On the Convergence of Stochastic Iterative

Dynamic Programming Algorithms*

Tommi Jaakkola
Michael I. Jordan

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Satinder P. Singh
Department of Computer Science

University of Massachusetts at Amherst

*This project was supported in part by a grant from the McDonnell-Pew
Foundation, by a grant from ATR Human Information Processing Research
Laboratories, by a grant from Siemens Corporation, and by grant N00014-90-
J-1942 from the Office of Naval Research. The project was also supported
by NSF grant ASC-9217041 in support of the Center for Biological and Com-
putational Learning at MIT, including funds provided by DARPA under the

HPCC program. Michael I. Jordan is a NSF Presidential Young Investigator.

Abstract

Recent developments in the area of reinforcement learning have
yielded a number of new algorithms for the prediction and control of
Markovian environments. These algorithms, including the TD(\) algo-
rithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989),
can be motivated heuristically as approximations to dynamic program-
ming (DP). In this paper we provide a rigorous proof of convergence of
these DP-based learning algorithms by relating them to the powerful
techniques of stochastic approximation theory via a new convergence
theorem. The theorem establishes a general class of convergent algo-

rithms to which both TD()) and Q-learning belong.

An important component of many real world learning problems is the tem-
poral credit assignment problem—the problem of assigning credit or blame to
individual components of a temporally-extended plan of action, based on the
success or failure of the plan as a whole. To solve such a problem, the learner
must be equipped with the ability to assess the long-term consequences of
particular choices of action and must be willing to forego an immediate payoff
for the prospect of a longer term gain. Moreover, because most real world
problems involving prediction of the future consequences of actions involve
substantial uncertainty, the learner must be prepared to make use of a proba-
bility calculus for assessing and comparing actions.

There has been increasing interest in the temporal credit assignment prob-

lem, due principally to the development of learning algorithms based on the

theory of dynamic programming (DP) (Barto, Sutton, & Watkins, 1990; Wer-
bos, 1992). Sutton’s (1988) TD()) algorithm addressed the problem of learning
to predict in a Markov environment, utilizing a temporal difference operator
to update the predictions. Watkins’ (1989) Q-learning algorithm extended
Sutton’s work to control problems, and also clarified the ties to dynamic pro-
gramming.

In the current paper, our concern is with the stochastic convergence of
DP-based learning algorithms. Although Watkins (1989) and Watkins and
Dayan (1992) proved that Q-learning converges with probability one, and
Dayan (1992) observed that TD(0) is a special case of Q-learning and there-
fore also converges with probability one, these proofs rely on a construction
that is particular to Q-learning and fail to reveal the ties of Q-learning to
the broad theory of stochastic approximation (e.g., Wasan, 1969). Our goal
here is to provide a simpler proof of convergence for Q-learning by making
direct use of stochastic approximation theory. We also show that our proof
extends to TD(A) for arbitrary A. Several other authors have recently pre-
sented results that are similar to those presented here: Dayan and Sejnowski
(1993) for TD(A), Peng and Williams (1993) for TD()), and Tsitsiklis (1993)
for Q-learning. Our results appear to be closest to those of Tsitsiklis (1993).

We begin with a general overview of Markov decision problems and DP.
We introduce the Q-learning algorithm as a stochastic form of DP. We then
present a proof of convergence for a general class of stochastic processes of

which Q-learning is a special case. We then discuss TD()\) and show that it is

also a special case of our theorem.

Markov decision problems

A useful mathematical model of temporal credit assignment problems, studied
in stochastic control theory (Aoki, 1967) and operations research (Ross, 1970),
is the Markov decision problem. Markov decision problems are built on the
formalism of controlled Markov chains. Let S = 1,2,..., N be a discrete state
space and let U(¢) be the discrete set of actions available to the learner when
the chain is in state ;. The probability of making a transition from state ¢
to state j is given by p;;(u), where u € U(¢). The learner defines a policy p,
which is a function from states to actions. Associated with every policy p is a
Markov chain defined by the state transition probabilities p;;(u(2)).

There is an instantaneous cost ¢;(u) associated with each state ¢ and
action u, where ¢;(u) is a random variable with expected value ¢;(u). We also
define a value function V, (i), which is the expected sum of discounted future

costs given that the system begins in state ¢ and follows policy p:

N-1

Vi) = Jim E{Y ven(uls0)ls0 = i} M

t=0

where s, € S is the state of the Markov chain at time ¢. Future costs are
discounted by a factor ~, where v € (0,1). We wish to find a policy that

minimizes the value function:

V(i) = min V(7). (2)

I

Such a policy is referred to as an optimal policy and the corresponding value
function is referred to as the optimal value function. Note that the optimal
value function is unique, but an optimal policy need not be unique. (For
example, if the costs are independent of the actions and states all policies are
optimal.)

