
however, the use of internal reward greatly benefits the
agent, and in some cases, G(FR̂∗I d

, d) performs as well

or better than G(FRE , d + 2). These results are con-
sistent with a general pattern that might be expected
to hold across other kinds of agent bounds and envi-
ronments: the benefit of internal reward reaches its
maximum at some intermediate level of boundedness,
but approaches zero as the agent either approaches
the unbounded agent at one extreme, or a degenerate
(perhaps random) agent at the other extreme.

3.2. Experiment 2: Mitigating bounds on state
representation

The objective here is to show that internal rewards
based on the same recency features as used in Ex-
periment 1 can mitigate a different kind of agent-
limitation, that of impoverished state representation.

The environment and designer’s goals. Identi-
cal to Experiment 1, with one exception. In contrast
to Experiment 1, the agent observes only its location,
whether or not it is hungry, and whether or not it is
colocated with the worm; the agent cannot see the
worm unless it is colocated with it.

The agent and its bounds. The agent is an ap-
proximately unbounded-depth planning model-based
learning agent G∞. The decision process faced by the
agent is not an MDP. Nevertheless, the agent uses the
same model-learning procedure as was used in the pre-
vious experiment (the agent continually updates an
estimated MDP model as if observations were Markov
state). Given that the agent cannot observe the loca-
tion of food, it cannot plan even with its infinite-look-
ahead to go to it in the shortest path. Also, given that
the agent’s observations do not tell it what locations
it has visited since the last time it ate food (and hence
should be known to be empty locations), it cannot plan

to avoid exploring locations that should be known not
to have food based on the agent’s history.

The reward space. We use the recency reward
space, as described above in Experiment 1.

Results. In Table 2, we compare the agent G∞ using
the confounded return function FRE with the agent
using the best internal return FR̂∗I

. Each estimated

value is the mean objective utility obtained per step
over 200, 000 steps, averaged over 200 trials. This ta-
ble also shows the specific values of reward parame-
ters; noteworthy is the relatively large coefficient for
the recency feature relative to the coefficient for the
confounded-reward feature. Additionally, we compare
against two reference agents: a random agent, and an
unbounded belief-state agent. The unbounded belief-
state agent learns a POMDP model that helps the
agent keep track of which potential food locations it
has visited since the most recent time it ate, and it
accounts for changes in belief during planning. As can
be seen, the best internal reward performs much better
than the objective reward, much better than a random
agent, and not quite as well as the unbounded belief-
state agent. The internal reward manages to achieve
this despite being coupled with a model that is wholly
inadequate at predicting the food location.

3.3. Experiment 3: Mitigating bounds on
model representation

The objective here is to introduce local model accu-
racy, another general reward feature, and show that it
can mitigate boundedness arising when an agent can-
not model its environment uniformly accurately.

The environment and designer’s goals. Figure
2(b) illustrates the Dark Room environment. After
the worm is eaten, a new worm appears in the other
right corner. Unlike Experiments 1 and 2, the agent’s
movement is stochastic—each movement action fails
with probability 0.1, resulting in movement in a ran-
dom direction. The special feature of this world is the
dark room in the center spanning two locations. The
agent’s location sensor cannot distinguish the two lo-
cations inside the dark room but works perfectly out-
side the dark room. The agent always perceives the
location of the food and whether it is hungry.

The agent and its bounds. The agent is an infinite-
depth planning model-based learning agent (G∞).
The agent assumes a factored model of the three state
variables—Agent Location, Food Location, and Hun-
gry. Figure 2(a) depicts a graphical model of the fac-
tored assumptions that were designed to compactly
but accurately capture the structure in the original
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(b) Dark Room Environment

(c) Windy Environment(a) Independence Assumptions

Figure 2. Model and Environments in Experiments 3 & 4.

fully-observable 3-Corridor foraging environment of
experiments 1 & 2. However, the Dark Room envi-
ronment violates the agent’s Markov assumption for
the location variable—in the dark room, the agent’s
next location observation is not independent of the his-
tory given its current location observation. The agent
learns the probabilities of each component of the fac-
tored model using empirical counts, as was done for
the unstructured modeling agents above.

The reward space. We include in the reward fea-
ture space two new environment-independent features.
The first is a feature that estimates the quality of the
agent’s model as a function of state. The intuition is
that such a feature might be exploited by the optimal
reward function to motivate the agent to avoid areas
it has difficulty modeling.

