On the Complexity of Policy Iteration

Yishay Mansour*and Satinder Singh
AT&T Labs-Research
180 Park Avenue
Florham Park, NJ 07932-0971

{mansour,baveja}@research.att.com

Abstract

Decision-making problems in uncertain or
stochastic domains are often formulated as
Markov decision processes (MDPs). Pol-
icy iteration (PT) is a popular algorithm for
searching over policy-space, the size of which
is exponential in the number of states. We
are interested in bounds on the complexity
of PI that do not depend on the value of
the discount factor. In this paper we prove
the first such non-trivial, worst-case, upper
bounds on the number of iterations required
by PI to converge to the optimal policy. Our
analysis also sheds new light on the manner
in which PI progresses through the space of
policies.

1 Introduction

The problem of decision-making in uncertain or
stochastic environments is central to artificial intel-
ligence (AT) [7, 6]. The framework of Markov deci-
sion processes (MDPs) developed in the operations re-
search community [1] is increasingly used within AT
to formulate such problems. In this formulation, the
environment 1s assumed to be in one of a finite-set of
states, the decision-making agent has a choice of ac-
tions in each state of the environment, executing an
action causes a stochastic change in the state of the
environment, and the agent receives a stochastic re-
ward in return for executing the action. The agent’s
goal is to choose actions so as to maximize a cumu-
lative discounted measure of rewards over some time

*On sabbatical from Tel-Aviv University.

horizon. Here we consider the planning problem in
which we are given a full description of the MDP and

have to compute the optimal action-selection policy.

One reason for the popularity of the MDP framework
within AT is the availability of a number of well-studied
classes of algorithms for planning in MDPs: linear-
programming [2], value iteration [1], and policy itera-
tion [3]. Linear programming and value iteration are
known to compute the optimal policy in time poly-
nomial in the size of the representation of the MDP
and the discount factor [4, 2]. While no direct analy-
sis of policy iteration is available, one can bound the
number of steps of “greedy” policy iteration (which
greedily accepts all single-state action changes that are
improvements) by the number of steps of value itera-
tion. This implies that policy iteration also runs in
time polynomial in the size of the representation and
the discount factor [3, 2].

However, our goal i1s to derive bounds for solving
MDPs that do not depend on the discount factor. For
value iteration the dependence on the discount factor 1s
unavoidable. For linear programming, in general, it is
a major open problem whether there exists a strongly
polynomial algorithm, i.e., runs in time polynomial in
the number of parameters and independent of the size
of the representation of the parameters. For PI we
can bound the number of steps independent from the
representation size and discount factor as follows: PI
is guaranteed to improve the policy at every step and
therefore the total number of steps 1s trivially upper-
bounded by the total number of policies. This bound 1s
of course independent of the discount factor. However,
note that the total number of policies is exponential
in the number of states.

In this paper, we prove the first non-trivial upper

bound on the worst-case number of steps PI can take.
For the specific case of n states and two actions the
total number of policies is exactly 2. We show that
“greedy” PI will take at most O(Zn—n) steps. We also de-
fine a randomized PT (which accepts each single-state
action change that is an improvement with probabil-
ity 0.5) and prove that in the worst-case it will take
at most O(2°-78") steps. For the general case of k ac-
tions we show an bound of O(k" /n) for greedy PT and
O([(1 4 ex)k/2]™) for random PI (where ¢ is small
for large & and will be defined later). Note that these
bounds are independent of the size of representation of
the specific parameters of the MDP and in particular
do not depend on the discount factor. Our analysis
also sheds new light on the manner in which PI pro-
gresses through the space of policies.

We view our results as the first step towards a better
understanding of PI. This is an important issue be-
cause there 1s strong empirical evidence in favor of PI
over value iteration and linear programming in solving
MDPs [4]. While in practice it is difficult to construct
MDPs for which greedy PI takes more than n steps,
no general rigorous lower bounds are known. A lower-
bound is known for a particular form of PI, called se-
quential PT (which at each step accepts only one of the
single-state action changes that are improvements) —
in the worst-case, sequential PT can take ©(2") steps
on a two-action MDP, when the adversary controls
which improvements are selected [5, 4]. However it
is not clear whether results about sequential PI trans-
fer to other forms of PI, e.g., greedy or random PI. In
fact our results show that there is a gap between the
worst-case complexities of sequential and both greedy
and random PI.