Markov decision problems can be solved by dynamic programming (Bert-
sekas, 1987). The basis of the DP approach is an equation that character-
izes the optimal value function. This equation, known as Bellman’s equation,
characterizes the optimal value of the state in terms of the optimal values of

possible successor states:

V2(i) = min {ei(u) + > pi(w)V(j)}- (3)

uelU (s jes

To motivate Bellman’s equation, suppose that the system is in state 7 at time ¢
and consider how V*(7) should be characterized in terms of possible transitions
out of state 2. Suppose that action u is selected and the system transitions to
state j. The expression ¢;(u) + yV*(j) is the cost of making a transition out
of state 2 plus the discounted cost of following an optimal policy thereafter.
The minimum of the expected value of this expression, over possible choices of
actions, seems a plausible measure of the optimal cost at ¢ and by Bellman’s
equation is indeed equal to V*(7).

There are a variety of computational techniques available for solving Bell-
man’s equation. The technique that we focus on in the current paper is a

iterative algorithm known as value iteration. Value iteration solves for V*(i)

by setting up a recurrence relation for which Bellman’s equation is a fixed

point. Denoting the estimate of V*(i) at the k™ iteration as V¥ (i), we have:

VD) = min i) + 7 2 pi(w)VO ()} (4)

uelU (s ies

This iteration can be shown to converge to V*(i) for arbitrary initial V(©)(3)
(Bertsekas, 1987). The proof is based on showing that the iteration from

V(i) to VI (3) is a contraction mapping. That is, it can be shown that:

max [V () = V2(5)] < 3 max [VO i) - V(). (5)

K3

which implies that V*)(i) converges to V*(i) and also places an upper bound
on the convergence rate.

Watkins (1989) utilized an alternative notation for expressing Bellman’s
equation that is particularly convenient for deriving learning algorithms. De-
fine the function Q*(¢,u) to be the expression appearing inside the “min”

operator of Bellman’s equation:

Qi u) = cilu) + v 3 pij(u) ' (6)

JES

Using this notation Bellman’s equation can be written as follows:

V(i) = min Q"(z,u). (7)

uel (i)

Moreover, value iteration can be expressed in terms of Q functions:

QUI(i,u) = cilu) + 73 pij(u)); (8)

JES

where V) (1) is defined in terms of Q¥ (i, u) as follows:

V&) = min QW (i,u). (9)

uel (i)

The mathematical convenience obtained from using ()’s rather than V’s derives
from the fact that the minimization operator appears inside the expectation
in Equation 8, whereas it appears outside the the expectation in Equation 4.
This fact plays an important role in the convergence proof presented in this
paper.

The value iteration algorithm in Equation 4 or Equation 8 can also be
executed asynchronously (Bertsekas & Tsitsiklis, 1989). In an asynchronous
implementation, the update of the value of a particular state may proceed in-
dependently of the updates of the values of other states. Bertsekas & Tsitsiklis
(1989) show that as long as each state is updated infinitely often and each ac-
tion is tried an infinite number of times in each state, then the asynchronous
algorithm eventually converges to the optimal value function. Moreover, asyn-
chronous execution has the advantage that it is directly applicable to real-time
Markov decision problems (RTDP; Barto, Bradtke, & Singh, 1993). In a real-
time setting, the system uses its evolving value function to choose control
actions for an actual process and updates the values of the states along the
trajectory followed by the process.

Dynamic programming serves as a starting point for deriving a variety
of learning algorithms for systems that interact with Markov environments

(Barto, Bradtke, & Singh, 1993; Sutton, 1988; Watkins, 1989). Indeed, real-

time dynamic programming is arguably a form of learning algorithm as it
stands. Although RTDP requires that the system possess a complete model
of the environment (i.e., the probabilities p;;(u) and the expected costs ¢;(u)
are assumed known), the performance of a system using RTDP improves over
time, and its improvement is focused on the states that are actually visited.
The system “learns” by transforming knowledge in one format (the model)
into another format (the value function).

A more difficult learning problem arises when the probabilistic structure
of the environment is unknown. There are two approaches to dealing with this
situation (cf. Barto, Bradtke, & Singh, 1993). An indirect approach acquires
a model of the environment incrementally, by estimating the costs and the
transition probabilities, and then uses this model in an ongoing DP compu-
tation. A direct method dispenses with constructing a model and attempts
to estimate the optimal value function (or the optimal Q-values) directly. In
the remainder of this paper, we focus on direct methods, in particular the
Q-learning algorithm of Watkins (1989) and the TD()) algorithm of Sutton
(1988).

