Convergence Results for Single-Step On-Policy
Reinforcement-Learning Algorithms

SATINDER SINGH baveja@cs.colorado.edu

Department of Computer Science
University of Colorado
Boulder, CO 80809-0430

TOMMI JAAKKOLA tommi@cse.ucsc.edu

Computer Science Department
University of California
Santa Cruz, CA 95064

MICHAEL L. LITTMAN mlittman@cs.duke.edu

Department of Computer Science
Duke University
Durham, NC 27708-0129

CSABA SZEPESVARI szepes@sol.cc.u-szeged.hu

Bolyai Institute of Mathematics
“Jozsef Attila” University of Szeged
Szeged 6720, Aradi vrt tere 1.
Hungary

Abstract. An important application of reinforcement learning (RL) is to finite-state control
problems and one of the most difficult problems in learning for control is balancing the explo-
ration/exploitation tradeoff. Existing theoretical results for RL give very little guidance on rea-
sonable ways to perform exploration. In this paper, we examine the convergence of single-step
on-policy RL algorithms for control. On-policy algorithms cannot separate exploration from learn-
ing and therefore must confront the exploration problem directly. We prove convergence results
for several related on-policy algorithms with both decaying exploration and persistent exploration.
We also provide examples of exploration strategies that can be followed during learning that result
in convergence to both optimal values and optimal policies.

Keywords: reinforcement-learning, on-policy, convergence, Markov decision processes

1. Introduction

Most reinforcement-learning (RL) algorithms (Kaelbling et al., 1996; Sutton &
Barto, 1997) for solving discrete optimal control problems use evaluation or value
functions to cache the results of experience. This is useful because close approxima-
tions to optimal value functions lead directly to good control policies (Williams &
Baird, 1993; Singh & Yee, 1994). Different RL algorithms combine new experience
with old value functions to produce new and statistically improved value functions
in different ways. All such algorithms face a tradeoff between exploitation and ex-

2 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

ploration (Thrun, 1992; Kumar & Varaiya, 1986; Dayan & Sejnowski, 1996), i.e.,
between choosing actions that are best according to the current state of knowledge,
and actions that are not the current best but improve the state of knowledge and
potentially yield higher payoffs in the future.

Following Sutton and Barto (1997), we distinguish between two types of RL
algorithms: on-policy and off-policy. Off-policy algorithms may update estimated
value functions on the basis of hypothetical actions, i.e., actions other than those
actually executed—in this sense Q-learning (Watkins & Dayan, 1992) is an off-
policy algorithm. On-policy algorithms, on the other hand, update value functions
strictly on the basis of the experience gained from executing some (possibly non-
stationary) policy. This distinction is important because off-policy algorithms can
(at least conceptually) separate exploration from control while on-policy algorithms
cannot. More precisely, in the case of on-policy algorithms, a convergence proof
requires more details of the exploration to be specified than for off-policy algorithms,
since the update rule depends a great deal on the actions taken by the system.

On-policy algorithms may prove to be important for several reasons. The analogue
of the on-policy /off-policy distinction for RL prediction problems is the trajectory-
based/trajectory-free distinction. Trajectory-based algorithms appear superior to
trajectory-free algorithms for prediction when parameterized function approxima-
tors are used (Tsitsiklis & Van Roy, 1996). These results carry over empirically to
the control case as well (Boyan & Moore, 1995; Sutton, 1996). In addition, multi-
step prediction algorithms such as TD(A)(Sutton, 1988) are more flexible and data
efficient than single-step algorithms (TD(0)), and most natural multi-step algo-
rithms for control are on-policy. These observations suggest that on-policy control
algorithms are important and worthy of study.

In this paper, we examine the convergence of single-step (value updates based
on the value of the “next” timestep only), on-policy RL algorithms for control.
We do not address either function approximation or multi-step algorithms; this is
the subject of our ongoing research. Earlier work has shown that there are off-
policy RL algorithms that converge to optimal value functions (Watkins & Dayan,
1992; Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis, 1994; Gullapalli & Barto,
1994; Littman & Szepesvéri, 1996); we prove convergence results for several related
on-policy algorithms. We also provide examples of policies that can be followed
during learning that result in convergence to both optimal values and optimal
policies. These results generalize naturally to off-policy algorithms, such as Q-
learning, showing the convergence of many RL algorithms to optimal policies.

2. Solving Markov Decision Problems

Markov decision processes (MDPs) are widely used to model controlled dynamical
systems in control theory, operations research and artificial intelligence (Puterman,
1994; Bertsekas, 1995; Barto et al., 1995). Let S = 1,2,..., N denote the discrete
set of states of the system, and let A be the discrete set of actions available to the
system. The probability of making a transition from state s to state s’ on action

CONVERGENCE OF ON-POLICY RL ALGORITHMS 3

a is denoted P/, and the random payoff associated with that transition is denoted
7(s,a). A policy maps each state to a probability distribution over actions—this
mapping can be invariant over time (stationary) or change as a function of the
interaction history (non-stationary). For any policy 7, we define a value function
V™(s) = Ex{} e 7'Pt|s0 = s}, which is the expected value of the infinite-horizon
sum of the discounted payoffs when the system is started in state s and the policy
7 is followed forever. Note that r, and s; are the payoff and state respectively
at timestep ¢, and (7, s:) is a (non-stationary) Markov process with transition
probabilities given by the rules that r; is distributed as »(s:, a;) and the probability
that s¢11 = sis P't,. Here, a; is the action taken by the system at timestep ¢. The
discount factor, 0 < 4 < 1, makes payoffs in the future less valuable than more
immediate payoffs.

