
Planning with Predictive State Representations

Michael R. James
University of Michigan
mrjames@umich.edu

Satinder Singh
University of Michigan

baveja@umich.edu

Michael L. Littman
Rutgers University

mlittman@cs.rutgers.edu

Abstract

Predictive state representation (PSR) models for con-
trolled dynamical systems have recently been proposed
as an alternative to traditional models such as partially
observable Markov decision processes (POMDPs). In
this paper we develop and evaluate two general planning
algorithms for PSR models. First, we show how plan-
ning algorithms for POMDPs that exploit the piece-
wise linear property of value functions for finite-horizon
problems can be extended to PSRs. This requires an
interesting replacement of the role of hidden nominal-
states in POMDPs with linearly independent predic-
tions in PSRs. Second, we show how traditional rein-
forcement learning algorithms such as Q-learning can
be extended to PSR models. We empirically evaluate
both our algorithms on a standard set of test POMDP
problems.

1 Introduction

Planning in stochastic dynamical systems involves us-
ing a model of the system to compute near-optimal
policies (mappings from system state to actions). Pre-
dictive state representations (PSRs) are a recently de-
veloped [7] model for controlled dynamical systems. A
wide range of applications can be viewed as control-
ling a dynamical system. Thus far, research on PSRs
has mostly concentrated on learning PSR models from
data gathered through interaction with a real system
(though see an extended abstract by [6] on policy iter-
ation for PSRs). It has been speculated [9] that PSR
models will be easier to learn than other stochastic
models such as POMDPs, due to PSRs being based
only on observable quantities, while other models are
based on hidden or unobservable nominal-states. Given
this advantage, it is important to develop algorithms
for planning in PSR models. In this paper we present
two such algorithms.

Our first PSR planning algorithm is an extension of
the POMDP value iteration algorithm called incremen-
tal pruning [13]. The incremental pruning (IP) algo-

rithm calculates a series of value functions that, in the
limit, approach the optimal value function. The opti-
mal policy is easily calculated from the optimal value
function. When applied to POMDPs, POMDP-IP de-
pends on the fact that these value functions are piece-
wise linear functions of probability distributions over
underlying POMDP nominal-states. However, in PSRs
there is no notion of nominal-states, and so a replace-
ment must be found that both allows the value function
to be calculated correctly, and ensures that the value
function remains piecewise linear over this replacement.
In addition, the chosen replacement creates the poten-
tial for inefficiency when calculating the series of value
functions. We develop an approach to compensate for
this inefficiency in the PSR-IP algorithm.

Our second algorithm is an application of reinforce-
ment learning to PSRs. We use Q-learning on a known
PSR by making use of the PSR’s current representation
of state. The current representation of state is contin-
uous, so some form of function approximation must be
used. This algorithm learns an (approximately) op-
timal value function through interaction with the dy-
namical system.

2 PSRs

We consider finite, discrete-time controlled dynamical
systems, henceforth dynamical systems, that accept ac-
tions from a discrete set A, produce observations from
a discrete set O, and produce rewards from a discrete
set R. In this section we present the formalism of PSR
models from [7] and then extend it to deal explicitly
with rewards (which were ignored in the original PSR
definition or equivalently treated implicitly as part of
the observation).

PSRs are based on the notion of tests. A test t is a
finite sequence of alternating actions and observation,
i.e., t ∈ {A × O}∗. For a test t = a1o1 · · ·akok, its
prediction given some history h = a1o1 . . . anon, de-
noted p(t|h), is the conditional probability of seeing
test t’s observation sequence if test t’s action sequence
is executed from history h: p(t|h) = prob(on+1 =

o1 . . . on+k = ok|h, an+1 = a1 . . . an+k = ak).
Littman et. al. [7] show that for any dynamical sys-

tem, there exists a set of tests Q = {q1 . . . qn}, called
the core tests, whose predictions are a sufficient statis-
tic of history. In particular, they showed that for any
test t,

p(t|h) = p(Q|h)T mt

for some weight vector mt and where p(Q|h) =
[p(q1|h) . . . p(qn|h)]. The vector of predictions for the
core tests, p(Q|h), is the state representation of PSRs.
The state vector in a PSR is called a prediction vector
to emphasize its defining characteristic. Thus, state in
a PSR model of a system is expressed entirely in terms
of observable quantities; this sets it apart from hidden-
state based models such as POMDPs and is the root
cause of the excitement about PSRs.