The Q-learning algorithm is a stochastic form of value iteration. Consider
Equation 8, which expresses the update of the () values in terms of the () values
of successor states. To perform a step of value iteration requires knowing
the expected costs and the transition probabilities. Although such a step
cannot be performed without a model, it is nonetheless possible to estimate the

appropriate update. For an arbitrary V function, the quantity 3= .c s pi;(u)V ()

can be estimated by the quantity V(j), if successor state j is chosen with
probability p;;(u). But this is assured by simply following the transitions of
the actual Markov environment, which makes a transition from state ¢ to state
J with probability p;;(u). Thus the sample value of V' at the successor state
is an unbiased estimate of the sum. Moreover ¢;(u) is an unbiased estimate
of ¢;(u). This reasoning leads to the following relaxation algorithm, where we
use (Q4(7,u) and Vi(7) to denote the learner’s estimates of the Q function and

V function at time ¢, respectively:

Qt+1(5t7 Ut) = (1 — Oét(3t7 ut))Qt(Stv ut) + O‘t(stv ut)[CSt(ut) + ’VVt(St-I—l)] (10)

where

Vi(sipr) = min Q(s,ue). (11)

u€U (st 41)

The variables a;(s¢, u;) are zero except for the state that is being updated at

time ¢.

The fact that Q-learning is a stochastic form of value iteration immedi-
ately suggests the use of stochastic approximation theory, in particular the
classical framework of Robbins and Monro (1951). Robbins-Monro theory
treats the stochastic convergence of a sequence of unbiased estimates of a re-
gression function, providing conditions under which the sequence converges to
a root of the function. Although the stochastic convergence of)-learning is not
an immediate consequence of Robbins-Monro theory, the theory does provide
results that can be adapted to studying the convergence of DP-based learning

algorithms. In this paper we utilize a result from Dvoretzky’s (1956) formu-

lation of Robbins-Monro theory to prove the convergence of both Q-learning

and TD()).

Convergence proof for Q-learning

Our proof is based on the observation that the Q-learning algorithm can be
viewed as a stochastic process to which techniques of stochastic approxima-
tion are generally applicable. Due to the lack of a formulation of stochastic
approximation for the maximum norm, however, we need to slightly extend
the standard results. This is accomplished by the following theorem the proof

of which is given in Appendix A.

Theorem 1 A random iterative process A,y1(x) = (1—an(2))An(2)+Bu(x) Fu(z)

converges to zero w.p.1 under the following assumptions:

1) x € S, where S is a finite set.

2) Y, an(z) = 00, Y, a(x) < 0o, 3, Bu(z) = 00, 3, B2(x) < oo, and
E{B.(2)|P.} < E{an(x)|P,}uniformly over x w.p.1.

3) N E{F (@) P, B} [lw< v || An [lw, where 5 € (0,1).

4) Var{F,(2)|P,, 8.} < C(1+ || A, ||w)?, where C' is some constant.

Here P, ={X,, X,—1,.... Fo1,....an_1,..., Ba_1,...} stands for the past at
step n. F(x), an(x) and B,(x) are allowed to depend on the past. o, () and
Bn(x) are assumed to be non-negative and mutually independent given P,. The

notation || - ||w refers to some weighted maximum norm.

10

In applying the theorem, the A, process will generally represent the dif-
ference between a stochastic process of interest and some optimal value (e.g.,
the optimal value function). The formulation of the theorem therefore requires
knowledge to be available about the optimal solution to the learning problem
before it can be applied to any algorithm whose convergence is to be veri-
fied. In the case of Q-learning the required knowledge is available through the
theory of DP and Bellman’s equation in particular.

The convergence of the Q-learning algorithm now follows easily by relating

the algorithm to the converging stochastic process defined by Theorem 1.! In

the form of the theorem we have:
Theorem 2 The Q-learning algorithm given by
Quar(seue) = (1 — au(se,ue)) Qu(se, ue) + ae(se, wg)[es, (vr) + 7 Vils141)]
converges to the optimal Q*(s,u) values if
1) The state and action spaces are finite.
2) Yiau(s,u) = 0o and Y, ai(s,u) < oo uniformly over s and u w.p. 1.
3) Var{c,(u)} is finite.

3) If v =1 all policies lead to a cost free terminal state w.p. 1.

'We note that the theorem is more powerful than is needed to prove the convergence of

Q-learning. Tts generality, however, allows it to be applied to other algorithms as well (see

the following section on TD(X).

11

Proof. By subtracting Q*(s,u) from both sides of the learning rule and

by defining As(s,u) = Q(s,u) — Q*(s,u) together with

Fy(s,u) = es(u) + 7 Vilsnent) — Q@7 (s, u) (12)

the Q-learning algorithm can be seen to have the form of the process in The-
orem 1 with fi(s,u) = au(s,u).