The solution of an MDP is an optimal policy n* that simultaneously maximizes
the value V™ (s) of every state s € S. It is known that a stationary deterministic
optimal policy exists for every MDP (cf. Bertsekas’ textbook, 1995). Hereafter,
unless explicitly noted, all policies are assumed to be stationary. The value function
assoclated with 7* is denoted V*. Often it is convenient to associate values not with
states but with state-action pairs, called Q values as in Watkins’ (1989) Q-learning:
Q" (s,a) = R(s,a) + vyE{V™(s')}, and Q*(s,a) = R(s,a) + yE{V*(5')}, where &
is the random next state on executing action a in state s, and R(s,a) is expected
value of r(s,a). Clearly, n*(s) = argmax, Q*(s,a), and V*(s) = max, Q*(s, a).
The optimal Q values satisfy the recursive Bellman optimality equations (Bellman,
1957), Vs, a:

Q*(s,a) = R(s,a) +72Pf,lmgXQ*(5’,b)- (1)

In reinforcement learning, the quantities that define the MDP, P and R, are not
known in advance. A RL algorithm must find an optimal policy by interacting
with the MDP directly; because effective learning typically requires the algorithm
to revisit every state many times, we assume the MDP is “communicating” (every
state can be reached from every other state).

2.1. Off-Policy and On-Policy Algorithms

Most RL algorithms for solving MDPs are iterative, producing a sequence of esti-
mates of either the optimal (Q-)value function or the optimal policy or both by
repeatedly combining old estimates with the results of a new trial to produce new
estimates.

A RL algorithm can be decomposed into two components. The learning policy is a
non-stationary policy that maps experience (states visited, actions chosen, rewards
received) into a current choice of action. The update rule is how the algorithm uses
experience to change its estimate of the optimal value function.

In an off-policy algorithm, the update rule need not have any relation to the
learning policy. Q-learning (Watkins, 1989) is an off-policy algorithm that estimates

4 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

the optimal Q-value function as follows:

Qir1(se,ae) = (1 — au(se, ar))Qe(se, ar)
+ay(se, ar)[ry + m?X(Qt(5t+1a b))l (2)

where Q; is the estimate at the beginning of the #*® timestep, and s;, a;, 7, and
oy are the state, action, reward, and step size (learning rate) at timestep ¢. This
is an off-line algorithm as the update of Q;(s:,a:) depends on maxs(Q:¢(st+1,b)),
which relies on comparing various “hypothetical” actions b. The convergence of the
Q-learning algorithm does not put any strong requirements on the learning policy
other than that every action is experienced in every state infinitely often. This
can be accomplished, for example, using the random-walk learning policy, which
chooses actions uniformly at random. Later, we describe several other learning
policies that result in convergence when combined with the Q-learning update rule.
The update rule for sARSA(0)(Rummery, 1994; Rummery & Niranjan, 1994; John,
1994, 1995; Singh & Sutton, 1995; Sutton, 1996) is quite similar to Q-learning:

Qt+1(5t,at) = (1 —Oét(st,at))Qt(St,at)
+at(5taat)[rt + 7Qt(5t+1aat+1)]- (3)

The main difference is that Q-learning makes an update based on the greedy Q
value of the successor state, s;,1, while SARSA(0)! uses the Q value of the action
at+1 actually chosen by the learning policy. This makes sARSA(0) an on-policy
algorithm, and therefore its conditions for convergence depend a great deal on the
learning policy. In particular, because SARSA(0) learns the value of its own actions,
the Q values can converge to optimality in the limit only if the learning policy
chooses actions optimally in the limit. Section 3 provides some positive convergence
results for two significant classes of learning policies.

Under a greedy learning policy (i.e., always select the action that is best accord-
ing to the current estimate), the update rules for Q-learning and sarsa(0) are
identical. The resulting RL algorithm would not converge to optimal solutions, in
general, because the need for infinite exploration would not be satisfied. This helps
llustrate the tension between adequate exploration and exploitation with regard to
convergence to optimality.

2.2. Learning Policies

A learning policy selects an action at timestep ¢ as a function of its experience
history. In this paper, we consider several learning policies that make decisions
based on a summary of history consisting of the current timestep ¢, the current
state s, and the current estimate @ of the optimal Q-value function. Such a learning
policy can be expressed as Pr(als,t, @), the probability that action a is selected
given the history.

We divide learning policies for MDPs into two broad categories; a decaying ezplo-
ration learning policy becomes more and more like the greedy learning policy over

CONVERGENCE OF ON-POLICY RL ALGORITHMS 5

time, a persistent exploration learning policy does not. The advantage of decaying
exploration policies is that the actions taken by the system may converge to the
optimal ones eventually, but with the price that their ability to adapt slows down.
In contrast to this, persistent exploration learning policies can retain their adaptiv-
ity forever, but with the price that the actions of the system will not converge to
optimality in the standard sense. We prove the convergence of sARsA(0) to optimal
policies in the standard sense for a class of decaying exploration learning policies,
and to optimal policies in a special sense defined below for a class of persistent
exploration learning policies.