This paper is organized as follows: Section 2 defines
the MDP model and its notation. Section 3 introduces
the general scheme of policy iteration and proves a
few general results concerning it. Section 4 derives
an upper-bound on the time complexity of greedy PI,
while Section 5 derives an upper-bound to the time
complexity of random PT (both for two-action MDPs).
Section 6 extends our results to a general multi-action
MDP. Section 7 concludes with a summary of our con-
tributions and open problems.

2 Model

In this section we define the Markov decision process
(MDP) framework.

Definition 1 An MDP is a tuple (S, A, P,R): S is a
finite set of states the environment can be in, A is a fi-
nite set of actions available to the agent, P is the table
of transition probabilities, where P(s'|s, a) is the proba-
bility of a transition to state s’ upon executing action a
in state s, and R is the reward function, where R(s,a)
18 the expected reward received by the agent upon exe-
cuting action a in state s.

We define the agent’s return to be the discounted sum
of rewards over an infinite horizon, i.e., we use the
infinite-horizon discounted framework in this paper.
More formally, the agent’s return is .o, v'r¢ where
ry 1s reward received at time step ¢, and 0 < v <
1 is a discount factor that makes future reward less
valuable than immediate reward. The agent’s goal is to
select actions so as to maximize its expected return. In
infinite-horizon discounted MDPs the agents expected
return is maximized by a policy (a mapping from states
to actions), called the optimal policy.

Useful quantities in analyzing MDP-decision-making
are value functions: one defined over states and the
other defined over state-action pairs.

Definition 2 Let V™ (s) be the expected return if the
start-state is s and the agent executes policy m forever.
Let Q7 (s, a) be the expected return if the start-state is
s and the agent erecutes action a to begin with and
thereafter follows policy .

Note that by the definition above Q™ (s, a) = R(s,a)+
¥> o P(s'|s,a)V™(s"). The agent’s goal, restated in
terms of value functions, is that of finding an optimal
policy n* that satisfies 7* = argmaz,V"™. The opti-
mal value function V™ is denoted simply as V* and
the associated @-value function as @Q*. Note that there
can be more than one optimal policy, however, V* and
Q™ are unique.

The total number of policies in an MDP is k™, where
n = |S| and k = |A]. Tn most of the paper we discuss
the case that there are only two actions, i.e. |A| = 2,
which implies that the number of policies is bounded
by 27. At the end of the paper we discuss the general
case, where |A| = k.

3 General Policy Iteration

General policy iteration works as follows. At each iter-
ation consider changing the action at each state while
keeping the actions for all the other states fixed to the

current policy. Some such single-state action changes
will improve upon the current policy. Different vari-
ants of policy iteration differ in which single-state im-
provements they accept at each step.

Before we can describe general PI, we must define what
it means for one policy to be better than another. We
define a partial order between the policies as follows.

Definition 3 For two policies, © and ©’, we have ™ >
n if for each state s, V™ (s) > V”I(s), and for some
state s, V™ (s) > V”I(s). If for every state s we have
V7(s) = V™ (s) then = ~ 7.

The partial ordering tells us when a policy is better
than another and when they are incomparable. Clearly
any optimal policy is better than all suboptimal poli-
cies and equivalent (=) to all other optimal policies.
This partial order is central to our analysis.

Given a policy, 7, we can define, using the function @™,
the single-state improvements that could improve that
policy. The following definition gives the necessary
notation that we use later.

Definition 4 Given a policy =, let the modification
set T™ C S x A be the set of all pairs (s,a) such that
changing the action of m to a wn state s improves the
return of the policy, i.e. Q7 (s,a) > V7 (s). We define
states(T™) to be the states that appear in T, i.e.,
{5 : (s,a) € T™}. If each state appears only once in
T™ we say that T™ is well defined.

Let m be a policy such that 7™ is well defined. (Note
that if the MDP has only two action then for any
policy m we have that T™ is well defined.) For a set
U CT" let modify(m,U) define a policy n’ whose ac-
tions are the same as those of policy 7 on states not
in states(U) and 7'(s) = a for (s,a) € U.

Figure 1 presents the general policy iteration algo-
rithm. In every iteration there are two basic steps:
the first, Improvement Selection Step, selects which
single-state improvements to make, and the second,
Policy Improvement Step, modifies the policy accord-
ingly. Different methods for selecting subsets of T™ to
modify the policy lead to different PI algorithms.

The following two theorems are well known properties
of general policy iteration. The first claims that ac-
cepting any non-zero number of single-state improve-
ments can only improve the policy, and the second
claims that there always exists at least one single-state
improvement that improves the policy, unless the pol-

icy is already optimal. (For proofs see, e.g., [2].)