The prediction vector must be updated as actions are
taken and observations received. For core test qi ∈ Q:

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

pT (Q|h)maoqi

pT (Q|h)mao
(1)

We can more easily write the prediction vector up-
date by defining (|Q| × |Q|) matrices Mao for every
a ∈ A, o ∈ O, where column i of Mao is the vector
maoqi . Using this notation, the prediction vector up-
date can be written

p(Q|hao) =

(

pT (Q|h)Mao

pT (Q|h)mao

)T

(2)

Thus, a linear-PSR (henceforth just PSR) is specified
by the set of core tests Q; the model parameters:
mao and Mao for all a ∈ A and o ∈ O; and an initial
prediction vector p(Q|φ), where φ is the null history.
The next step is to incorporate reward.

2.1 Modeling reward in PSRs

Our approach to adding reward to PSRs is to treat re-
ward as an additional observation. The term result
is used to denote a (reward, observation) pair (r, o).
Thus, tests take the form of t = a1(r1o1) . . . ak(rkok)
and histories take the form h = a1(r1o1) . . . an(rnon).
For the remainder of this paper, we assume that all
PSRs include both observations and rewards. Given
an n-dimensional PSR for actions a ∈ A, observations
o ∈ O, rewards r ∈ R, let the prediction vector at time
t be p(Q|ht). For action a, result (r, o) has probabil-
ity pT (Q|ht)ma,(r,o), for the parameter vector ma,(r,o)

(this parameter vector is part of the model and is thus
known). Therefore, we can calculate the probability of

reward r and observation o separately by:

prob(r|ht, a) =
∑

o∈O

pT (Q|ht)ma,(r,o)

= pT (Q|ht)
∑

o∈O

ma,(r,o),

and

prob(o|ht, a) =
∑

r∈R

pT (Q|ht)ma,(r,o)

= pT (Q|ht)
∑

r∈R

ma,(r,o)

Furthermore, we can calculate the expected immedi-
ate reward R(ht, a) for action a at history ht

1:

R(ht, a) =
∑

r∈R

r prob(r|ht, a)

=
∑

r∈R

(

rpT (Q|ht)
∑

o∈O

ma,(r,o)

)

= pT (Q|ht)
∑

r∈R

(

r
∑

o∈O

ma,(r,o)

)

= pT (Q|ht)na (3)

where Equation 3 defines the (n×1) reward-parameter
vector na (for all a ∈ A) as a linear combination of the
parameter vectors. Thus, given an action, the expected
immediate reward is a linear function of the prediction
vector. This is somewhat surprising because it suggests
that there is a scalar reward for every core test outcome
and that the current expected reward is the expected
reward over core test outcomes.

In [7], it was shown that PSRs can model any dy-
namical system that can be expressed as a POMDP, a
common model for controlled dynamical systems with
partial observability. That result extends straightfor-
wardly to PSRs with reward. Next we define POMDP-
based models of dynamical systems.

3 POMDPs

A POMDP [4] is defined by a tuple <
S,A,O,R, T, O, R, b0 >, which includes the sets
A,O, and R defined above, along with the set S which
contains n unobservable nominal-states. In this paper,
we will express the transition (T), observation (O),
and reward functions (R) in vector notation. The set
T consists of (n × n) transition matrices T a, for every

1here we assume that the rewards are labeled with their value,
i.e., reward r has value r

a ∈ A. The entry T a
i,j is the probability of a transition

from nominal-state i to nominal-state j when action
a is selected. The set O consists of (n × n) diagonal
matrices Oa,o for every a ∈ A and o ∈ O. The entry
Oa,o

i,i is the probability of observation o occurring when
in nominal-state i and action a is selected.

The state in a POMDP is a belief state b, i.e., a
probability distribution over nominal states where bi is
the probability that the nominal state is i. The belief
state is updated as follows: upon taking action a in
current belief state b and observing o, the new belief
state b′ is

b′ =
bT T aOa,o

bT T aOa,o1n

where 1n is the (n×1) vector of all 1s. An initial belief
state is specified in the definition of a POMDP.

For a POMDP with n nominal-states, rewards are
defined by a set R of (n×1) vectors ra for every a ∈ A.
The ith entry in ra is the reward received in nominal-
state i when taking action a. Thus, the expected re-
ward when taking action a in belief state b is simply

R(b, a) = bT ra

With these definitions of PSRs and POMDPs in place,
we now address the planning problem for PSRs.