Consider the class of decaying exploration learning policies characterized by the
following two properties:

1. each action is visited infinitely often in every state that is visited infinitely often,

2. in the limit, the learning policy is greedy with respect to the Q-value function
with probability 1;

we label learning policies satisfying the above conditions as GLIE, which stands
for “greedy in the limit with infinite exploration.” An example of such a learning
policy is certain forms of Boltzmann exploration:

ePe(2)Q(5,a)
> hea eBi(s)Q(s,0)’

Pr(als,t, Q) =

where f3;(s) is the state-specific exploration coefficient for time #, which controls
the rate of exploration in the learning policy. To meet condition 2 above, we
would like 3; to be infinite in the limit, while to meet condition 1 above we would
like 3: to not approach infinity too fast. In Appendix A, we show that B:(s) =
In n4(8)/C:(s) satisfies the above requirements (where n¢(s) < t is the number of
times state s has been visited in the ¢ timesteps, and C;(s) is defined in Appendix
A). Another example of a GLIE learning policy is some forms of e-greedy exploration
(Sutton, 1996), which at timestep ¢ in state s picks a random exploration action
with probability €;(s) and the greedy action with probability 1 —e;(s). In Appendix
A, we show that if €:(s) = ¢/n4(s) for 0 < ¢ < 1, then e-greedy exploration is GLIE.

We also analyze “restricted rank-based randomized learning policies” (RRR), a
class of persistent exploration learning policies commonly used in practice. An
RRR learning policy selects actions probabilistically according to the ranks of their
Q values, choosing the greedy action with the highest probability and the action
with the lowest Q value with the lowest probability. Different learning policies can
be specified by different choices of the function T : {1,...,m} — R that maps
action ranks to probabilities. Here, m is the number of actions. For consistency,
we require that T'(1) > T(2) > --- > T(m) and Y v, T(i) = 1. At timestep ¢,
the RRR learning policy chooses an action by first ranking the available actions
according to the Q values assigned by the current Q-value function Q. for the
current state s;. We use the notation p(Q, s, a) to be the rank of action a in state s

6 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

based on Q(s,-) (e.g., if p(Q, 5,a) = 1 then a = argmax, Q(s,b)), with ties broken
arbitrarily. Once the actions are ranked, the i*" ranking action is chosen with
probability T'(i); that is, action a is chosen with probability T'(p(Q, s,a)). The
RRR learning policy is “restricted” in that it does not directly choose actions—it
simply assigns probabilities to actions according to their ranks. Therefore, an RRR
learning policy has the form Pr(als,t, Q) = T(p(Q:, s, a)).

To illustrate the use of the T' function, we specify three well-known learning
policies as RRR learning policies by the appropriate definition of 7. The random-
walk learning policy chooses action a in state s with probability 1/m. To achieve
this behavior with the RRR learning policy, simply define T'(:) = 1/m for all ;
actions will be equally likely regardless of their rank. The greedy learning policy
can be specified by T(1) = 1, T(¢) = 0 when 1 < ¢ < m; it deterministically selects
the action with the highest Q value. Similarly, e-greedy exploration can be specified
by defining T(1) = 1 — e+ ¢/m, T(i) = ¢/m, 1 < i < m. This policy takes the
greedy action with probability 1 — € and a random action otherwise. To satisfy the
condition that T'(1) > T'(2) > --- > T'(m), we require that 0 < e < 1.

Another commonly used persistent exploration learning policy is Boltzmann ex-
ploration with a fixed exploration parameter. Note there is no choice of T that
specifies Boltzmann exploration; Boltzmann exploration is not an RRR learning
policy as the probability of choosing an action depends on the actual Q values and
not only on the ranks of actions in Q(-).

3. Results

Below we prove results on the convergence of SARSA(0) under the two separate cases
of GLIE and RRR learning policies.

3.1. Convergence of SARSA(0) under GLIE Learning Policies

To ensure the convergence of SARSA(0), we require a lookup-table representation
for the Q values and infinite visits to every state-action pair, just as for Q-learning.
Unlike Q-learning, however, sARsSA(0) is an on-policy algorithm and, in order to
achieve its convergence to optimality, we have to further assume that the learning
policy becomes greedy in the limit.

To state these assumptions and the resulting convergence more formally, we note
first that due to the dependence on the learning policy, SARSA(0) does not directly
fall under the previously published convergence theorems (Dayan & Sejnowski,
1994; Jaakkola et al., 1994; Tsitsiklis, 1994; Szepesvari & Littman, 1996). Only a
slight extension is needed, however, and this is presented in the form of Lemma 1
below (extending Theorem 1 of Jaakkola et al., 1994, and Lemma 12 of Szepesvari
& Littman, 1996). For clarity, we will not present the lemma in full generality.

LEMMA 1 A random iterative process

CONVERGENCE OF ON-POLICY RL ALGORITHMS 7

Aii1(2) = (1 — (@) Ae(®) + ar(z) Fi(z), e € X,t=0,1,2,...
converges to zero with probability one (w.p.1) if the following properties hold:
1. the set of possible states X is finite.