To verify that Fi(s,u) has the required properties we begin by showing
that it is a contraction mapping with respect to some maximum norm. This
is done by relating F; to the DP value iteration operator for the same Markov

chain. More specifically,
max [E{Fy(1,u)}| = 7m§X|Zj:pz’j(u)[W(j) = V=)l
<m0 g Q) = @0}
- vmgxzj:pij(U)VA(j) = T(V2)(i)

where we have used the notation V2(j) = max, |Q:(j,v) — Q*(j,v)| and T is
the DP value iteration operator for the case where the costs associated with

each state are zero (cf. Equation (4)). If v < 1 the contraction property of
E{F,(i,u)} can be seen from the fourth formula by bounding 3, pi;(u)V2(j)

by max; V2(j) and then including the 4 factor. When the future costs are

not discounted (v = 1) but the chain is absorbing and all policies lead to the

12

terminal state w.p.1 there still exists a weighted maximum norm with respect
to which T' is a contraction mapping (see e.g. Bertsekas & Tsitsiklis, 1989)
thereby forcing the contraction of E{Fi(i,u)}. The variance of Fi(s,u) given
the past is within the bounds of Theorem 1 as it depends on (Q4(s,u) at most
linearly and the variance of ¢;(u) is bounded.

Note that the proof covers both the on-line and batch versions. a

The TD(\) algorithm

The TD(X) (Sutton, 1988) is also a DP-based learning algorithm that is natu-
rally defined in a Markov environment. Unlike Q-learning, however, TD does
not involve decision-making tasks but rather predictions about the future costs
of an evolving system. TD(A) converges to the same predictions as a version
of Q-learning in which there is only one action available at each state, but
the algorithms are derived from slightly different grounds and their behavioral
differences are not well understood. In this section we introduce the algorithm
and its derivation. The proof of convergence is given in the following section.

Let us define V;(7) to be the current estimate of the expected cost incurred
during the evolution of the system starting from state : and let ¢; denote
the instantaneous random cost at state ¢. As in the case of Q-learning we
assume that the future costs are discounted at each state by a factor ~. If no
discounting takes place (y = 1) we need to assume that the Markov chain is

absorbing, that is, there exists a cost free terminal state to which the system

13

converges with probability one.

We are concerned with estimating the future costs that the learner has to
incur. One way to achieve these predictions is to simply observe n consecutive
random costs weighted by the discount factor and to add the best estimate of

the costs thereafter. This gives us the estimate

‘/t(n)(lt) =i, + VCiita + 7202}+2 +...F ’}/n_lcit+n—1 + ’}/n‘/t(lt-l-n) (13)

The expected value of this can be shown to be a strictly better estimate than
the current estimate is (Watkins, 1989). In the undiscounted case this holds
only when n is larger than some chain-dependent constant. To demonstrate
this let us replace V; with V* in the above formula giving E{Vt*(n)(it)} = V*(iy)

which implies
max [E{V ()} = V*(i)| < v" max Pr{m; > n} max |Vi(i) — V*(i)| (14)

where m; is the number of steps in a sequence that begins in state ¢ (infinite in
the non-absorbing case). This implies that if either v < 1 or n is large enough

so that the chain can terminate before n steps starting from an arbitrary initial

state then the estimate Vt(n) is strictly better than V;. In general, the larger
n the more unbiased the estimate is as the effect of incorrect V; vanishes.
However, larger n increases the variance of the estimate as there are more
(independent) terms in the sum.

Despite the error reduction property of the truncated estimate it is dif-

ficult to calculate in practice as one would have to wait n steps before the

14

predictions could be updated. In addition it clearly has a huge variance. A
remedy to these problems is obtained by constructing a new estimate by aver-

aging over the truncated predictions. TD()) is based on taking the geometric
average:

VA0 = (1= 2) X) (15)
n=1

As a weighted average it is still a strictly better estimate than Vi(:) with
the additional benefit of being better in the undiscounted case as well (as
the summation extends to infinity). Furthermore, we have introduced a new
parameter A which affects the trade-off between the bias and variance of the
estimate (Watkins, 1989). An increase in A puts more weight on less biased es-
timates with higher variances and thus the bias in V* decreases at the expense

of a higher variance.