The specific model-error reward feature we formulate,
φδ, keeps a simple moving average of the recent errors
in each component model. For a correct model, the
expected value of the parameters3 in our model-error
feature will be zero. However, they will tend to fluctu-
ate around 0 in a stochastic environment. It is for this
reason that the foraging environment has been modi-
fied to include stochastic movement—to show that the
reward can distinguish between stochastic dynamics

3 Mathematically, let si denote the value of state fea-
ture i in state s, and let π(i) denote the set features that
feature i depends on in the previous state. We will re-
fer to π(i) as the parents of i. The agent’s transition

model is T̂ (s′|s, a) =
∏
i T̂i(s

′
i|sπ(i), a). For the model-error

feature, we keep a parameter µsπ(i),a,s
′
i

for each unique

〈sπ(i), a, s
′
i〉 tuple. After observing a transition from state

s to state s′, each component model has instantaneous er-

ror δ = 1−T̂i(s′′i |sπ(i), a) if s′′i = s′i and δ = −T̂i(s′′i |sπ(i), a)
if s′′i 6= s′i. Each error parameter matching the condi-
tioned state and action features is then updated according
to µ ← µ + 0.1(δ − µ), where each µ is initialized to 0.
These errors are then averaged across component models:
φδ(s, a, s

′) = 1
3

∑
i(µi,sπ(i),a,s

′
i
)2.

and an erroneous model.

One challenge in designing a model-building agent
which is motivated to avoid states in which it has a
bad model is that it will start with a bad model. To
motivate the agent to build its model in the first place,
we provide an additional reward feature φn(s, a) which
is inversely proportional to how often action a has been
taken in state s4. A positive coefficient for this feature
would encourage the agent to experience state-action
pairs it hasn’t experienced often. The feature is by def-
inition transient and its magnitude decreases steadily
with increased experience.

In summary, the reward space we provide to the meta-
optimization procedure is defined by RI(s, a, s

′) =
βEφE(s) + βδφδ(s, a, s

′) + βnφn(s, a).

Results. Table 3 presents the performance of the
factored-model agent in the Dark Room environment
(and Windy, described next). Each estimated value
is the mean objective utility obtained per step over
200, 000 steps, averaged over 200 trials. We tested the

factored agent with the following set of rewards: RI
def
=0

(this corresponds to random behavior), the objective
reward RE , and the estimate of the optimal internal
reward R̂∗I . In addition, we present as an approxima-
tion of the optimal agent the performance of the best
agent which avoids the difficult-to-model state(s)5.

The best internal reward significantly outperforms the
agent with confounded reward. The latter is unable
to learn to navigate up or down in the dark room;
instead it repeatedly enters and exits the dark room
on the same side, expecting to sometimes appear on
the other side. The best internal rewards motivate
behavior that avoids the room, instead going around
the long way.

3.4. Experiment 4: Mitigating bounds on
model representation, redux

The best internal reward in Experiment 3 is the result
of a careful tuning (optimization) of the reward coeffi-
cients βE , βδ, and βn. Although the sign of these coef-
ficients (positive, negative, and positive, respectively)
is consistent with our expectations, their precise val-
ues are not something we had sharp intuitions about,
and they may be determined largely by very specific

4Specifically, we use the reward feature φn(s, a) =
1
3

∑
i

1
nsπ(i),a

+1
, where nsπ(i),a is the number of times ac-

tion a was taken when the features in the parent set of i
matched sπ(i). See footnote 3 for the definition of π.

5In the Dark Room domain, the unbounded agent is
the belief-state agent, but we do not present that agent’s
performance here.
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Table 3. Factored Model Agent in Dark Room and Windy Environments (Experiments 3 & 4).

Reward parameters Dark Room Windy
Agent Type βE βδ βn mean RE per step mean RE per step
Random 0 0 0 0.0044 ± 1.67e-5 0.0018 ± 3.03e-5
Conventional, FRE 1 0 0 0.0138 ± 2.43e-3 0.0335 ± 4.56e-3
F -Optimal (Dark Room), FR̂∗

I
0.267 -0.963 0.047 0.0895 ± 7.82e-5 0.0782 ± 3.18e-4

F -Optimal (Windy), FR̂∗
I

0.219 -0.975 0.048 0.0896 ± 4.38e-5 0.0806 ± 2.15e-4

Rounded, FRI 0.25 -1 0.05 0.0896 ± 6.89e-5 0.0801 ± 1.73e-4
Optimal N/A N/A N/A 0.0903 ± 1.23e-5 0.0826 ± 9.34e-6

properties of the domain. It is therefore interesting to
begin exploring how effective such specific rewards are
when transferred to related but distinct domains, and
this is one of the key objectives of Experiment 4.

The environment. Figure 2(c) illustrates the Windy
environment. It shares the basic properties of the Dark
Room environment—stochastic movement, unique lo-
cation identifiers. The food source is in one of two
locations, either the location pictured, or the location
currently occupied by the agent. But instead of a dark
room, this world has a different twist—there is a giant
fan in the bottom-middle location. At all times, the
fan directs a forceful wind in the direction away from
the worm. If the agent is in the fan’s location, its ac-
tion will fail with probability 0.95 and the agent will
transition to the state in the direction opposite from
the worm. Otherwise, the attempted movement pro-
ceeds as normal, with another 0.10 chance of failing as
in other locations.
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Figure 3. Acrobot, Experiment 5.