2.0 <) <1, 3, 04(z) = 00, 3, a2(z) < co w.p.1, where the probability is
over the learning rates oy.

3. [|E{F:(")|Pe}|w < k||At|lw +ct, where k € [0,1) and ¢; converges to zero w.p.1.
4. Var{Fy(z)|P;} < K(1+ ||A¢|lw)?, where K is some constant.

Here P; is an increasing sequence of o-fields that includes the past of the process.
In particular, we assume that ay, Ay, Fi_1 € P;. The notation || - ||w refers to some
(fized) weighted mazimum norm.

Let us first clarify how this lemma relates to the learning algorithms that are
the focus of this paper. The sequence of visited states s; and selected actions a;
are captured by defining the learning rates «; in the following way. We can define
#; = (st,a:) and further require that a;(2) = 0 whenever # # #;. With these
definitions, the iterative process reduces to

Avt1(st, a1) = (1 — (54, a1)) As(5e, as) + o (54, ar) Fi(se, ar),

which resembles more closely the updates of the on-line algorithms such as sARsA(0)
(Equation 3). Also, note that the lemma shows the convergence of A to zero rather
than to some non-zero optimal values. The intended meaning of A is Q; — Q*, i.e.,
the difference between the current Q values, @, and the target Q values, Q*, that
are attained asymptotically.

The extension provided by our formulation of the lemma is the fact that the
contraction property (the third condition) need not be strict; strict contraction is
now required to hold only asymptotically. This relaxation makes the theorem more
widely applicable.

Proof: While we have stated that the lemma extends previous results such as
the Theorem 1 of Jaakkola et al. (1994) and Lemma 12 of Szepesvari & Littman
(1996), the proof of our lemma is, however, already almost fully contained in the
proofs of these results (requiring only minor, largely notational changes). We, thus,
refrain from repeating that proof here. [|

We can now use Lemma 1 to show the convergence of sArRsA(0).

THEOREM 1 In finite state-action MDPs, the Q; values computed by the SARSA(0)
rule (see Equation 3) converge to Q* and the learning policy m; converges to an
optimal policy * if the learning policy is GLIE, the conditions on the tmmediate
rewards and state transitions listed in Section 2 hold and if the following additional
conditions are satisfied:

8 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

1. The Q values are stored in a lookup table.

2. The learning rates satisfy 0 < a:(s,a) <1, Y, a:(s,a) = co and >, a?(s,a) <
oo and a:(s,a) = 0 unless (s,a) = (s, ay).

3. Var{r(s,a)} < oco.

Proof: The correspondence to Lemma 1 follows from associating X with the set
of state-action pairs (s, a), (@) with ay(s,a) and A(s, a) with Q;(s,a) — Q* (s, a).
It follows that

Avt1(st, a1) = (1 — (54, a1)) As(5e, as) + o (54, ar) Fi(se, ar),
where

Fi(st,a¢) = rt+7151€aj(Qt(5t+1ab)_Q*(staat)

+7[Qt (841, at41) — max Q¢(8t41,b)]

de *
2 rt+7151€aj(Qt(5t+1ab)_Q (s¢,a¢) + Ce(Q)

E F2(s¢,a¢) + Ci(se, ar),
where FtQ would be the corresponding F; in Lemma 1 if the algorithm under consid-
eration were Q-learning. Further, we define Fi(s,a) = Ci(s,a) = 0if (s, a) # (s, a)
and denote the o-field generated by the random variables {s;, o, as, 741, . .., 81,1, a1, Qo}
by P;. Note that Q¢, Q:_1,..., Qo are P;-measurable and, thus, both A; and F;_;
are P;-measurable, satisfying the measurability conditions of Lemma 1.

It is well-known that for Q-learning ||E'{FtQ(-,)| Pe}|| < 7]|A¢]| for all ¢, where
[| - || is the maximum norm. In other words, the expected update operator is a
contraction mapping. The only difference between the current F; and FtQ for Q-
learning is the presence of C;. Therefore,

IB{F(,)P} < IB{F2 ()| P3| + B{Ci(,-) | P} (4)
< YA+ [[E{Ce(-s) | Pel- (5)

Identifying ¢; = ||E{C(-,-) | P:}|| in Lemma 1, we are left with showing that
¢ converges to zero w.p.1. This, however, follows (1) from our assumption of a
GLIE policy (i.e., that non-greedy actions are chosen with vanishing probabilities),
(2) the assumption of finiteness of the MDP, and (3) the fact that Q:(s,a) stays
bounded during learning. To verify the boundedness property, we note that the
SARSA(0) Q values can be upper bounded by the Q values of a Q-learning process
that updates exactly the same state-action pairs in the same order as the sSARSA(0)
process. Similarly, the sarsa(0) Q values are lower bounded by the Q values
of a Q-learning process that uses a min instead of a max in the update rule (cf.
Equation 2) and updates exactly the same state-action pairs in the same order as

CONVERGENCE OF ON-POLICY RL ALGORITHMS 9

the SARSA(0) process. Both the lower-bounding and the upper-bounding Q-learning
processes are convergent and have bounded Q values.
The condition on the variance of F; follows from the similar property of FtQ.
|

Note that if a GLIE learning policy is used with the Q-learning update rule, one
gets convergence to both the optimal Q-value function and an optimal policy. This
begins to address a significant outstanding question in the theory of reinforcement
learning: How do you a learn a policy that achieves high reward in the limit and
during learning? Previous convergence results for Q-learning guarantee that the
optimal Q-value function is reached in the limit; this is important because the
longer the learning process goes on, the closer to optimal the greedy policy with
respect to the learned Q-value function will be. However, this provides no useful
guidance for selecting actions during learning. Our results, in contrast, show that it
is possible to follow a policy during learning that approaches optimality over time.

