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A Network Architectures and Training Details

The network architectures of the proposed models and the baselines are illustrated in Figure 1.

The weight of LSTM is initialized from a uniform distribution of [−0.08, 0.08]. The weight of
the fully-connected layer from the encoded feature to the factored layer and from the action to the
factored layer are initialized from a uniform distribution of [−1, 1] and [−0.1, 0.1] respectively.

The total number of iterations is 1.5× 106, 106, and 106 for each training phase (1-step, 3-step, and
5-step). The learning rate is multiplied by 0.9 after every 105 iterations.
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(a) Feedforward Architecture
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(b) Recurrent Architecture
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(c) No-action Feedforward
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Figure 1: Network architectures. ‘×’ indicates element-wise multiplication. The text in each (de-)convolution
layer describes the number of filters, the size of the kernel, padding (height and width), and stride.
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B Informed Exploration

The entire DQN algorithm with informed exploration is described in Algorithm 1.

Algorithm 1 Deep Q-learning with informed exploration
Allocate capacity of replay memory R
Allocate capacity of trajectory memory D
Initialize parameters θ of DQN
while steps < M do

Reset game and observe image x1
Store image x1 in D
for t=1 to T do

Sample c from Bernoulli distribution with parameter ε

Set at =

{
argmina nD

(
x
(a)
t

)
if c = 1

argmaxaQ (φ (st) , a; θ)) otherwise
Choose action at, observe reward rt and image xt+1

Set st+1 = xt−2:t+1 and preprocess images φt+1 = φ (st+1)
Store image xt+1 in D
Store transition (φt, at, rt, φt+1) in R
Sample a mini-batch of transitions {φj , aj , rj , φj+1} from R
Update θ based on the mini-batch and Bellman equation
steps = steps+ 1

end for
end while
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Figure 2: Feedforward encoding network for gray-scaled and down-sampled images.

Predictive Model for Informed Exploration. A feedforward encoding network (illustrated in
Figure 2) trained on down-sampled and gray-scaled images is used for computational efficiency. We
trained the model on 1-step prediction objective with learning rate of 10−4 and batch size of 32.
The pixel values are subtracted by mean pixel values and divided by 128. RMSProp is used with
momentum of 0.9, (squared) gradient momentum of 0.95, and min squared gradient of 0.01.

Comparison to Random Exploration. Figure 3 visualizes the difference between random explo-
ration and informed exploration in two games. In Freeway, where the agent gets rewards by reaching
the top lane, the agent moves only around the bottom area in the random exploration, which results
in 4.6× 105 steps to get the first reward. On the other hand, the agent moves around all locations in
the informed exploration and receives the first reward in 86 steps. The similar result is found in Ms
Pacman.

Application to Deep Q-learning. The results of the informed exploration using the game emulator
and our predictive model are reported in Figure 4 and Table 1. Our DQN replication follows [1],
which uses a smaller CNN than [2].

(a) Random (b) Informed (c) Random (d) Informed

Figure 3: Comparison between two exploration methods on Freeway (Left) and Ms Pacman (Right). Each heat
map shows the trajectories of the agent measured from 2500 steps from each exploration strategy.
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(a) Seaquest
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(b) Space Invaders
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(c) Freeway
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(d) QBert
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Figure 4: Learning curves of DQNs with standard errors. The red and blue curves are informed exploration
using our predictive model and the emulator respectively. The black curves are DQNs with random exploration.
The average game score is measured from 100 game plays with ε-greedy policy with ε = 0.05.

Model Seaquest S. Invaders Freeway QBert Ms Pacman

DQN (Nature) [2] 5286 1976 30.3 10596 2311
DQN (NIPS) [1] 1705 581 - 1952 -

Our replication of [1] 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
I.E (Prediction) 13265 (577) 681 (23) 32.2 (0.2) 8238 (498) 2522 (57)
I.E (Emulator) 13002 (498) 708 (17) 32.2 (0.2) 7969 (496) 2702 (92)

Table 1: Average game score with standard error. ‘I.E’ indicates DQN combined with the informed exploration
method. ‘Emulator’ and ‘Prediction’ correspond to the emulator and our predictive model for computing x(a)
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Figure 5: Correlations between actions. The brightness represents consine similarity between pairs of factors.
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D Handling Different Actions
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Figure 6: Predictions given different actions
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E Prediction Video
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(a) Seaquest (1 ∼ 7 steps). Our models predict the movement of the enemies and the yellow submarine which
is controlled by actions. ‘naFf’ predicts only the movement of other objects correctly, and the submarine
disappears after a few steps. ‘MLP’ does not predict any objects but generate only the mean pixel image.
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MLPStep naFf Feedforward Recurrent Ground	Truth Action
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(b) Seaquest (174 ∼ 180 steps). The proposed models predict the location of the controlled object accurately
over 180-step predictions. They generate new objects such as fishes and human divers. Although the generated
objects do not match the ground-truth images, their shapes and colors are realistic.
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(c) Space Invaders (1 ∼ 7 steps). The enemies in the center move and change their shapes from step 6 to step 7.
This movement is predicted by the proposed models and ‘naFf’, while the predictions from ‘MLP’ are almost
same as the last input frame.
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(d) Space Invaders (130 ∼ 136 steps). Although our models make errors in the long run, the generated images
are still realistic in that the objects are reasonably arranged and moving in the right directions. On the other
hand, the frames predicted by ‘MLP’ and ‘naFf’ are almost same as the last input frame.
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(e) Freeway (1 ∼ 7 steps). The proposed models predict the movement of the controlled object correctly
depending on different actions, while ‘naFf’ fails to handle different actions. ‘MLP’ generates blurry objects
that are not realistic.
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(f) Freeway (290 ∼ 296 steps). The feedforward network diverges at 294-step as the agent starts a new stage
from the bottom lane. This is due to the fact that actions are ignored for 9-steps when a new stage begins, which
is not successfully handled by the feedforward network.
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(g) Freeway (494 ∼ 500 steps). The recurrent encoding model keeps track of every object over 500 steps.
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(h) QBert (1 ∼ 7 steps). The controlled object jumps from the third row to the fourth row. In the meantime
(jumping), the actions chosen by the agent do not have any effects. Our models and ‘naFf’ predicts this
movement, whereas ‘MLP’ does not predict any objects.
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(i) QBert (62 ∼ 68 steps). The recurrent model predicts the controlled object and the color of the cubes
correctly, while the feedforward model diverges at 68-step as it predicts a blurry controlled object at 66-step.
The baselines diverged before 62-step.
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(j) Ms Pacman (1 ∼ 7 steps). The proposed models predict different movements of Pacman depending on
different actions, whereas ‘naFf’ ignores the actions. ‘MLP’ predicts the mean pixel image.
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(k) Ms Pacman (64 ∼ 70 steps). Our models keep track of Pacman, while they fail to predict the other objects
that move almost randomly.
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