The agent and its bounds. The agent is identical
to that in Experiment 3. The Dark Room environment
violated the Markov assumption in the factored model
for the location variable but all other independence as-
sumptions were accurate. The Windy environment, on
the other hand, violates the independence assumption
that the agent’s next location is independent of the
current location of the worm—when co-located with
the fan, the next location is correlated with the worm’s
location. The factored agent with the objective reward
attempts to push its way through the fan, though it is
more efficient to walk around the long way.

The reward space. Identical to Experiment 3.

Results. Table 3 presents the results for the Windy
environment. As in Dark Room, the agent with the
best internal reward for Windy significantly outper-
forms the conventional agent. Table 3 also shows the
performance of the agent in the Dark Room world
when provided with the best Windy world reward, and
vice versa. We also tested a single reward function de-
rived by simply rounding off the β-coefficient values
found optimal in both the Dark Room and Windy en-
vironments. All of the internal rewards, including the
rounded reward, perform well in both environments,
significantly outperforming the conventional agent and
nearly closing the gap to the optimal agent (that takes
the long way around). This is a small and preliminary
illustration that the practice of reward design based on
domain-independent features may yield reward func-
tions that are robust across different environments.

3.5. Experiment 5: Mitigating bounds on
function approximation and learning

The objective of this experiment is to extend our em-
pirical work to a domain not constructed by us, and
to learning agents with function approximation.

The environment and designer’s goals. The Ac-
robot environment shown in Figure 3(a) is a popular
research task, because it requires a non-trivial control
policy and has a continuous state space. The fully-
observable state space is 4 dimensional, with two joint
angles θ1 and θ2, and two joint velocities θ̇1 and θ̇2.
The agent’s control is limited to applying torque to
the indicated joint.

The version of Acrobot we use is exactly as specified
by Sutton and Barto (1998). The task is episodic, and
the goal is to minimize the number of time steps it
takes the agent to raise the tip above a line equivalent
to one arm’s length above the fixed joint. Because
we are interested in learning performance, we use an
objective return function which negatively counts the
number of time steps required to complete 50 episodes.

The agent and its bounds. The agent we use is a
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Q-learning agent which approximates the Q-function
using the coarse coding specified in Sutton and Barto
(1998), with one slight modification. The referenced
scheme uses 48 layers, each slicing the space along dif-
ferent subsets of dimensions. Each dimension is cut
into k bins. Whereas the referenced implementation
uses k = 6 for the angle features and k = 7 for the
velocities, we used the same k in all dimensions and
repeated our experiment for various values of k. We
used a learning rate of α = 0.1/48 and initialized the
Q-function to 0. The discount factor is γ = 1.

This agent is bounded in two important ways. First,
it is unlikely that Q-learning is an optimal learning al-
gorithm. Second, the agent is bounded by its choice of
function approximation. Like the depth limited plan-
ning case, the agent designer will be constrained in
this choice by computational resource limits. Unlike
the depth-limited planning agent, however, the opti-
mal choice of resolution k is not clear—smaller values
of k results in increased generalization, but can result
in more errors induced by the approximation.

The reward space. The reward space we use is of
the form βE + βhh where h ∈ [−1, 1] is the height of
the tip, and the goal height is h = 0.5. Note that
setting 〈βE = −1, βh = 0〉 implements the objective
reward function from Sutton and Barto (1998), while
〈βE = .5, βh = .5〉 effectively implements the objective
reward function from Weaver and Tao (2001).

Results. The results are pictured in Figure 3(b). Ex-
cept for the resolution k = 2, where the value function
is too impoverished to take advantage of the height
information, the internal reward helps at all resolu-
tions. The best internal reward found was approxi-
mately RI(s, a) = −0.1 + h at all resolutions. It is
clear from the graph that, starting from many initial
resolutions θ, it can be more beneficial to optimize the
reward function RI than to further optimize θ.

4. Discussion and Future Directions

Future work should develop strong theoretical results
justifying internal reward features which match agent
limitations with environment properties. A recent line
of research in RL has provided a few results that can be
interpreted as providing examples, e.g., Kolter & Ng
(2009) showed that adding reward inversely propor-
tional to how often a state-action pair has been visited
leads to performance that catches up in polynomial
time to an unbounded (Bayes-optimal) agent. This
paper provides a broader and clearer context by explic-
itly motivating the use of internal reward as mitigating
agent boundedness. As one example of the import of

the broader context, we note that Kolter & Ng’s (and
others, e.g., Strehl & Littman (2005)) results as well as
the results on reward shaping (Ng et al., 1999) focus
on achieving fast convergence to asymptotic behav-
ior. Our experiments in foraging environments with
consumable rewards that are renewed at unknown lo-
cations showed forms of agent boundedness for which
it is optimal to explore persistently and never con-
verge. Another consequence of the broad context of
our claim of internal rewards mitigating agent bound-
edness is that it opens up the possibility (illustrated
here empirically) of characterizing different fundamen-
tal forms of boundedness and corresponding general
reward features that allow for mitigation by internal
rewards. Finally, while we focused on artificial agents
in this paper, some of the implications of internal re-
wards for natural agents where evolution plays the role
of agent-designer were explored in Singh et. al. (2009).
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