The properties of GLIE policies imply that for any RL algorithm that converges to
the optimal value function and whose estimates stay bounded (e.g., Q-learning, and
ARTDP of Barto et al., 1995), using GLIE learning policies will ensure a concurrent
convergence to an optimal policy. However, to get an implementable RL algorithm,
one still has to specify a suitable learning policy that guarantees that every action is
attempted in every state infinitely often (i.e., >, a;(s,a) = o). In the Appendix,
we prove that, if the probability of choosing any particular action in any given state
sums up to infinity, then the above condition is indeed satisfied. To illustrate this,
we derive two learning strategies that are GLIE.

3.2. Convergence of SArRsA(0) under RRR Learning Policies

This section proves two separate results concerning a class of persistent exploration
learning policies: (1) the sarRsA(0) update rule combined with an RRR learning
policy converges to a well-defined Q-value function and policy, and (2) the resulting
policy is optimal, in a sense we will define.

As mentioned earlier, an RRR learning policy chooses actions probabilistically by
their ranking according to the current Q-value function; a specific learning policy is
specified by the function T', a probability distribution over action ranks. A restricted
policy ©: S — II(4,{1,...,m}) ranks actions in each state (recall that m denotes
the number of actions), i.e., %(s) is a bijection between A and {1,...,m}. For
convenience, we use the notation #(s,a) to denote the assigned rank of action a in
state s, i.e., to denote T(s)(a). The mapping T represents a policy in the sense that
an agent following restricted policy 7 from state s chooses action a with probability
T(7(s,a)), the probability of the rank assigned by & to action a in state s.

Consider what happens when the sArRsA(0) update rule is used to learn the value
of a fixed restricted policy #. Standard convergence results for Q-learning can
easily be used to show that the Q; values will converge to the Q-value function of
7. Specifically, Q; will converge to Q7, defined as the unique solution to

10 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

Q"(s,a) = R(s,a) +v »_ P& Y T(#(s',a'))Q7(s',a'), (s,a) € S x A. (6)

s'eSs alcA

When an RRR learning policy is followed, the situation becomes a bit more
complex. Upon entering state s, the probability that the learning policy will choose,
for example, the rank 1 action is fixed at T'(1); however, the identity of that action
changes as a function of the current Q-value function estimate Q:(:,-). The natural
extension of Equation 6 to an RRR learning policy would be for the target of
convergence of Q; in SARSA(0) to be

Q(s,a) = R(s,a) +v > _ P& > T(p(Q,,a)Q(s',a'), (s,a) € S x A. (7)

s'eS a'€cA

Recall that p(Q, s, a’) represents the rank of action a’ according to the Q values @
of state s’. The only change between Equation 6 and Equation 7 is that the latter
uses an assignment of ranks that is based upon the recursively defined Q-value
function @, whereas the former uses a fixed assignment of ranks. Using the theory
of generalized MDPs(Szepesvari & Littman, 1996), we can show that this difference
is not important from the perspective of proving the existence and uniqueness of
the solution of Equation 7.

Define
Q) Q(s,a) =D T(p(Q,5,2))Q(s, a); (8)
a acA
now Equation 7 can be rewritten
Q(s,a) = R(s,a) +7v E P2, ®Q_(5', a'), (s,a) € S x A. (9)
s'eSs al

As long as) satisfies the non-expansion property that

® Q(s,a) — ® Q'(s,a)| < max |Q(s,a) — Q'(s,a)]

for all Q-value functions Q and @' and all states s, then Equation 9 has a solution
and it is unique (Szepesvari & Littman, 1996). The non-expansion property of &)
can be verified by the following argument.

e Consider a family of operators ®2Q(s, a) = ith largest value of Q(s, a) for each
1 < i < m. These are all non-expansions.

e Define ®;Q(s, a) =>,T(Q) ®2Q(s, a); it is a non-expansion as long as every
®: is and T is a fixed probability distribution.

e It is clear that ®;Q(s,a) = @, Q(s,a) as defined in Equation 8, so @) is a

non-expansion also.

CONVERGENCE OF ON-POLICY RL ALGORITHMS 11

Therefore, Q exists and is unique. We next show that Q is, in fact, the target of
convergence for SARSA(0).

THEOREM 2 In finite state-action MDPs, the Q; values computed by the SARSA(0)
rule (see Equation 3) converge to Q and the learning policy m; converges to a re-
stricted optimal policy © if the learning policy is RRR, the conditions on the im-
mediate rewards and state transitions listed in Section 2 hold, and if the following
additional conditions are satisfied:

1. Pr(aiy1 = a|Qy, s¢41) = T(p(Q4, s¢41,at41)).

2. The @Q values are stored in a lookup table.

3. The learning rates satisfy 0 < as(s,a) < 1, Y, as(s,a) = 00, 3., a?(s,a) < oo,
and a:(s,a) = 0 unless (s,a) = (s¢,a¢).