4 Value Iteration

In this section, we define a planning algorithm for
PSRs by extending a POMDP value iteration algo-
rithm. Value iteration algorithms proceed in stages.
The value function at stage i is denoted Vi. A dynamic
programming update transforms Vi to Vi+1, taking into
account the one-step system dynamics and one-step re-
wards. In the limit as i → ∞, the value function Vi will
approach the optimal value function. Typically, value
iteration is concluded when the difference between two
successive value function approximations is sufficiently
small.

It is easily shown that for all i value function Vi is a
piecewise linear function over belief states. Each linear
facet of Vi corresponds to a policy tree (see Littman [8]
for details). Each policy tree ρ has an associated vector
wρ as well as a policy consisting of an initial action and,
for each observation, another (one step shorter) pol-
icy tree. The vector wρ is a linear function over belief
states such that bT wρ gives the expected discounted re-
ward obtained by following ρ’s policy from belief state
b. Without loss of generality, assume a policy tree ρ
specifies a single initial action a, plus a new policy tree
ρo for every observation o. The value for policy tree ρ

at belief state b is

Vρ(b) = R(b, a) + γ
∑

o∈O

prob(o|b, a)Vρo (b′)

= bT ra + γ
∑

o∈O

prob(o|b, a)
bT T aOa,o

prob(o|b, a)
wρo

= bT ra + γ
∑

o∈O

bT T aOa,owT
ρo

= bT wρ (4)

The matrices T a and Oa,o and the vectors ra have
entries corresponding to each nominal-state, thus im-
plicit in these equations are summations over nominal-
states. We point out here that nominal-states serve as
the basis on which these equations are built.

The value function Vi is represented using a set Si

of vectors wρ, one corresponding to each policy tree ρ.
The value function itself is the the upper surface over
all vectors wρ ∈ Si. A single stage of value iteration
can be viewed as transforming the set Si to Si+1. Note
that, for efficiency, all sets S should have minimal size.

There has been much work in the development of effi-
cient value iteration algorithms. The incremental prun-
ing algorithm [13] has emerged as one of the fastest.
We present this algorithm next, with details relevant
to extending this algorithm to work on PSRs.

4.1 Incremental Pruning on POMDPs

The IP algorithm is best described as a method for
transforming the set Si to Si+1 via a series of interme-
diate sets. We present the basic POMDP-IP algorithm
as defined in [3]. For vector notation, vector sums are
componentwise, and we define the cross sum of two sets
of vectors: A ⊕ B = {α + β|α ∈ A,β ∈ B}. Given a
set Si, there are two intermediate sets used to calculate
Si+1. They are

Sa
o = purge({τ(α, a, o)|∀α ∈ Si}) (5)

Sa = purge

(

⊕

o

Sa
o

)

(6)

Si+1 = purge

(

⋃

a

Sa

)

(7)

where τ(α, a, o) is the |S|-vector given by

τ(α, a, o)(s) = (8)

(1/|O|)ra(s) + γ
∑

s′

α(s′)prob(o|s′, a)prob(s′|s, a)

where the purge routine (also called filtering) takes a
set of vectors and returns only those vectors necessary

to represent the upper surface of the set. Here, we use
Lark’s algorithm [8] to purge. This involves solving a
linear program for each vector, giving a belief state for
which that vector is optimal, or returning null if that
vector is not optimal at any belief state.

Recall that a single stage of value iteration algo-
rithms (including IP) transforms the set Si to the set
Si+1. For IP, this transformation is accomplished in
equations 5, 6, and 7. The sets in Equations 5 and
7 are constructed in a straightforward manner, while
Equation 6 makes use of the fact that

purge(A ⊕ B ⊕ C) = purge(purge(A ⊕ B) ⊕ C) (9)

This incremental construction of Sa is the key to the
performance benefits of incremental pruning, as well
as providing its name. We now present the details of
extending the IP algorithm to work on PSRs.

4.2 Incremental Pruning on PSRs

The problem of extending IP to PSRs involved two
major questions. In POMDP-IP, the value function
was a function of belief state, which used the under-
lying nominal-states. However, there are no underly-
ing nominal-states in PSRs, so the first question was
whether the value function could be expressed as a
function of some PSR-based replacement. The second
question concerns the fact that IP algorithm depends
on the value function being piecewise linear. Given a
PSR-based replacement, it was unknown whether the
value function would retain this essential property.