The mathematical convenience of using the geometric average can be seen

as follows. Given the estimates V;*(7) the obvious way to use them in a learning

rule is
Vi (i) = Vi(io) + o[V (@) — V(i) (16)
In terms of prediction differences, that is

A1) = ci, + YViliea) — Vilir) (17)

the geometric weighting allows us to write the correction term in the learning

rule as

V(i) = Vi) = A(ie) + (M)A (i) + (A)* Ag(iega) + - .. (18)

15

Note that up to now the prediction differences that need to be calculated in the
future depend on the current V;(¢). If the chain is nonabsorbing this compu-
tational implausibility can, however, be overcome by updating the predictions
at each step with the prediction differences calculated by using the current

predictions. This procedure gives the on-line version of TD()):

t

Viar (i) = Vili) + aedo(i) D (7A) ™ xi(k) (19)

k=0

where y;(k) is the indicator variable of whether state 7 was visited at k" step
(of a sequence). Note that the sum contains the effect of the modifications or
activity traces initiated at past time steps. Moreover, it is important to note
that in this case the theoretically desirable properties of the estimates derived
earlier may hold only asymptotically (see the convergence proof in the next
section).

In the absorbing case the estimates V;(¢) can also be updated off-line,
that is, after a complete sequence has been observed. The learning rule for
this case is derived simply from collecting the correction traces initiated at
each step of the sequence. More concisely, the total correction is the sum of
individual correction traces illustrated in Equation (18). This results in the

batch learning rule

t

Vina(1) = Vild) + 0 32 800 20 b (20)

k=0

where the (m + l)th step is the termination state.

16

We note that the above derivation of the TD()) algorithm corresponds
to the specific choice of a linear representation for the predictors Vi(7) (see,
e.g., Dayan, 1992). Learning rules for other representations can be obtained
using gradient descent but these are not considered here. In practice TD(A) is
usually applied to an absorbing chain thus allowing the use of either the batch

or the on-line version but the latter is usually preferred.

Convergence of TD()\)

As we are interested in strong forms of convergence we need to modify the al-
gorithm slightly. The learning rate parameters «,, are replaced by «, () which
satisfy 3=, @, (1) = oo and Y, a2(i) < oo uniformly w.p.1. These parameters
allow asynchronous updating and they can, in general, be random variables.
The convergence of the algorithm is guaranteed by the following theorem which

is an application of Theorem 1.

Theorem 3 For any finite absorbing Markov chain, for any distribution of
starting states with no inaccessible states, and for any distributions of the

costs with finite variances the TD(X) algorithm given by

1)

m 13

Vir1(6) = Va(0) + (1) D_lei, + 9 Valierr) = Vali)] D2 (7A) ™ xilk)

t=1 k=1

Sonan(i) = 00 and Y, o2(i) < oo uniformly over i w.p. 1.

17

2)

t

Viar (1) = Vili) + ae(i) i, + 7 Vilian) = Vilin)] 20090 ™ xa(k)

k=1

Siau(i) = 0o and 3o, (i) < oo uniformly w.p.1 and within sequences

a(1)/maxieson(i) — 1 uniformly over ¢ w.p.1.

converges to the optimal predictions w.p.1 provided v, A € [0, 1] with yA < 1.

Proof for (1): Using the ideas described in the previous section the

learning rule can be written as

Vi (1) = Val(@) + an()[Go(t) — ==

Gu) = ZVA

where VM(i; k) is an estimate calculated at the k' occurence of state i in a
sequence and for mathematical convenience we have made the transformation
o, (1) = E{m(7)}an,(1), where m(i) is the number of times state ¢ was visited
during the sequence.

To apply Theorem 1 we subtract V*(7), the optimal predictions, from both
sides of the learning equation. By identifying o, (i) := a,(i)m(i)/E{m()},
Bn(t) := an(2), and F,(¢) := Gp(1) = V*(i)m(2)/E{m(2)} we need to show that

these satisfy the conditions of Theorem 1. For o, (¢) and 3,(¢) this is obvious.

18

We begin here by showing that F),(¢) indeed is a contraction mapping. To this

end,

mZELX|E{Fn(Z) | Vn}| =

E{(VMi31) = VE(@) + (VA0:2) = V(@) + . | Vi)

1
max |

i B{m(i)}
which can be bounded above by using the relation
[E{V.'(isk) = V(i) | V)
< B{IB{VIER) = V@) [m(0) = b VHO(m(i) = k) |V, }
< P{m(i) = KYE{V'(1) = V(i) | Vi)

< yP{m(i) >k} max |Vo.(1) — V™ (1)]

where 6(z) = 0 if + < 0 and 1 otherwise. Here we have also used the fact

that V(7) is a contraction mapping independent of possible discounting. As

Y P{m(i) = k} = E{m(:)} we finally get
max [E{F(i) | Va}| < ymax [V (i) — V()]
The variance of F,(i) can be seen to be bounded by
E{m™} max |V, (1)|"

For any absorbing Markov chain the convergence to the terminal state is geo-

metric and thus for every finite k, E{m*} < C(k), implying that the variance

19

of F,(¢) is within the bounds of Theorem 1. As Theorem 1 is now applicable
we can conclude that the batch version of TD()) converges to the optimal
predictions w.p.1. a

Proof for (2) The proof for the on-line version is achieved by showing
that the effect of the on-line updating vanishes in the limit thereby forcing
the two versions to be equal asymptotically. We view the on-line version as a
batch algorithm in which the updates are made after each complete sequence
but are made in such a manner so as to be equal to those made on-line.