4. Var{r(s,a)} < oo.

Proof: The result readily follows from Lemma 1 (or Theorem 1 Jaakkola et al.,
1994) and the proof follows nearly identical lines as that of Theorem 3.1. First,
we associate X (of Lemma 1) with the set of state-action pairs (s, a), az(z) with
a¢(s,a), but here we set A¢(s,a) = Q:(s,a) — Q(s,a). Again, it follows that

Avt1(st, a1) = (1 — (54, a1)) As(5e, as) + o (54, ar) Fi(se, ar),

where now

Fy(st,as) = re + vQe(8t41, as1) — Q(8¢, ay).

Further, we define Fi(s,a) = Ci(s,a) = 0 if (s,a) # (st,a:) and denote the o-
field generated by the random variables {s:, a¢,as,7i—1,..., 81, 21,01, Qo} by P:.
Note that Q;, Q:_1,...,Qo are P;-measurable and, thus, both A; and F;_; are
P;-measurable, satisfying the measurability conditions of Lemma 1.

Substituting the right-hand side of Equation 7 for Q(s;, a;) in the definition of F;
together with the properties of sampling 7, s;y1 and a;y1 yields that

E{Fi(st,a:) | P;} = ’Y(E{Qt(5t+1,at+1) | P} —

> P Y T(0(@, ', a)Q(s a'))

s'eS a'€A

= 1(X 22 Y T(0(@0 8@l) -
s'eS a'cA
3P Y TG, ', a)Q(a'))
s'eS a'€A

< 1Q: — Q|

1A,

12 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

where in the first equation we have exploited the fact that E{r:|s:, a:} = R(s¢, at),

in the second equation that Pr(s:11 | 8¢, a¢) = Pl and that Pr(a;41 = a | Q4, 8t41) =
T(p(Q¢, st4+1,a)) (condition 1), whereas the inequality comes from the properties
of rank-based averaging (see Lemma 7 and Theorems 9 and 10 of Szepesvéri &
Littman’s (1996) technical report. Finally, it is not hard to prove that the variance

of F} given the past P, satisfies condition 4 and, therefore, we do not include it here.

We have shown that sARSA(0) with an RRR learning policy converges to Q. Next,
we show that Q is, in a sense, an optimal Q-value function.

An optimal restricted policy is one that has the highest expected total discounted
reward of all restricted policies. The greedy restricted policy for a Q-value function
Q is T(s,a) = p(Q, s,a); it assigns each action the rank of its corresponding Q
value. Note that this is the policy dictated by the RRR learning policy for a fixed
Q-value function Q.

The greedy restricted policy for Q* (the optimal Q-value function of the MDP)
is not an optimal restricted policy in general, so the Q-learning rule in Equation 2
does not find an optimal restricted policy. However, the next theorem shows that
the greedy restricted policy for Q (Equation 7) is an optimal restricted policy. This
Q function is very similar to Q*, except that actions are weighted according to the
greedy restricted policy instead of the standard greedy policy.

THEOREM 3 The greedy restricted policy with respect to Q is an optimal restricted
policy.

Proof: We construct an alternate MDP so that every restricted policy in the
original MDP is in one-to-one correspondence with (and has the same value as)
a deterministic stationary policy in the alternate MDP. Note that, as a result
of the equivalence of value functions, the optimal policy of the alternate MDP will
correspond to an optimal restricted policy of the original MDP (the restricted policy
that achieves the best values for each of the states) and, thus, the theorem will follow
if we show that the optimal policy in the alternate MDP corresponds to the greedy
restricted policy with respect to Q.
The alternate MDP is defined by (S, 4, R, P, v). Its action space is A = II(4, {1, ..., m}),

i.e., it is the set of all bijections from A to {1,...,m}. The rewards are
B(s,u) = Y T(u(@)) R(s,),
acA

and the transition probabilities are given by P, = Y aca T(p(a))Py.. Here, pis
an element of A. One can readily check that the value of a restricted policy ¥ is
just the value of 7 in the alternate MDP.

The value of the greedy restricted policy with respect to Q in the original MDP is

V(s) =) T(p(Q,s,4))Q(s,a)- (10)

acA

CONVERGENCE OF ON-POLICY RL ALGORITHMS 13

Substituting the definition of Q from Equation 7 into Equation 10 results in
= ET(p(Q_,s,a)) ((s,a) +7 E o) E (p(Q,5',a))Q_(s',a’)) .
acA steS a'cA
Using Equation 10 once again, we find that V satisfies the recurrence equation
= ET(p(Q_,s,a)) ((s,a) +7 E P& V(s) (11)
acA steS

Meanwhile, the optimum value of the alternate MDP satisfies

V*(s) = max((s, +’YZP;§,V*)

el

= I;?eaj_((E T(p(a))R(s,a) +’YZ (ET 33’) V*(SI))
= max) T(u(a))((s:0) 47 > Pl) (12)

The highest value permutation is the one that assigns the highest probabilities to
the actions with the highest Q values and the lowest probabilities to the actions
with the lowest Q values. Therefore, the recurrence in Equation 12 is the same as
that in Equation 11, so, by uniqueness, V* = V. This means the greedy restricted
policy with respect to @ is the optimal restrlcted policy. [|

As a corollary of Theorem 3.2, given a communicating MDP and a RL algorithm
that follows an RRR learning policy specified by T' where T'(¢) > 0 forall1 < i < m,
SARSA(0) converges to an optimal restricted policy.

