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Abstract

In cooperative multiagent planning, it can often be beneficial
for an agent to make commitments about aspects of its be-
havior to others, allowing them in turn to plan their own be-
haviors without taking the agent’s detailed behavior into ac-
count. Extending previous work in the Bayesian setting, we
consider instead a worst-case setting in which the agent has
a set of possible environments (MDPs) it could be in, and
develop a commitment semantics that allows for probabilistic
guarantees on the agent’s behavior in any of the environments
it could end up facing. Crucially, an agent receives observa-
tions (of reward and state transitions) that allow it to poten-
tially eliminate possible environments and thus obtain higher
utility by adapting its policy to the history of observations.
We develop algorithms and provide theory and some pre-
liminary empirical results showing that they ensure an agent
meets its commitments with history-dependent policies while
minimizing maximum regret over the possible environments.

Introduction
When planning jointly, agents can benefit from making com-
mitments to each other about what they will (or won’t) do
that affects another agent, so that other agents can form their
own plans accordingly. In the ideal case, commitments by
an agent could allow the other agents to plan their behaviors
completely independently by relying on the commitments.
For example, an agent could commit to free up a tool for an-
other agent to use by a certain time and, assuming that the
only interaction among the two agents is the use of the tool,
this can allow the other agent to plan independently.

Some existing computational models of commitments
characterize them using formal logic (Cohen and Levesque
1990; Castelfranchi 1995; Singh 1999; Mallya and Huhns
2003; Chesani et al. 2013; Al-Saqqar et al. 2014). When
there is uncertainty about the consequences of actions, log-
ical formulations associate conventions and protocols for
managing such uncertainty (Jennings 1993; Xing and Singh
2001; Winikoff 2006). An alternative means of handling
uncertainty, as in this paper, is to formalize commitments
in decision-theoretic settings and explicitly allow for prob-
abilistic guarantees of outcomes (Xuan and Lesser 1999;
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Bannazadeh and Leon-Garcia 2010; Witwicki and Durfee
2009).

An interesting challenge in making and keeping commit-
ments arises when the committing agent expects to learn
information about its environment while executing its plan.
What should a probabilistic commitment mean in such a set-
ting? Recently we (Zhang et al. 2016) provided an answer
to this question in sequential decision problems where the
committing agent interacts with an environment modeled as
a controlled Markov process with a prior distribution over
possible reward functions, and has already made a proba-
bilistic commitment to achieve a state at a certain time. The
committing agent observes rewards while taking actions and
thereby can refine its distribution over possible reward func-
tions after each action. We formalize the meaning of a prob-
abilistic commitment as requiring the agent to “execute a
policy from the initial state that properly affects the commit-
ted state variables in expectation” (where this expectation is
over both stochastic transitions and the effect of stochastic
reward observations on the agent’s knowledge during plan
execution).

Our main contributions in this paper are to extend our
work to the worst-case non-Bayesian setting in which the
agent knows that the sequential decision making task it is
facing is from one of a set of Markov Decision Processes
(MDPs), where both reward and transition dynamics could
differ across MDPs, and nonetheless guarantees, at least, the
same commitment probability in all MDPs. We propose a
family of policy construction methods for the committing
agent that adopts maximum regret as the performance cri-
terion. We prove that policies constructed by the proposed
methods respect this commitment semantics, and through
experimental results we find they significantly outperform
some baseline policies, such as the greedy policy that picks
the next action minimizing myopic regret.

Example Domain
For illustrative purposes, we first present a two-state exam-
ple, Twin-States, before we formalize the general problem.
The Twin-States domain consists of two states with known
deterministic transition dynamics but uncertain reward, as
shown in Figure 1. The start state is A and the agent has
three actions in each of the two states. Action a0 moves the
agent to the other state with no reward, while actions a1 and



a2 keep it in the original state. Action a1’s reward is 2 in
state A and 3 in state B. Action a2’s reward can be any ele-
ment of the set {1, 3, 5} in state A, and can be any element of
set {0, 2, 4} in state B. The agent commits to being in state
A at the time horizon with probability one.