Theorem 1 For any U C T™, let 7’ = modify(m,U).
If U # 0 then ©’ = .

Theorem 2 For any sub-optimal =, T™ # ().

The above two theorems immediately imply that all
instantiations of general PI strictly improve the policy
at every iteration. Therefore, every iteration from a
current to a next policy at least skips, or rules out,
all the policies that are equal to, or better than, the
current policy and worse than the next policy. How
many such policies are there at every iteration? There
is at least one such policy: the current policy itself.
This, of course, implies an upper bound of k" steps.
For specific improvement-selection methods, defined in
the following sections, we perform a more careful anal-
ysis of the number of equal or better policies that get
ruled out at each iteration. The more policies we can
rule out at each iteration the better the upper-bound
will be. Our analysis will be mainly based on proper-
ties derived from Theorems 1 and 2.

In the rest of this section, we prove a few properties
that hold for all instances of PI. The first is actually
a property of the partial order itself: in general two
policies may be incomparable but if they differ only in
one state then they must be comparable.

Lemma 3 Let m and ' be two policies whose actions
differ in only one state s, i.e., m(u) = 7' (u) for u # s.
Then either m > n', n' = m, or m =~ 7'.

Proof: If Q" (s,7'(s)) > V™(s) then «' = = If
Q7 (s,7'(s)) < V7(s) then m = n’. Otherwise 7 ~ 7'
O

The following lemma gives an interesting connection
between the optimality of a policy m and the states in
T".

Lemma 4 For any policy w, and any policy ©' that is
identical to m on states in states(T™), either m = 7/,
orma .

Proof: Consider an MDP M’ such that the only ac-
tion possible from a state s € states(77) is n(s).
Clearly both 7 and 7' are valid policies for M’. On
the other hand in M’ there is no local improvement
for m, i.e. Tf;, = . By Theorem 2, 7 is optimal for
M’. Therefore m > 7’ (or & 7). O

For an MDP with two actions we can show that PI,

Set mg to an arbitrary policy.

WHILE T™ # (DO

1414 1.
OUTPUT ;.

ITmprovement Selection Step: U + select(T™)
Policy Improvement Step:

Tiy1 ¢ modify(m;, U).

Figure 1: General Policy Iteration Algorithm. The only assumption we make about the function select is that
it returns a non-empty subset of its argument and at most one action for every state.

at different iterations, considers an improvement over
a different subset of the states. This result is general
to any PI.

Lemma 5 During a run of general policy iteration al-
gorithm on a two-action MDP, there are no i and j,
i < j, such that states(T™) C states(T74).

Proof: We prove the lemma by contradiction. As-
sume that there exists 7 and j, ¢ < j such that
states(7T7) C states(7T7). Let T = states(T™) C
states(77™). Let U' = {(s,a) : a = m(s) and m;(s) #
m;(s) and s € T'}. Clearly U’ C T, since there are
only two actions. Then 7/ = modify(m;, U’) is identi-
cal with m; on the states in T' = states(7™). There-
fore, by Lemma 4 we have that m; > @’ or m; ~ n'.
This contradicts the fact that «’ > m; = ;. O

So far we have showed that a subset of states can ap-
pear at most once in general policy iteration, when the
MDP has only two actions. This still leaves open the
possibility that all subsets appear in the run of the al-
gorithm, and thus we observe all 2" policies. The next
step is to show that each time we perform modify on
a large subset of the states we rule out many policies.

4 Greedy Policy Iteration

Greedy policy iteration is PT with select(7) = T,
namely, we perform all the possible single-state action
improvements at each policy improvement step. (We
assume that 7T is well defined, which is always the case
for two-action MDPs. For the general case see Sec-
tion 6.)

The next lemma shows that each time we perform a
modify operation we rule out a number of policies that
is at least the same as the number of changes to the

policy.

Lemma 6 Let m be a policy such that T™ is well de-
fined, and ' = modify(m, T™). Then there are at least
|T™| policies m;, 1 < i < |T™|, such that ' = m; = 7.

Proof: We show by induction on m, that if |T7| > m
then there are at least m policies m;, 1 < i < m, such
that 7/ > m; > m. The base of the induction, m = 1,
follows from Theorem 1.

For the inductive step we assume that the claim holds
for m — 1 and we show that it holds for m. Consider
all the single state modifications to 7 using 7™, i.e.,
consider all Z;, such that Z; C 77 and |Z;| = 1.
Let Uy = Z; such that for any 7;, we have that
modify(m, Z;) ¥ modify(m, Z;). (Note that Z; is not
necessarily unique, since we have a partial order.) Let
1 = modify(w, Uy).