We conjecture that the same result does not hold for persistent Boltzmann ex-
ploration because related synchronous algorithms do not have a unique target of
convergence (Littman, 1996).

4. Conclusion

In this paper, we have provided convergence results for SARSA(0) under two different
learning policy classes; one ensures optimal behavior in the limit and the other
ensures behavior optimal with respect to constraints imposed by the exploration
strategy. To the best of our knowledge, these constitute the first convergence results
for any on-policy algorithm. However, these are very basic results because they
apply only to the lookup-table case, and more importantly because they do not
seem to extend naturally to general multi-step on-policy algorithms.

14 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI
Acknowledgments

We thank Rich Sutton for help and encouragement.

Appendix A

GLIE Learning Policies

Here, we present conditions on the exploration parameter in the commonly used
Boltzmann exploration and e-greedy exploration strategies to ensure that both in-
finite exploration and greedy in the limit conditions are satisfied.

In a communicating MDP, every state gets visited infinitely often as long as each
action is chosen infinitely often in each state (this is a consequence of the Borel-
Cantelli Lemma (Breiman, 1992); all we have to ensure is that in each state each
action gets chosen infinitely often in the limit. Consider some state s. Let ¢,(%)
represent the timestep at which the ** visit to state s occurs. Consider some
action a. The probability with which action a is executed at the ¢** visit to state
s is denoted Pr(als,t,(?)) (i.e, Pr(a = at|s: = 3,%,(2) = 1)).

We would like to show that if the sum of the probabilities with which action a
is chosen is infinite, i.e., > i Pr(a|s,t,(i)) = oo, then the number of times action
a gets executed in state s is infinite w.p.1. This would follow directly from the
Borel-Cantelli Lemma if the probabilities of selecting action a at the different ¢
were independent. Unfortunately, in this case the random choice of action at the
ith visit to state s affects the probabilities at the i + 1°? visit to state s (through
the evolution of the Q-value function). However, if there exists another stochastic
process that also sums to infinity, lower bounds the sequence of probabilities of
selecting action a, and satisfies the independence conditions required by the Borel-
Cantelli Lemma, then again the result would follow. We state this below more
formally.

OBSERVATION 1 Consider a stochastic process {p;}32, with 0 < p; <1 for alli. Let
random variable S; be 1 with probability p; and 0 with probability 1 — p;. Further,
let N(n) = Y7, Si. If there exists another stochastic process {c;}{2, such that
0<e¢; <piforalli, ;2 ¢; = 0o, and all finite subsets of {c;} are independent,
then lim,_,o N(n) = co w.p.1.

Proof: Let S; be equal to 1 with probability ¢; and 0 with probability 1—c;, then
the Borel-Cantelli Lemma proves that lim, . N(n) = co w.p.1., where N(n) =
>t 1 S;. However, since p; > ¢;, the result must also follow for N(n). []

CONVERGENCE OF ON-POLICY RL ALGORITHMS 15

A.1. Boltzmann Exploration

In Boltzmann exploration,

Be(5)Q(s,0)

Pr(a|57 ta Q) = EbGA eﬁt(-’)Q("!b) ’

where B;(s) is the state-specific exploration coefficient for time ¢. Let the number
of visits to state s in timestep ¢ be denoted as n;(s) and assume that r(s,a) has
a finite range. We know that > ;- ¢/i = oco; therefore, to meet the conditions of
Observation A, we will ensure that for all actions a € A, Pr(als, t,(2)) > ¢/i (with
¢ < 1). To do that we need for all a:

eBe(5)Qe(s,0) c
>
Dpea €P()D) T ny(s)

¢ E eﬁt(-’)Qt(-’yb)
bcA

cmeﬁt(")Qt("ybmax)

nt(s)eﬁt(-’)Qt(-’ya)

v

nt(s)eﬁt(-’)Qt(-’ya)

ne(s)
cm
Inn:(s) —Inem

v

eﬁt(")(Qt("ybmax)_Qt("ya‘))

/Bt(s)(Qt(sa bmax) - Qt(sa a))a

where bpax = argmax; 4 Q:(s,b) above and m is the number of actions. Further,
let ¢ = 1/m. Taken together, this means that we want 53;(s) < Inn(s)/C;(s) where
Ci(s) = max, |Q:(s,bmax) — Q:(s,a)|. Note that Cy(s) is bounded because the Q
values remain bounded.

v

v

It should also be clear that for every s, lim;_, o n:(s) = 00, and therefore

. . Inmng(s
tlggo’@t(s) < tllglo C’tE.E)) oo

this means that Boltzmann exploration with 3:(s) = Inn.(s)/C:(s) will be greedy
in the limit.