(𝒓𝒓𝟎𝟎, 𝒓𝒓𝟏𝟏) (𝟏𝟏,𝟎𝟎) (𝟏𝟏,𝟐𝟐) (𝟏𝟏,𝟒𝟒) (𝟑𝟑,𝟎𝟎) (𝟑𝟑,𝟐𝟐) (𝟑𝟑,𝟒𝟒) (𝟓𝟓,𝟎𝟎) (𝟓𝟓,𝟐𝟐) (𝟓𝟓,𝟒𝟒) 
(1, 0) 0.00 0.00 2.00 5.00 5.00 5.00 15.00 15.00 15.00 
(1, 2) 0.00 0.00 2.00 5.00 5.00 5.00 15.00 15.00 15.00 
(1, 4) 10.00 4.00 0.00 15.00 9.00 3.00 25.00 19.00 13.00 
(𝟑𝟑,𝟎𝟎) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
(𝟑𝟑,𝟐𝟐) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
(𝟑𝟑,𝟒𝟒) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
(𝟓𝟓,𝟎𝟎) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
(𝟓𝟓,𝟐𝟐) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
(𝟓𝟓,𝟒𝟒) 5.00 5.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 1: Twin-States. See text for details.

Action a2 could be more rewarding than action a1, or less.
If the horizon is large enough, the agent has enough time to
figure out the reward of action a2 in both states, and de-
pending on the observed rewards it will thereafter have a
clear preference for one state-action. This behavior has two
interesting properties. First, it chooses actions based on the
previous observations (i.e., history). Rewards for actions that
the agent has already taken help it choose actions wisely in
the future. Second, it is constrained by the commitment. At
the time step just before the time horizon in the Twin-States
domain, if the agent is in state B it should take action a0, oth-
erwise it is in state A and should not take action a0. In our
experimental work below, we will show how our proposed
methods can solve the Twin-States problem to compute such
policies.

Problem Formulation
We consider settings in which an agent knows that its se-
quential decision making problem is one out of K possible
MDPs but does not know which MDP it is in at the start.
We assume that all K MDPs have the same state and ac-
tion spaces but possibly different transition and reward func-
tions. During execution, the agent can observe the state and
the reward and this can provide information about the MDP
it is in. The environment is formally defined by the tuple
E = 〈S,A, {P (k), R(k)}Kk=1, s0〉, where S andA are finite
environment state (henceforth env-state) and action spaces,
respectively, and s0 ∈ S is the initial env-state. If the agent
is in MDP k, then on taking action a ∈ A in env-state s ∈ S
the agent receives reward r = Rsa(k) and the environment
transitions to env-state s′ with probability P s

′

sa(k). Through-
out we assume that the planning horizon is finite, which in
turn implies that time is part of the env-state. Let St be the
set of env-states at time step t, St be a random variable indi-
cating the env-state at time step t whose specific realization
is denoted st, At be a random variable indicating the action
taken at time step t, whose specific realization is denoted at,
and let

ht = 〈s0, a0, r1, s1, ..., st−1, at−1, rt, st〉 (1)

be the history at time step t. Because of the agent’s lack of
knowledge about the MDP it is facing, we consider history-
dependent stochastic policies and use π(a|h) to denote the
probability of choosing action a given history h under pol-
icy π. During execution, history gives the agent knowledge
about the true MDP it might be in or, equivalently, the MDPs

that it cannot be in. Formally, we can summarize the current
history h into a knowledge state, b := 〈s, κ〉, where s is the
current env-state, and κ := {k : k ∼ h} is the set of indices
of MDPs consistent with h. Initially, the agent is in knowl-
edge state b0 = 〈s0, κ0〉 where κ0 = {1, 2...K}. LetBt be a
random variable indicating the knowledge state at time step
t, and bt be the knowledge state given history ht. (In general
there is a many to one mapping from histories to knowledge
states.) We define the agent’s planning objective below.