Define G (1) = G,(i) + G2(3) to be a new batch estimate taking into
account the on-line updating within sequences. Here (7, (i) is the batch es-
timate with the desired properties (see the proof for (1)) and G2 (i) is the
difference between the two. We take the new batch learning parameters to
be the maxima over a sequence, that is a,(¢) = maxies a4(7). As all the a(7)
satisfy the required conditions uniformly w.p.1 these new learning parameters
satisfy them as well.

To characterize the new batch estimate we consider the on-line updating
iteration and decompose it into three parallel processes. Let V;Z(7) be the value
function due to the real batch updating with a,(¢) as learning parameters,
let V;2(7) be the difference between this batch value function and the value
function resulting from the on-line updating and let R;(2) be the change in the

value function after ¢ on-line updating steps. These processes can be written

20

as
V() = VP) + an(d)lei, + 9 Valivgr) — Va(i)]Bi(4)
Vit () = V26 + al@)es, + 1 Valier) = Valie) + v Riliegn) — Ra(i0)]8u(2)
—an(i)[ci, + 4 Valiepr) — Val(id)] Beld)
Ripi(i) = Ri(i) + au(t)[er, + v Viliegr) — Vilie) + v Rilirgr) — Belie)]Be(i)
with initial conditions VB(i) = Vu(i), V2(i) = Re(i) = 0. By denoting
C = Jes, 44V (insa)— V*(i)] and A, =|| Vo —V* || and bounding the learning

parameters by their norms and by the largest member of the sequence (a,(7))

we readily obtain

BV < BAVAOD + 75 {I 25 = 1A, + BCTD + B R 1)

B{ll B ([} < E{l B I} + [an || (An +ELCT) + B Be [})-

1T —~A

Let us define €' = 2/(1—~X) and C* > E{C}}. Note that such a C* can always

be found as the optimal value function is bounded under the assumptions of

the theorem. By iterating we get
E{ll B [} < C(An + CH(A 4+ C | @ [)™ = 1]

and inserting this into the E{|V;%(:)|} iteration and noting that it is only a

sum we get an upper bound
BAVAG < an@mC A+) fmax | 2= 1] +(1+C [,)" =1}

(21)

21

As the new batch updates are made using a,(¢) parameters the quantity
of interest to us is E{E{|V2(1)|}/a.(?)},» which is a bound for E{G2(:)}. In
order to use Theorem 1 we need to show that the estimates (&, have the desired
properties. In other words, as the (7,,(¢) have these properties we need to show
that the effect of (G2 (1) is vanishing.

Let us first consider the contraction property of the estimate. In any
absorbing Markov chain the probability of absorption increases geometrically
and thus the probability of having m steps in a sequence can be bounded by
Cpy,t where 7, < 1. Due to the convergence of a,(7), for n sufficiently large
(an(2) small enough), the expectation of E{|| R, ||} over m is bounded and
goes to zero in the limit w.p.1 (all the terms contain a* where k > 1). As
at

also || &t — 1 || converges to zero w.p.1, E{G%(4)} vanishes in the limit (see

Equation (21)). Using Equation (21) we can write these results as
IE{G, =V < IE{G =V I+ G2 |
< G HO) VeV +CE

where C'! and C? go to zero with w.p.1. This implies that for any ¢ > 0 and

|| Vi, = V* ||>> € there exists v < 1 such that
IE{G, =V <y Ve = V7l

for n large enough.

The variance of the estimate satisfies condition (4) of Theorem 1. To see

this, note that in deriving the bound for E{G2(7)} the only random variables

22

were (7, the variances of which are bounded, and m, the variance of which
can be bounded exactly in the same way as the expectation; it too vanishes in

the limit.

Theorem 1 now guarantees that for any e the value function in the on-line
algorithm converges w.p.1 into some e-bounded region of V* and therefore the

algorithm itself converges to V> w.p.1. O

Conclusions

In this paper we have extended results from stochastic approximation theory
to cover asynchronous relaxation processes which have a contraction property
with respect to some maximum norm (Theorem 1). This new class of con-
verging iterative processes is shown to include both the Q-learning and TD(\)
algorithms in either their on-line or batch versions. We note that the con-
vergence of the on-line version of TD(A) has not been shown previously. We
also wish to emphasize the simplicity of our results. The convergence proofs
for Q-learning and TD(X) utilize only high-level statistical properties of the
estimates used in these algorithms and do not rely on constructions specific
to the algorithms. Our approach also sheds additional light on the similarities
between Q-learning and TD()).