A.2. e-Greedy Exploration

In e-greedy exploration we pick a random exploration action with probability e;(s)
and the greedy action with probability 1—e;(s). Let €:(s) = ¢/n:(s) with 0 < ¢ < 1.
Then, Pr(als, t;(¢)) > €:(s)/m, where m is the number of actions. Therefore,
Observation A combined with the fact that Y .o, ¢/i = oo implies that for all
8, > ooy Pr(als, t,(i)) = oco. Further, for all s, lim;_, o n¢(s) = oo, and, therefore,
lim; o €:(5) = 0, ensuring that the learning policy is greedy in the limit. Therefore,
if €;(s) = ¢/n:(s) then e-greedy exploration is GLIE for 0 < ¢ < 1.

16 S. SINGH, T. JAAKKOLA, M.L. LITTMAN AND C. SZEPESVARI

Notes

1. The name is a reference to the fact that it is a single-step algorithm that makes updates on
the basis of a state, Action, Reward, state, Action 5-tuple.

References

Andrew G. Barto, S. J. Bradtke, and Satinder Singh (1995). Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1):81-138.

Richard Bellman (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

Dimitri P. Bertsekas (1995). Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts. Volumes 1 and 2.

Justin A. Boyan and Andrew W. Moore.(1995). Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,
Advances in Neural Information Processing Systems 7, pages 369-376, Cambridge, MA. The
MIT Press.

Leo Breiman.(1992). Probability. Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania.

Peter Dayan (1992). The convergence of TD(}) for general A\. Machine Learning, 8(3):341-362.

Peter Dayan and Terrence J. Sejnowski (1994). TD()) converges with probability 1. Machine
Learning, 14(3).

Peter Dayan and Terrence J. Sejnowski (1996). Exploration bonuses and dual control. Machine
Learning, 25:5-22.

Vijaykumar Gullapalli and Andrew G. Barto (1994). Convergence of indirect adaptive asyn-
chronous value iteration algorithms. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems 6, pages 695-702, San Mateo, CA. Morgan
Kaufmann.

Tommi Jaakkola, Michael I. Jordan, and Satinder Singh (1994). On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6(6):1185-1201, November.
George H. John (1994). When the best move isn’t optimal: Q-learning with exploration. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, page 1464, Seattle,

WA.

George H. John (1995). When the best move isn’t optimal: Q-learning with exploration. Unpub-
lished manuscript, available through URL ftp://starry.stanford.edu/pub/gjohn/papers/rein-nips.ps.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237-285.

P. R. Kumar and P. P. Varaiya (1986). Stochastic Systems: Estimation, Identification, and
Adaptive Control. Prentice Hall, Englewood Cliffs, NJ.

Michael L. Littman and Csaba Szepesvéri (1996). A generalized reinforcement-learning mod-
el: Convergence and applications. In Lorenza Saitta, editor, Proceedings of the Thirteenth
International Conference on Machine Learning, pages 310-318.

Michael Lederman Littman (1996). Algorithms for Sequential Decision Making. PhD thesis,
Department of Computer Science, Brown University, February. Also Technical Report CS-96-
09.

Martin L. Puterman (1994). Markov Decision Processes—Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY.

G. A. Rummery (1994). Problem solving with reinforcement learning. PhD thesis, Cambridge
University Engineering Department.

G. A. Rummery and M. Niranjan (1994). On-line Q-learning using connectionist systems. Tech-
nical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Satinder P. Singh and Richard S. Sutton (1996). Reinforcement learning with replacing eligibility
traces. Machine Learning, 22(1/2/3):123-158.

Satinder Pal Singh and Richard C. Yee (1994). An upper bound on the loss from approximate
optimal-value functions. Machine Learning, 16:227.

CONVERGENCE OF ON-POLICY RL ALGORITHMS 17

Rich Sutton and Andy Barto (1997). An Introduction to Reinforcement Learning. The MIT
Press, forthcoming.

Richard S. Sutton (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3(1):9-44.

Richard S. Sutton (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems 8, Cambridge, MA. The MIT Press.

Csaba Szepesvéri and Michael L. Littman (1996). Generalized Markov decision processes:
Dynamic-programming and reinforcement-learning algorithms. Technical Report CS-96-11,
Brown University, Providence, RI.

Sebastian B. Thrun (1992). The role of exploration in learning control. In David A. White
and Donald A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy, end Adaptive
Approaches. Van Nostrand Reinhold, New York, NY.

John N. Tsitsiklis (1994). Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3):185-202, September 1994.

John N. Tsitsiklis and Benjamin Van Roy (1996). An analysis of temporal-difference learning with
function approximation. Technical Report LIDS-P-2322, Massachusetts Institute of Technology,
March. Available through URL http://web.mit.edu/bvr/www/td.ps. To appear in IEEE
Transactions on Automatic Control.

Christopher J. C. H. Watkins (1989). Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, UK.

Christopher J. C. H. Watkins and Peter Dayan (1992). Q-learning. Machine Learning, 8(3):279—
292.

Ronald J. Williams and Leemon C. Baird, III (1993). Tight performance bounds on greedy
policies based on imperfect value functions. Technical Report NU-CCS-93-14, Northeastern
University, College of Computer Science, Boston, MA, November.