To answer these questions for PSR-IP, we make use
of policy trees. In the context of PSRs, a policy tree will
define a linear function over PSR prediction vectors, as
well as the policy as defined for POMDP policy trees
above. We now show that this linear value function
represents the expected reward for that policy. We do
this with an inductive proof.

Lemma 1 For PSRs, every policy tree has an asso-
ciated function that calculates the expected discounted
reward at every PSR prediction vector. This function
is linear in the PSR prediction vector.

Proof (inductive step) Given a policy tree ρ with
initial action a and policy trees ρo for every observa-
tion o. Assume that the expected discounted reward
functions for all ρo are linear functions of the predic-
tion vector so can be written as (n × 1) vectors wρo .
The expected discounted reward for tree ρ at history h
is

Vρ(h)

= R(h, a) + γ
X

o∈O

prob(o|a, h)Vρo(hao)

= p(Q|h)T na + γ
X

o∈O

“

p(Q|h)T ma,o

”“

p(Q|hao)T wρo

”

= p(Q|h)T na + γ
X

o∈O

p(Q|h)T ma,o

„

p(Q|h)T Ma,o

p(Q|h)T ma,o

«

wρo

= p(Q|h)T na + γ
X

o∈O

p(Q|h)T Ma,owρo

= p(Q|h)T na + γp(Q|h)T
X

o∈O

Ma,owρo

= p(Q|h)T

na + γ
X

o∈O

Ma,owρo

!

(10)

note that
wρ = na + γ

∑

o∈O

Ma,owρo (11)

is a (n × 1) vector, and so Vρ(h) is a linear function of
p(Q|h).

(initial step) A one-step policy tree ρ1 specifies a
single action, so the expected reward for ρ1 is defined
by equation 3, which shows it to be a linear function of
the prediction vector. !

Theorem 1 For PSRs, the optimal value function Vi

is a piecewise linear function over prediction vectors.

Proof From Lemma 1, Equation 11 defines the pol-
icy tree value function for PSRs as the vector wρ. More-
over, given a set Si of vectors for i step policy trees,
at a given prediction vector, the policy tree with high-
est expected reward define the optimal value function
at that prediction vector. Therefore, Vi is defined by
the upper surface of the expected reward functions for
all policy trees, and is a piecewise linear function over
PSR prediction vectors. !

Given these facts, it is now possible to implement PSR-
IP by using equation 11 to calculate the policy tree
value function for PSRs.

The equations used in this proof are all based on
the PSR core tests, rather than nominal-states as used
by POMDPs. In effect, we have changed the basis
for calculating the value of policy trees from POMDP
nominal-states to PSR core tests. This change retains
the important properties of the policy tree vector wρ,
while moving away from the unobservable nominal-
states to observable core tests. Additionally, we have
shown that the value function Vi remains a piecewise
linear function, although now it is a function of PSR
prediction vector.

Although this version of PSR-IP is theoretically cor-
rect, the use of prediction vectors introduces a problem.
Consider the purge subroutine of POMDP-IP. For a
given policy tree, the routine finds a belief state for
which that policy tree has a higher value than all oth-
ers. The same routine is used with PSRs, except that
a prediction vector is found. While there are simple
constraints on when a belief state is valid2 (all entries
are between 0 and 1, and the sum of all entries is 1),
the problem is that there is not a simple analogue to
these constraints for prediction vectors. For instance,
all entries of a prediction vector must be between 0 and
1, but this alone does not guarantee that the prediction
vector will make legal predictions.

The result is that the purge routine for a given pol-
icy tree may return an invalid prediction vector. Thus,
some trees may be added which are not optimal for
any valid prediction vector. This does not invalidate
the PSR-IP algorithm (the optimal policy trees for all
valid prediction vectors will remain), but it does mean
that extraneous trees may be added. This may have
a highly detrimental effect on the efficiency of the al-
gorithm. This effect can be mitigated by adding ad-
ditional constraints to the linear program used in the
purge routine. For instance, a possible constraint may
be that all one-step predictions must be between 0 and
1. We present a list of potential constraints for predic-
tion vector p; these are based on probabilistic equations
which must hold for valid dynamical system behavior.