Although Theorem 1 is readily applicable to DP-based learning schemes,
the theory of Dynamic Programming is important only for its characterization
of the optimal solution and for a contraction property needed in applying the

theorem. The theorem can be applied to iterative algorithms of different types

23

as well.

Finally we note that Theorem 1 can be extended to cover processes that
do not show the usual contraction property thereby increasing its applicability

to algorithms of possibly more practical importance.

Proof of Theorem 1

In this section we provide a detailed proof of the theorem on which the conver-
gence proofs for Q-learning and TD(A) were based. We introduce and prove

three essential lemmas, which will also help to clarify ties to the literature
and the ideas behind the theorem, followed by the proof of Theorem 1. The

notation || - ||[w= max, |- /W (x)| will be used in what follows.
Lemma 1 A random process
wnt1 () = (1 = an(@))wn () + Bo(w)ra(z).
converges to zero with probability one if the following conditions are satisfied:

1) ¥, au(z) = o0, Y, ai(z) < 0o, ¥, Bulz) = 00, and ¥, B2(x) < oo

uniformly over x w.p.1.

2) E{r.(x)|Pn, B} =0 and E{r2(2)|P., 3.} < C w.p.1, where

Pn = {wn,wn_l, ey 19T —24 .0y Q1,0 —9, .. .,6n_1,6n_2, .. }

All the random variables are allowed to depend on the past P,. a,(x) and

Bn(x) are assumed to be non-negative and mutually independent given P,.

24

Proof. Except for the appearance of 3,(x) this is a standard result. With
the above definitions convergence follows directly from Dvoretzky’s extended

theorem (Dvoretzky, 1956).

Lemma 2 Consider a stochastic iteration
Xpp1(z) = Go(X, Yo, o)

where G, is a sequence of functions and Y, is a random process. Let (2, F, P)
be a probability space and assume that the process is scale invariant, that is,

w.p.1 for all w € Q
G(AX,, Yi(w),z) = pG(X,, Va(w), x)

Assume further that if we kept | X, || bounded by scaling, then X, would
converge to zero w.p.1. These assumptions are sufficient to guarantee that the

original process converges to zero w.p.1.

Proof. Note that multiplying X,, by 3 corresponds to having initialized
the process with #X,. Now fix some constant C'. If during the iteration,
|| X, || increases above C, then X, is scaled so that || X,, ||= C. By the
second assumption then this process must converge w.p.1. To show that the
net effect of the corrections must stay finite w.p.1 we note that if || X, ||
converges then for any ¢ > 0 there exists M, such that | X, ||< e < C for
all n > M, with probability at least 1 — e. But this implies that the iteration

stays below (' after M, and converges to zero without any further corrections.

a

25

Lemma 3 A stochastic process Xpy1(x) = (1 — a(2)) X, (2) + v8.(2) || Xu ||

converges to zero w.p.1 provided

1) x € S, where S is a finite set.

2) Y, an(z) = 00, Y, ai(x) < 0o, 3, Bu(z) = 00, 3, B2(x) < oo, and
E{B.(2)|P.} < E{an(2)|P.} uniformly over x w.p.1.

where

Pn = {XnaXn—la ey O 1,09, .. .,6n_1,6n_2, .. }

an(x) and B,(x) are assumed to be non-negative and mutually independent

given P,.

Proof. Essentially the proof is an application of Lemma 2. To this end,

assume that we keep || X,, ||< €1 by scaling which allows the iterative process

to be bounded by

[X1 (2)] < (1 = an(2))[Xo(@)] + 78a(2)Cy

This is linear in | X, (2)| and can be easily shown to converge w.p.l to some
X*(x), where || X* ||[< vC;. Hence, for small enough ¢, there exists M(e)
such that | X, ||< C1/(1+¢) for all n > Mj(e) with probability at least p(e).
With probability pi(e) the procedure can be repeated for Cy = C1/(1 + €).
Continuing in this manner and choosing pi(¢€) so that [T, pr(€) goes to one as

e — 0 we obtain the w.p.1 convergence of the bounded iteration and Lemma

2 can be applied. a

26

Theorem 1 A random iterative process A,y1(x) = (1—an(2))An(2)+Bu(x) Fu(z)

converges to zero w.p.1 under the following assumptions:

1) x € S, where S is a finite set.

2) Zn Oén(l') = o0, Zn 05721(‘1;) < 00, Znﬂn(x) = &0, Znﬂg(x) < 00, and

E{B.(2)|P.} < E{an(x)|P,}uniformly over x w.p.1.
3) || E{Fu()| o, B} lw< v || A |lw, where v € (0,1).
4) Var{F,(2)|P,, 8.} < C(1+ || A, ||w)?, where C' is some constant.