With out loss of generality, let Uy = {(s1,b1)}. For
any other pair (s;,b;) € T™, for i > 1, we show that
(siyb;) € T™. Let = modify(my, {(si,b;)}). By
Lemma 3 we know that either m > 7Tli or 7Tli = m. We
would like to claim that the relation m; > 7} is not
possible.

For contradiction assume that 7 > #f. Con-
sider ¢ = modify(m, {(s;,b:)}). Note that
= modify(m, {(s1,b1),(si,b:)}), and therefore by
Lemma 3 we know that either ¢; = 7} or n] > ¢;.
If 77 = ¢; then my = @} = ¢; contradicting the min-
imality of m1. Therefore ¢; = 7). Let m(s1) = ay
and w(s;) = a;. Since m; =), this implies that
(si,a;) € T™ and similarly, since ¢; = i, this im-
plies that (si,a;1) € T™. By Theorem 1 this implies
that

= modify(ﬂ'i, {(s1,a1), (si,a:)}) = ﬂi,

contradicting the fact that mi > 7. Hence, m > 7.

This implies that (s;,b;) € T™, for i > 1. Therefore,
we have [T™| > |T™| —1 > m — 1. The lemma follows
from the inductive hypothesis on 7. a

We can now state and prove our upper-bound on the
number of steps of Greedy policy iteration.

Theorem 7 The greedy policy iteration algorithm
considers at most O(2" /n) different policies for a 2-
action MDP.

Proof: The analysis has two parts. The first part
includes the case where the set 7™ is small. For this
case we simply show that there are very few such poli-
cies. The second case will include the cases when T™ is
large. For this case we show that each iteration elim-
inates (n) policies, that have not been eliminated
before.

We define a set to be smallif |[T7| < n/3. By Lemmab
we do not consider the same set of states twice. This
bounds the number of such modifications by

n/3 n n 2"
<2 <3—,
2 (k)— (n/3)— n

where the second inequality holds for n > 3. (The first
inequality follows from the fact that for & < n/3 we
have that (7)/(,",) > 2.)

For policies m; such that |T™| > n/3, by Lemma 6 we
have that at least n/3 policies better than or equal to
our current policy are ruled out after this iteration.
This implies that the total number of policies that we
consider 1s bounded by,

2n 2n 2n

where the first term is the number of policies with
small number of improvements and the second term 1s
a bound on the number of policies with a large number
of improvements. a

5 Random Policy Iteration

Formally, random policy iteration defines select(T)
as a random subset of T where each subset has prob-
ability 27171 (We assume that T is well defined. For
the general case seee Section 6.) Intuitively, we can
think of it as deciding to accept each local improve-
ment with probability half. Even though we allow for

the empty subset for convenient proofs, in practice one
may ignore such iterations.

The property that we would like to prove is that for a
two-action MDP the number of policies that we rule
out after considering each policy is at least 277 1-1
rather than only |77 (as in greedy policy iteration).
This enables us to improve our bound on the running
time significantly.

We first show another property of general PI: that no
policy 7’ incomparable to m; is ever considered after
iteration <.

Lemma 8 Consider a run of a general policy iteration
algorithm, and let m; be the policy at iteration i. Let '
be a policy such that ' % m;. For any j > i we have
that m; # n'.

Proof: By Theorem 1 we know that for each j we
have that m; > m;_;. By transitivity, we have that
Tj = Wiy1, for j > i+ 1. Since 7' ¥ m;, it implies that
'+ 7;. O

From the above lemma we know that the only policies
that we can reach after m; are policies that are com-
parable with ;. This implies that any policy which 1s
either strictly inferior to m;, or incomparable to m; will
never be considered. The next step is to argue that
the number of policies that we rule out at phase ¢ has
an expected value of at least 217 1=1 We first prove
a general property of selecting a random element in a
partial order.

Lemma 9 Let > be a partial order over 11. If we
chose a random element r € II, with uniform prob-
ability, then the expected number of elements s € 11
such that s = v is at most |I1|/2.

Proof: For any element v € II we associate two sets.
ITF includes all the elements s such that s > v, and
IT; includes all the elements s such that v = s. For
every pair of elements v > vy we have that vy € Hj;

and vy € I . This implies that

2
S =30 < E

vell vell

Therefore the expected value of |TT}| is at most [TT]/2.
O

The following corollary combines Lemma 8 and
Lemma 9.