Commitment Semantics
Note that there are two types of uncertainty in our set-
ting. There is non-probabilistic uncertainty (i.e., incomplete
knowledge) over which MDP the agent is facing, and there
is probabilistic uncertainty (i.e., stochastic state transitions
and possibly rewards) within an MDP.

Our commitment in this uncertain environment E is for-
mally defined as follows.
Definition 1. A probabilistic commitment c is formally de-
fined as a tuple 〈Φ, T, p〉, where Φ ⊂ S is the commitment
env-state space, T is the commitment finite time horizon, and
p is the commitment probability. By making commitment c,
the agent is constrained to follow a policy π, such that

Pr
π

(ST ∈ Φ|S0 = s0; k) ≥ p,∀k ∈ κ0. (2)

From Equation (2), the semantics of a probabilistic com-
mitment is clear: the agent is constrained to follow a (in gen-
eral history-dependent) policy, such that starting at the ini-
tial env-state, it will reach an env-state in the committed env-
state space, ST , at the time horizon, T , with at least the com-
mitted probability, p, no matter which MDP it is in. Given
probabilistic commitment c, let Πc be the set of all history-
dependent stochastic policies that satisfy Equation (2).

Minimax Regret
In this paper, we are interested in finding a good policy given
a probabilistic commitment, using maximum regret as the
performance criterion. Let

Uπ(k) = Eπ

[
T−1∑
t=0

RStAt
(k)|S0 = s0; k

]
be the expected cumulative reward under policy π if the true
MDP is k, and let U∗c (k) be the expected cumulative reward
under the optimal policy respecting the semantics of com-
mitment c if the true MDP is k:

U∗c (k) = max
π∈Πc

Uπ(k).

Finding U∗c (k) amounts to solving a standard constrained
MDP problem and this can be done efficiently by linear pro-
gramming (Altman 1999). Given commitment c, let ρπc de-
note the maximum regret of policy π under c, i.e.,

ρπc = max
k∈κ0

U∗c (k)− Uπ(k).

Let Π∗c be the set of policies that minimizes the maximum
regret while respecting the commitment semantics,

Π∗c = {π : π ∈ Πc, ρ
π
c = min

π′∈Πc

ρπ
′

c }.



The agent’s planning goal is to find a policy in Π∗c . We
conclude this section with a series of formal observations
showing that straightforward planning methods will not be
enough to construct policies in Π∗c .

Observation 1 says that in general it is not sufficient to
search over policies that are optimal for some MDP.

Observation 1. Let π∗c (k) = arg maxπ∈Πc
Uπ(k) be a pol-

icy respecting commitment c that is optimal if the true MDP
is k. Then, in general we have π∗c (k) 6∈ Π∗c ,∀k.

Observation 2 says that in general it is not sufficient to
greedily pick the next action that minimizes the maximum
myopic regret.

Observation 2. Let πG be the greedy policy under which the
agent selects the next action that minimizes the maximum
myopic regret over the possible MDPs consistent with the
current knowledge, i.e.

at = arg min
a

max
k∈κt

{max
a′

Rsta′(k)−Rsta(k)}.

Then, in general we have πG 6∈ Π∗c .

Observation 3 says that it is possible that no policy in Π∗c
is deterministic even if all MDPs in the environment are de-
terministic.

Observation 3. There exists an environment E where all
MDPs are deterministic, i.e. ∀k, s, a ∃s′ such that P s

′

sa(k) =
1, and no policy in Π∗c is deterministic.

The Twin-States domain provides a proof of the above
observations by example as we verify in the section of Em-
pirical Results below.

Finally, we might think whenever the agent learns more
about the true MDP during execution it is a good idea to
re-plan from the current env-state with the original commit-
ment probability. Clearly, if during execution one can al-
ways find a policy that achieves the original commitment
probability conditioned on the current env-state, such a re-
planning approach will certainly respect the commitment se-
mantics. Observation 4 says that this is not always possible,
and the example shown in Figure 2 verifies it.