1. For every entry pi of p: 0 ≤ pi ≤ 1.

2. For every action sequence a1...an:
∑

o1,...on,r1...rn
pT ma1,(o1,r1)...an(on,rn) = 1.0.

3. For every action/result sequence
a1, (o1, r1), ...an, (on, rn): 0 ≤
pT ma1,(o1,r1)...an(on,rn) ≤ 1.0.

4. Constrain all one-step extensions of the core tests
qi. This ensures that every next prediction vector
will have entries within the range (0-1). For every
core test qi and action/result pair a, (o, r) : 0 ≤
pT ma,(o,r)qi ≤ 1.0.

5. A stricter upper bound on 4 can be found by not-
ing that, for every core test qi and action/result
pair a, (o, r) : 0 ≤ pT ma,(o,r)qi ≤ pT ma,(o,r).

6. The prediction vector must correctly predict each
core test. For core test qi with corresponding entry
pi, pT mqi = pi.

2We say that a belief state or prediction vector is valid when
all future predictions satisfy the laws of probability. Examples
are given in the list of possible constraints.

Experimentation on the utility of these constraints is
presented in section 6.1. The use of these constraints
on valid prediction vectors is key in the development of
value iteration algorithms for PSRs.

Although in this paper we focused on IP, the main
ideas developed here can be used to extend many other
POMDP value iteration-based planning algorithms to
PSRs. Next, we turn to another classical planning al-
gorithm.

5 Q-learning on PSRs

Many successful applications of reinforcement learning,
e.g., [11, 5] use a model-free learning algorithm like Q-
learning on simulated experience from a model of the
environment. Q-learning applied in this way becomes
a planning algorithm and we extend this idea to PSR-
based models of dynamical systems.

We implemented the Q-learning algorithm [12], using
prediction vectors as the state representation. The pre-
diction vectors exist in a continuous multidimensional
space, and so function approximation was necessary.
We used a separate action-value function approximator
for each action. The function approximators used were
CMACs [1], a grid-based method that uses r overlap-
ping grids, each spanning the entire space of prediction
vectors, and each offset by a different amount. Ev-
ery grid partitions the space of prediction vectors into
equal-sized segments, and a value is learned for each
segment of each grid. Every prediction vector falls into
exactly one segment per grid. The action-value of a
prediction vector p and action a is the sum over all
grids of each grid’s action-value for the prediction vec-
tor, i.e.,

Q(p, a) =
∑

g

vg,a(ig(p)) (12)

where ig(p) returns the index of the partition in grid g
that p falls into, and vg,a(i) returns the value of parti-
tion i in grid g for action a. Given this function approx-
imation technique, Q-learning works as follows. Given
a current prediction vector p, action a, reward r, and
next prediction vector p′, let

δ = r + γmax
a′

Q(p′, a′) − Q(p, a). (13)

Update the appropriate partition of each grid g by

vg,a(ig(p)) = vg,a(ig(p)) + αδ (14)

where α defines the “per grid” learning rate. This up-
date is applied in an online fashion during interaction
with the PSR model of the dynamical system. The
actions for this interaction are chosen by an ε-greedy

Table 1: Test Problems and Results of IP on both POMDPs and PSRs

Problem POMDP PSR POMDP POMDP PSR PSR
nominal-states tests trees stages trees stages

1D maze 4 4 4 70 5 71
4x3 11 11 434 8 465 8
4x3CO 11 11 4 367 4 410
4x4 16 16 23 374 167 6
Cheese 11 11 14 373 16 399
Paint 4 4 9 339 10 371
Network 7 7 549 15 5 463
Shuttle 8 7 482 7 380 7
Tiger 2 2 9 68 9 75

policy [10]. The implementation of this algorithm was
a straightforward application of Q-learning using the
PSR prediction vector as the state representation.

6 Empirical Results

Although we showed that PSR-IP is theoretically
sound, it wasn’t clear how this extension would perform
in practice. In particular, without empirical testing it
was unknown how the use of constraints would affect
the performance of the algorithm. The Q-learning al-
gorithm was straightforward, but it was still unknown
how the effects of the CMAC function approximation
would affect performance and how the two algorithms
would perform relative to each other. In order to an-
swer these questions, we ran the algorithms on a set
of 9 standard POMDP test problems. The problems
are listed in Table 1, and all problem definitions are
available at [2].