Here P, ={X,, X,—1,.... Fo1,....an_1,..., Ba_1,...} stands for the past at
step n. F(x), an(x) and B,(x) are allowed to depend on the past. o, () and
Bn(x) are assumed to be non-negative and mutually independent given P,. The

notation || - ||w refers to some weighted maximum norm.

Proof. By defining r,(x) = F.(x) — E{F.(2)|P,, #.} we can decompose
the iterative process into two parallel processes given by
onsr(x) = (1= an(@))on(x) + Bu(x)E{Fu()|Pn, B}
wapi(z) = (1= an(@))wa(z) + Ba(@)ra(z) (22)
where A, (2) = é6,(x) + wy(x). Dividing the equations by W (x) for each

z and denoting &, (z) = 8,(x)/W(z), w,(z) = w,(x)/W(z), and 7 (z) =

ro(z)/W(z) we can bound the &, process by assumption 3) and rewrite the

27

equation pair as

!

(@) < (1= an(@))6, ()] +7Bal@) || 18] + 1w, |

!

Wi (2) = (1= an(@))wg (@) +38a()r(2)

Assume for a moment that the A, process stays bounded. Then the
variance of . (z) is bounded by some constant C' and thereby w! converges
to zero w.p.1 according to Lemma 1. Hence, there exists M such that for all
n > M || w, ||< e with probability at least 1 — e. This implies that the ¢,

process can be further bounded by

!

[()] < (1= (2))[6,(2)| +7Bu(2) || 6, + e |

with probability > 1 — e. If we choose C' such that v(C' + 1)/C < 1 then for
|6, 1> Ce

!

vl b+ ell<AC+1)/C 6, |

and the process defined by this upper bound converges to zero w.p.1 by Lemma
3. Thus || &, || converges w.p.1 to some value bounded by C'e which guarantees
the w.p.1 convergence of the original process under the boundedness assump-
tion.

By assumption (4) 7 (x) can be written as (14 || 6, 4 w, ||)s.(2), where

E{s?(z)|P.} < C. Let us now decompose w,, as u, + v, with

i (2) = (1 = @ (2)) 1t (2) 4+ 3Ba) || 8, + o+, || 52()

28

and v, converges to zero w.p.1 by Lemma 1. Again by choosing C' such that
y(C +1)/C < 1 we can bound the ¢, and wu, processes for || & + u, ||> Ce.

. !
The pair (6,,, u,,) is then a scale invariant process whose bounded version was

proven earlier to converge to zero w.p.1 and therefore by Lemma 2 it too con-

verges to zero w.p.1. This proves the w.p.1 convergence of the triple 5;, Up,

and v, bounding the original process. O

References

Aoki, M. (1967). Optimization of Stochastic Systems. New York: Academic

Press.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1993). Learning to act using

real-time dynamic programming. Submitted to: AT Journal.

Barto, A. G., Sutton, R. S., & Watkins, C.J.C.H. (1990). Sequential decision
problems and neural networks. In D. Touretzky (Ed.), Advances in Neural

Information Processing Systems, 2, pp. 686-693. San Mateo, CA: Morgan

Kaufmann.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic

Models. Englewood Cliffs, NJ: Prentice-Hall.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and Distributed Compu-

tation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall.

29

Dayan, P. (1992). The convergence of TD()) for general \. Machine Learning,

8, 341-362.

Dayan, P., & Sejnowski, T. J. (1993). TD()X) converges with probability 1.

CNL, The Salk Institute, San Diego, CA.

Dvoretzky, A. (1956). On stochastic approximation. Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability. Univer-

sity of California Press.

Peng J., & Williams R. J. (1993). TD()\) converges with probability 1. De-

partment of Computer Science preprint, Northeastern University.

Robbins, H., & Monro, S. (1951). A stochastic approximation model. Annals

of Mathematical Statistics, 22, 400-407.

Ross, S. M. (1970). Applied Probability Models with Optimization Applications.

San Francisco: Holden-Day.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differ-

ences. Machine Learning, 3, 9-44.

Tsitsiklis J. N. (1993). Asynchronous stochastic approximation and Q-learning.

Submitted to: Machine Learning.

Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis, Uni-

versity of Cambridge, England.

30

Watkins, C.J.C.H, & Dayan, P. (1992). Q-learning. Machine Learning, 8,
279-292.

Werbos, P. (1992). Approximate dynamic programming for real-time control
and neural modeling. In D. A. White and D. A. Sofge, (Eds.), Handbook

of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pp. 493-

525. New York: Van Nostrand Reinhold.

31