Observation 4. There exists π ∈ Πc such that if the agent
executes policy π for the first t > 0 time steps starting in
state s0, the history generated, ht, is such that

∀π′,∃k ∈ κt Pr
π′

(ST ∈ Φ|St = st; k) < p.

Methods
In this section we introduce several methods for constructing
policies that respect the commitment semantics for a given
commitment c.

Commitment Constrained No-Lookahead
Let Π0 be the set of all Markov policies, i.e., policies that
choose actions solely as a function of the current env-state
(and ignore κ). Assuming Π0 ∩ Πc 6= ∅, our Commit-
ment Constrained No-Lookahead (CCNL) method of Fig-
ure 3 finds a minimax regret Markov policy respecting the
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Figure 2: Starting in state A, the agent commits to reach-
ing the absorbing state D at time step two with at least
probability .8. If the agent happens to be in state C at time
step one, there is no plan that reaches state D from state C
with probability at least .8 (verifying Observation 4). There
are two possible reward functions R1 and R2 shown above.
Even though re-planning from state C does not yield a plan
that leads to state D with probability 0.8, the new plan
will nonetheless reduce regret because at time step 1 we
will know which reward function applies and can therefore
choose the more rewarding action in state C.

min
x

max
k

U∗c (k)− U(k) (3a)

subject to

∀k U(k) =
∑
s,a

xsa(k)Rsa(k) (3b)

∀k, s, a xsa(k) ≥ 0 (3c)

∀k, s′
∑
a′

xs′a′(k) =
∑
s,a

xsa(k)P s
′

sa(k) + δs′s0 (3d)

∀k, k′, s, a xsa(k)∑
a′ xsa′(k)

=
xsa(k′)∑
a′ xsa′(k

′)
(3e)

∀k
∑
s∈Φ

∑
a

xsa(k) ≥ p (3f)

Figure 3: CCNL program. It uses occupancy measures x as
decision variables. Constraint (3b) guarantees that U(k) is
the cumulative reward in MDP k, through which the max-
imum regret is expressed in objective function (3a). Con-
straints (3c) and (3d) guarantee that x(k) is a valid occu-
pancy measure given that the initial state is s0 and the tran-
sition function of the kth MDP is P (k), where δs′s0 is the
Kronecker delta that returns 1 when s′ = s0 and 0 otherwise.
Constraint (3e) guarantees that all K occupancy measures
have the same underlying Markov policy. The commitment
semantics is explicitly expressed in constraint (3f). The cor-
responding Markov policy can be recovered via Equation (5)
in the main text.



commitment semantics, which is a solution to the following
problem:

min
π∈Πc∩Π0

ρπc . (4)

For MDP k, each policy π has a corresponding occupancy
measure xπ(k) for env-state-action pairs:

xπsa(k) := Eπ

[
T−1∑
t=0

1{St=s,At=a}|S0 = s0; k

]
.

We will use shorthand notation x(k) in place of xπ(k) when
policy π is clear from the context. If π is a Markov policy, it
can be recovered from its occupancy measure via

π(a|s) =
xsa(k)∑
a′ xsa′(k)

. (5)

Figure 3 presents our straightforward adaptation of the lin-
ear program for finding constrained-optimal policies (Alt-
man 1999) in MDPs (see the caption of Figure 3 for details).

Commitment Constrained Lookahead
During execution, the agent can observe the env-state tran-
sitions and reward, and reason about the true MDP it might
be in or, equivalently, the MDPs that it cannot be in. Thus,
restricting the agent to Markov policies as in the previous
section will lead to larger regret than is necessary. Here we
consider the general case where the agent may choose ac-
tions based on the knowledge state (or equivalently history)
for the first 0 < L ≤ T steps, and use the env-state for the
remaining time steps (if L = 0, we recover the Markov pol-
icy case above). We refer toL as the knowledge-state-update
boundary. The resulting L-updates policy has the form:

π(a|ht) =

{
π(a|bt) t < L

π(a|st, bL) t ≥ L,

where bt is the knowledge state consistent with ht, and bL
is the knowledge state consistent with hL when t ≥ L. It
is important to note that, after the knowledge-state-update
boundary, the policy conditions on both the env-state as well
as the last updated knowledge state bL.