We now present results for both algorithms: PSR-IP
and Q-learning on PSR prediction vectors using CMAC
function approximation.

6.1 Incremental Pruning with PSRs

Section 4.2 presents a list of constraints that may be
used in deciding whether a prediction vector is valid
during the purge routine. Constraint 1 is essential, and
can be added to purge’s linear program with no addi-
tional overhead, and so it is always used. The other
constraints all require extra computation in order to
be added to the linear program. There is a tradeoff
between the usefulness of a constraint and the amount
of time it requires to compute. We tested the con-
straints on the 4x4 problem, and found that constraint
4 had the best tradeoff between limiting invalid predic-
tion vectors and the amount of time required, and the

results for PSR-IP make use of this constraint.
As a baseline for PSR-IP, we also present the results

of running POMDP-IP for the same problems. Results
for both PSR-IP and POMDP-IP were generated by
running the problem for 8 hours, or until the maximal
difference between two successive value functions fell
below 1E-9, in which case we say that the problem has
completed. The number of trees reported is for the last
successful stage.

Table 1 presents the experimental results of both
PSR-IP and POMDP-IP. For POMDP-IP, the 4x3,
Network, and Shuttle problems did not complete; while
for PSR-IP, the 4x3, 4x4, and Shuttle problems did not
complete. The Network problem completed for PSR-
IP, but not for POMDP-IP. Investigating this led to an
interesting observation. POMDP models update belief
states using only the observations and not the rewards
while PSR models update prediction vector states us-
ing both the observations and rewards. In some con-
trolled dynamical systems, e.g., the Network problem,
it may be that the reward provides information about
state that is not obtained from the observations alone.
This can lead PSRs to have different and perhaps more
accurate state than POMDPs. This accounts for the
better performance of PSR-IP on the Network prob-
lem. On the other hand, the 4x4 problem completed
for POMDP-IP, but not for PSR-IP. This is due to
a lack of suitable constraints3, and so the number of
policy trees corresponding to invalid prediction vectors
grew too large, slowing the algorithm severely. Addi-
tionally, many of the completed problems had one or
two more policy trees for PSR-IP than for POMDP-IP.
This is also due to inadequate constraints. The devel-
opment of better constraints is an important area for
future work on value iteration algorithms on PSRs.

3All the constraints listed in Section 4.2 were tried for the 4x4
problem, but none allowed the problem to complete.

 0.18

 0.22

 0.26

 0.3

 0.34 1D with 12 grids, Alpha = 0.001

 0 10000 20000 30000
−0.05

 0

 0.05

 0.1

4x3 with 20 grids, Alpha = 0.0001

 0 600000 300000

−0.05

 0

 0.05

 0.1

 0.15
4x3CO with 12 grids, Alpha = 0.001

 20000 80000 140000 200000 0

 0.05

 0.1

 0.15

 0.2 4x4 with 20 grids, Alpha = 0.0001

 0 10000 20000 30000

 0
 0.04
 0.08
 0.12
 0.16
 0.2Cheese with 12 grids, Alpha = 0.001

 10000 40000 70000 100000
−0.2

−0.1

 0

 0.1

 0.2Paint with 20 grids, Alpha = 0.00002

 0 20000 40000 60000

−15

−5

 5

 15

 25Network with 15 grids, Alpha = 0.0001

 1e+06 4e+06 7e+06 1e+07

 0

 1

 2Shuttle with 20 grids, Alpha = 0.0001

 0 4000 8000 12000 16000

−35

−25

−15

−5

 5 Tiger with 12 grids, Alpha = 0.001

 0 2000 4000 6000 8000 10000

Figure 1: Results of Q-learning with CMAC on Test Problems: These graphs show the average reward per time
step given by the learned policies. The y-axis on all graphs is the average reward, and the x-axis is the number of
steps taken by the learning algorithm. Each graph is labeled with the problem, number of CMAC grids, and the
per grid learning rate.

To summarize, our empirical results show that PSR-
IP performed similarly to POMDP-IP for most prob-
lems. In the next section, we will use the final policy
trees obtained by PSR-IP in order to define the com-
parison policy against Q-learning.