Corollary 10 Consider a run of the random policy it-
eration algorithm on a two-action MDP. Let m; be the
policy at iteration i, then the expected number of poli-
cies ', such that w41 = 7 = m; is at least IT™ =1,

Unfortunately it is not true that at each step we ex-
pect to rule out Q(?lTﬂl) policies, with high proba-
bility. Rather we can say that there is some constant
probability that this will happen, and then claim that
in a run with m iterations we should have, with high
probability, this occurring €(m) times.

Theorem 11 The random policy iteration algorithm,

for a two-action MDP, considers at most O(2°-78") dif-

ferent policies, with probability 1 — -2,

Proof: As before we consider two cases, that of small
sets and that of large sets. We define a set to be smallif
|T™| < pn, where the constant p > 0 will be selected
later. As before we bound the number of iterations
with small sets by > " (T;) < 2H(p) 41 where H (p)
is the binary entropy, i.e. H(p) = —plogp — (1 —
p)log(l —p).

Now we are interested in bounding the number of it-
erations with large sets. Assume that we have m such
iterations. By Corollary 10 the expected number of
policies we rule out is at least 2P?~1 policies, at each
such iteration. This implies that with probability 1/3
we rule out at least 2P"~2 policies. (If this occurs
with probability strictly less than 1/3, then the ex-
pected number of policies we rule out is strictly less
than (1/3)2P" + (2/3)2°Pn=2 = 2P"=1 which contra-
dicts Corollary 10.)

bl

An iteration with a large set is good if it chooses a
set that rules out at least 27~ policies. From above,
the probability that an iteration i1s good is at least
1/3. A run is called typical if at least m/4 of the
m iterations with large sets are good. The number
of large set iterations in a typical run is bounded by
2(1=r)n+4 The total number of iterations in a typical
run is bounded by,

2H(p)n+1 + 2(1—p)n+4 < 20.7871’

for p = 0.227 and sufficiently large n.

The probability that a run is not typical 1s at most
2
e~(1/3=1/4)"m Ve are interested in runs in which m >
2(1=r)n+4 in which case the probability is bounded by
=25 0

6 Multi-Action MDPs

In this section we extend the results from two-action
to k actions, where k& > 2. Recall that since we have k
actions the total number of policies is k™.

First we observe that when there are more than two
actions, it might be the case that we have in 7™ a
number of different pairs with the same state, i.e. T 1s
not well defined. We assume that 7™ is reduced to L™,
such that each state appears only in one pair, i.e. LT
is well defined. Formally, L™ C T™ and states(L™) =
states(7™). We do not make any other assumption
on the way L™ is chosen, and assume that the various
PT algorithms perform U «+ select(L™).

Using the Lemma 4 we can derive the following lemma.

Lemma 12 During a run of a general policy itera-
tion algorithm, there are no i and j, i < j, such
that states(T™') C states(T") and for every s €
states(T™) we have m;(s) = m;(s).

Proof: The proof is by contradiction. Assume that
such ¢ and j exists. By Lemma 4 we have that m; > =;
or m; ~ m;. By Theorem 1 we have that 7; > m;, since
j > ¢, and therefore we have a contradiction. a

The above lemma is the main difference between the
two-action case and the multi-action case. This differ-
ence results in slightly worse bounds. As in the two
action case, our analysis separates the modifications
to small and large ones. The following corollary of
Lemma 12 is used to bound the number of small mod-
ifications.

Corollary 13 During a run of a general policy it-
eration algorithm, the number of iterations in which

|L7| < d is bounded by ijo ()kj.

n
J

We start by bounding the number of iterations, in the
worst case, performed by the greedy policy iteration
algorithm. Note that Lemma 6 applies to L™, since
L™ is well defined. The following theorem bounds the
number of iterations for the greedy policy iteration
algorithm in the multi-action case. (The proof is in the
same spirit as the two-action case, but the constants
are different.)

Theorem 14 The greedy policy iteration algorithm
considers at most O(k" /n) different policies.

Proof: As in the proof of Theorem 7, the analysis has
two parts. The first part includes the case where the

set. L™ is small. For this case we simply show that there
are very few such policies. The second case includes
the case when L™ 1s large. For this case we show that
each iteration eliminates ©(n) policies, that have not
been eliminated before.

We define a set to be small if |L™| < pn, where
p = 1/10. By Corollary 13, the number of small mod-
ifications is bounded by,

n\ n k"
> (.)kf < 2()W <3%,

for k> 2 and n > 1.