For example, Figure 4 shows a (L =)1-updates policy
constructed in the Twin-States domain. After taking some
action in the initial knowledge state, depending on which
knowledge state it actually ends up in at time L = 1, it then
executes a Markov policy, represented by a curve, all the
way up to the horizon. Those Markov policies starting from
time step L = 1 are not necessarily the same, which gives
the agent flexibility of choosing different behaviors based its
updated knowledge about the environment.

Let ΠL be the set of all L-updates policies. Our Commit-
ment Constrained Lookahead (CCL) method finds a mini-
max regret L-updates policy respecting the commitment se-
mantics, which is a solution to the following problem:

min
π∈Πc∩ΠL

ρπc . (6)

Problem (6) can be expressed by the program in Figure 5.

 

 

 

𝑎𝑎1 

0L11 𝑎𝑎2 

𝑎𝑎3 

0 

5 

2 

0 
𝑎𝑎1 

𝑎𝑎2 

𝑎𝑎3 

2L01 

2L10 

0 

5 

⋅⋅⋅ 

⋅⋅⋅ 
⋅⋅⋅ 

⋅⋅⋅ 

⋅⋅⋅ 

⋅⋅⋅ 

⋅⋅⋅ 

1L10 

1L01 

1L11 

1R11 

 R 
𝑎𝑎 

𝑏𝑏  𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 
L, 𝒂𝒂    0 5 
L, 𝒃𝒃 2 2 
R, 𝒂𝒂    0 0 
R, 𝒃𝒃    0 0 
 

L 

𝑎𝑎 

𝑏𝑏 

 D 𝑎𝑎 1.0 

 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 
𝒂𝒂    0 5 
 𝒃𝒃 5 0 

 

B 𝑎𝑎, 𝑏𝑏 1.0 
 

C 

A 
𝑎𝑎, 𝑏𝑏 .01 

𝑎𝑎, 𝑏𝑏 .8 

𝑎𝑎, 𝑏𝑏 .2 

𝑏𝑏 1.0 

𝑎𝑎, 𝑏𝑏 .99 

0A{1, 3, 5} 
 1A{1} 

  
1A{3} 

  
1A{5} 

  

1A{1, 3, 5} 
  

1B{1, 3, 5} 
  

𝑎𝑎0 

𝑎𝑎1 

𝑎𝑎2 

Figure 4: Illustration of 1-updates policy in the Twin-States
domain. Each box represents a reachable knowledge state
with one step, where the number before letter “A” or “B” rep-
resents time and the number after the letter represents possi-
ble reward of action a2 in state A. Curves represent Markov
policies the agent will follow after time step one.

The program in Figure 5 introduces as decision variables
y(k) and x(k) for every possible MDP k, where y(k) is the
knowledge state-action occupancy measure if the true MDP
is k, but only for those knowledge states reachable within the
firstL time steps, and x(k) is the env-state-action occupancy
measure for the env-states in the remaining T −L time steps
if the true MDP is k. See the caption of Figure 5 for details.

Any L-updates policy πL respecting the commitment se-
mantics can be derived from a feasible solution to the pro-
gram in Figure 5 via

πL(a|ht) =


πL(a|bt) =

ybta(k)∑
a′ ybta′(k)

t < L

πL(a|st, bL) =
xbLsta(k)∑
a′ x

bL
sta′

(k)
t ≥ L.

(8)

Theorem 1 states that CCL with knowledge-state-update
boundary L finds a minimax regret policy in Πc ∩ΠL.

Theorem 1. If Πc ∩ ΠL 6= ∅ holds for commitment c, the
program in Figure 5 is feasible. Let x∗, y∗ be its optimal
solution, then the policy derived via Equation (8) with x∗, y∗
is a minimax regret policy in Πc ∩ΠL.