6.2 Q-learning on PSRs

This section presents the results of Q-learning with
CMAC on PSRs on the nine problems of the previ-
ous section. The Q-learning algorithm ran for a large
number of steps (using a uniform random exploration
policy), stopping at regular intervals to test the current
learned policy. Testing was performed by executing
the greedy learned policy for a large number of steps4

without learning, and recording the average reward per
time step. Ten runs of this experiment were executed
per problem, resulting in the graphs seen in Figure 1.

Also presented in these graphs are the average re-
ward found by following the final policy found by PSR-
IP5 (the upper dashed line), and the average reward
found by following a uniform random policy (the lower
dashed line). These numbers were generated by aver-
aging the reward received under these two policies in
10 runs of length 1, 000, 000 each.

The parameters of the Q-learning algorithm included
the number of CMAC grids, the number of partitions
per dimension for each grid, and α, the per grid learn-
ing rate. The number of grids and α are listed in Figure
1 for each problem. The number of partitions for every
problem was 10, except for the 4x3CO problem, where
we used 20 grids.

As can be seen in the graphs, the Q-learning algo-
rithm performed quite well. On each problem, the pol-
icy for Q-learning approached the same level of perfor-
mance as the best policy found by PSR-IP. For 7 of
the 9 problems, the problems on which PSR-IP con-
verged (and 4x4), this corresponds to an optimal pol-
icy. Thus, for every problem with a known optimal
policy, Q-learning on PSRs converges to policies that
are optimal or nearly optimal.

7 Conclusion

We presented two algorithms for planning in PSRs. We
showed how the theoretical properties of POMDP-IP
algorithms extend to the PSR-IP algorithm. Empiri-
cal comparison of the more straightforward Q-learning
with CMACs on PSRs with PSR-IP showed that they
achieved similar asymptotic performance.

4this was set to a minimum of 100,000 in order to obtain a
large sample.

5For 4x4, we used the optimal policy found by POMDP-IP.

As future work, we are pursuing combining these
planning algorithms with methods for learning PSR
models in unknown controlled dynamical systems.

Acknowledgements: Satinder Singh and Michael
R. James were funded by NSF grant CCF 0432027.

References

[1] J.S. Albus. A theory of cerebellar function. Mathemat-
ical Biosciences, 10:25–61, 1971.

[2] A. Cassandra. Tony’s pomdp page.
http://www.cs.brown.edu/research/ai/
pomdp/index.html, 1999.

[3] Anthony Cassandra, Michael L. Littman, and Nevin L.
Zhang. Incremental Pruning: A simple, fast, exact
method for partially observable Markov decision pro-
cesses. In Dan Geiger and Prakash Pundalik Shenoy,
editors, Proceedings of the Thirteenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI–
97), pages 54–61, San Francisco, CA, 1997. Morgan
Kaufmann Publishers.

[4] Anthony R. Cassandra, Leslie Pack Kaelbling, and
Michael L. Littman. Acting optimally in partially
observable stochastic domains. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1023–1028, Seattle, Wash-
ington, USA, 1994. AAAI Press/MIT Press.

[5] R. H. Crites and Andrew G. Barto. Improving elevator
performace using reinforcement learning. In Advances
in Neural Information Processing Systems: Proceed-
ings of the 1995 Conference, pages 1017–1023, 1996.

[6] Masoumeh T. Izadi and Doina Precup. A planning al-
gorithm for predictive state representations. In Eigh-
teenth International Joint Conference on Artificial In-
telligence, 2003.

[7] Michael L. Littman, Richard S. Sutton, and Satinder
Singh. Predictive representations of state. In Advances
In Neural Information Processing Systems 14, 2001.

[8] Michael Lederman Littman. Algorithms for sequential
decision making. Technical Report CS-96-09, 1996.

[9] Satinder Singh, Michael L. Littman, Nicholas K. Jong,
David Pardoe, and Peter Stone. Learning predictive
state representations. In The Twentieth International
Conference on Machine Learning (ICML-2003), 2003.

[10] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: an introduction. MIT press, 1998.

[11] Gerald Tesauro. Td-gammon, a self-teaching backgam-
mon program, achieves master-level play. Communi-
cations of the ACM, 38:58–68, 1995.

[12] C.J.C.H. Watkins. Learning from Delayed Rewards.
PhD thesis, Cambridge University, 1989.

[13] Nevin L. Zhang and Wenju Liu. Planning in stochastic
domains: Problem characteristics and approximation.
Technical Report HKUST-CS96-31, 1996.