For policies 7; such that |L™| > pn, by Lemma 6 we
have that at least pn policies better than or equal to
our current policy are ruled out after this iteration.
This implies that the maximum number of policies
that greedy PIT considers is bounded by,

n n n

3k— + K = 13k—,

n pn n
where the first term is the number of policies with
small number of improvements and the second term 1s
a bound on the number of policies with a large number
of improvements. a

We now show the bound for random policy iteration.
First note that Lemma 8 holds for L™, since it 1s well
defined. In addition Lemma 9 is a general property
of partial orders. Therefore, we can derive a corollary
similar to Corollary 10.

Corollary 15 Let m; be the policy at iteration i, then
the expected number of policies ©’, such that w11 >
7 = m; is at least 2T =1

Now we can derive the theorem for the random policy
iteration algorithm for the multi-action case.

Theorem 16 The random policy iteration algorithm
considers at most

o((0+mr))

different policies, with probability 1 — 2~ ((E/2)")

Proof: As in Theorem 11 we consider two cases, that
of small sets and that of large sets. We define a set
to be small if |L™i| < pn, where p = 1 — 2/logk. By
Corollary 13, the number of iterations with small sets
is bounded by 0" (7) k< 2ngPn.

Now we are interested in bounding the number of it-
erations with large sets. Assume that we have m such
iterations. By Corollary 10 the expected number of
policies we rule out is at least 2P?~1 policies, at each
such iteration. This implies that with probability 1/3
we rule out at least 2P”~2 policies.

An iteration with a large modification set is good if
it chooses a set that rules out at least 2°”~2 policies.
From above, the probability that an iteration is good
is at least 1/3. A run is called typical if at least m/4 of
the m iterations with large sets are good. The number
of large set iterations in a typical run is bounded by
k" /2Pn=%. The total number of iterations in a typical
run is bounded by,

k" k k "
nrpn < Tyn M52/ logk
2"k tgmma S (2) —|—16<22)

k 2 "
< 17(=(1
- (2(+logk))

for k> 2 and n > 1.

The probability that a run is not typical 1s at most
2
e~ (1/3=1/4°m Ve are interested in runs in which m >

(k/2)™, in which case the probability is bounded by
9—0((k/2)") O

7 Conclusion

In this paper we developed a proof technique for de-
riving upper-bounds on the number of steps required
by policy iteration to find an optimal policy. Using
our proof technique we are able to establish non-trivial
upper-bounds for two important variations of policy
iterations.

For greedy policy iteration we proved an upper-bound
of O(zn—n), and for random policy iteration we proved
an upper-bound of O(2°7"), both in the case that
the MDP has two actions. This should be contrasted
with the lower-bound of €(2") for sequential policy
iteration [, 4]. For the case of k actions we give upper-
bounds of O(kn—n) and O([(14¢€x)k/2]™), for the greedy

and random policy iteration algorithms, respectively.

We have no reason to believe that our bounds are tight.
One case where our bounds seems to be “losing” con-
siderably is the following. When counting policies that
we rule out we consider only policies that we can reach
from m; using 7™ . However, in many such cases we can
rule out additional policies. Another constraint that
we were not able to utilize is the benefit of having small

modification sets. For example if 7™ = {(s,a)} then
in the two-action case we can rule out half of the pos-
sible modification sets. More precisely, we will never
have to update the action of state s again. Unfortu-
nately, we did not find a way to take advantage of this
property, and we use Lemma 5 only in the sense that
the modification sets cannot be equal, rather than the
subset property.

It would have been of great benefit if we had good
lower bounds for general policy iteration, but unfortu-
nately we do not know of any bound other than the
trivial lower-bound of n. The gap between upper and
lower bounds is still very large and i1s an interesting
subject for future research.

References

[1] D. P. Bertsekas. Dynamic Programming: Deter-
ministic and Stochastic Models. Prentice-Hall, En-
glewood Cliffs, NJ, 1987.

[2] D. P. Bertsekas. Dynamic Programming and Op-
timal Control. Athena Scientific, Belmont, MA,
1995.

[3] R. Howard. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, MA, 1960.

[4] M. L. Littman. Algorithms for Sequential Decision
Making. PhD thesis, Brown University, 1996.

[6] M. Melekopoglou and A. Condon. On the complex-
ity of policy iteration for stochastic games. Techni-
cal Report CS-TR-90-941, Computer Sciences De-
partment, University of Wisconsin, Madison, 1990.

[6] S.J. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

[7] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