The proofs for Theorem 1 and the theorems that follow
are presented in the Appendix of a full version of this paper
available on arXiv.

Intuitively, a knowledge-state-update boundary greater
than zero may help the agent choose actions according to its
changing knowledge about the actual MDP it is in and there-
fore improve the performance. Theorem 2 says the maxi-
mum regret of the policy derived by CCL using any L > 0
is upper bounded by the maximum regret of the policy de-
rived by CCNL.

Theorem 2. If Πc ∩ Π0 6= ∅ holds for commitment c, the
program in Figure 5 is feasible for any L ∈ [0, T ]. Let π∗L
be the policy derived by CCL using knowledge-state-update
boundary L, then for any L ∈ [0, T ] we have

ρ
π∗L
c ≤ ρπ

∗
0
c .



min
x,y

max
k∈κ0

U∗c (k)− U(k) (minimax regret objective) (7a)

subject to

∀k ∈ κ0

U(k) =
∑

b∈Bb0
[0,L)

,a

yba(k)R̃ba(k) +
∑

bL∈B
b0
L ,s,a

xbLsa (k)Rsa(k); (utility if MDP k is true) (7b)

∀k, b, a yba(k) ≥ 0; (7c)

∀k, b′ = 〈s′, κ′〉 ∈ Bb0[0,L]∑
a′

yb′a′(k) =
∑
b,a

yba(k)P̃ b
′

ba(k) + δb′b01{k∈κ′}; (
∑
a

yb0a(k) = 1) (7d)

∀k, k′, b ∈ Bb0[0,L), a
yba(k)∑
a′ yba′(k)

=
yba(k′)∑
a′ yba′(k

′)
; (policies via y(k) and y(k′) are consistent) (7e)

∀k, bL ∈ Bb0L ybL(k) =
∑
a

ybLa(k); (define ybL as the prob of reaching bL) (7f)

∀k, bL ∈ Bb0L , s, a xbLsa (k) ≥ 0; (7g)

∀k, bL = 〈sL, κL〉 ∈ Bb0L , s
′∑

a′

xbLs′a′(k) =
∑
s,a

xbLsa (k)P s
′

sa(k) + ybL(k)1{k∈κL}δs′sL ; (
∑
a

xbLsLa(k) = ybL(k)) (7h)

∀bL ∈ Bb0L , k, k
′, s, a

xbLsa (k)∑
a′ x

bL
sa′(k)

=
xbLsa (k′)∑
a′ x

bL
sa′(k

′)
; (policies via x(k) and x(k′) are consistent) (7i)

∀k ∈ κ0

∑
bL∈B

b0
L

∑
s∈Φ,a

xbLsa (k) ≥ p (commitment semantics) (7j)

Figure 5: CCL program. To derive this program, we first define the knowledge state-based transition function P̃ b
′

ba(k) =

1{k∈κ} Pr(b′|b, a; k), and R̃ba(k) = 1{k∈κ}Rsa(k), where P̃ b
′

ba(k) is the probability that the next knowledge state is b′ when
taking action a in knowledge state b, given that the true MDP is k. Similarly R̃ba(k) is the reward of doing action a in knowl-
edge state b given that the true MDP is k. Note that if MDP k is ruled out according to knowledge state b, then we define
∀b′, a, P̃ b′ba(k) = 0, and ∀a, R̃ba(k) = 0. Given policy π, one can use P̃ (k) to calculate the corresponding occupancy measure

yπ(k) for knowledge state-action pairs as follows: yπba(k) := Eπ

[∑T−1
t=0 1{Bt=b,At=a}|B0 = b0; k

]
. We use Bbl to denote the

set of reachable knowledge states after executing exactly l actions from knowledge state b and Bb[l1,l2] =
⋃l2
l=l1
Bbl to denote

the set of reachable knowledge states from b by executing any l actions such that l ∈ [l1, l2]. Because time is a state feature, Bbl
and Bbl′ are disjoint if l 6= l′. CCL generates beforehand all reachable knowledge states from initial knowledge state b0 within L
actions, Bb0[0,L). The state-action measures also enable us to express the expected cumulative reward conveniently in constraint
(7b) where the first RHS term sums up the reward of the first L time steps and the second term the remaining T −L time steps.
The state-action measures also enable us to express commitment semantics conveniently via constraint (7j). Constraints (7c),
(7d), and (7e) on y are the counterparts of (3c), (3d), and (3e) in Figure 3. Similarly, constraints (7g), (7h), and (7i) are the
counterparts for x.

However, one has to be careful in using deeper boundaries
because the performance of CCL is guaranteed to be mono-
tonically non-decreasing in L only when transition dynam-
ics is invariant across MDPs, but this monotonicity cannot
be guaranteed in general, as stated in Theorem 3 and Theo-
rem 4.

Theorem 3. There exists an environment E , a commitment
c, L′ > L > 0 satisfying Πc ∩ ΠL 6= ∅ and Πc ∩ ΠL′ 6= ∅,
such that

ρ
π∗
L′
c > ρ

π∗L
c ,

where π∗L and π∗L′ are the policies derived by CCL using
boundaries L and L′, respectively.



Theorem 4. If the transition dynamics does not vary across
MDPs in environment E , i.e. ∀k, k′, P (k) = P (k′), and Πc∩
ΠL 6= ∅ for boundary L, then for any L′ > L we have
Πc ∩ΠL′ 6= ∅, and

ρ
π∗
L′
c ≤ ρπ

∗
L
c ,

where π∗L and π∗L′ are the policies derived by CCL using
boundaries L and L′, respectively.

Commitment Constrained Iterative Lookahead
Commitment Constrained Iterative Lookahead (CCIL), as
the name suggests, iteratively applies the CCL technique
during execution. Suppose starting from the initial knowl-
edge state the agent executes the first L actions prescribed
by a minimax regret L-updates CCL policy π∗L derived by
solving the program in Figure 5 and ends up in knowledge
state bL ∈ Bb0L . Instead of executing the remaining T−L ac-
tions prescribed by π∗L, the agent can re-construct a new L-
updates policy with an initial knowledge state now bL. This
policy reconstruction is helpful because the agent gets more
knowledge about the true MDP by observing the transitions
and reward in the first L steps. Due to the changed initial
knowledge state, naı̈vely sticking with the original commit-
ment probability might lead to the difficulty stated in Ob-
servation 4. To respect the commitment semantics, the agent
should instead plan with a commitment probability updated
as follows. Let bL = 〈sL, κL〉, where sL is the current env-
state, and κL is the set of MDPs consistent with the history
up to time step L. For every possible MDP k ∈ κL, update
the commitment probability as the achieved probability if
the agent were to stick with π∗L from sL:

p(k) = Pr
π∗L

(ST ∈ Φ|SL = sL; k). (9)

Then, the agent can construct a new L-updates policy by
solving the program in Figure 5 with the following modifi-
cations:

1. Start from current knowledge state bL instead of b0, i.e.
replace every b0 with bL, and κ0 with κL in the program.

2. Plan with the updated commitment probabilities, i.e. re-
place p in the last constraint of the program with p(k)
calculated as Equation (9).

3. Replace U∗c (k) with U∗sL,p(k)(k) which is defined as the
optimal objective value of the following problem:

max
π

Eπ

[
T−1∑
t=L

RStAt
(k)|SL = sL; k

]
(10)

subject to Pr
π

(ST ∈ Φ|SL = sL; k) ≥ p(k)

which is the expected cumulative reward of the optimal
policy that achieves commitment probability p(k) from
current env-state sL in MDP k.

This modified program is guaranteed to be feasible because
the original L-updates policy π∗L itself is a solution. CCIL
iteratively applies the above procedure every L steps. We
outline CCIL in Algorithm 1, and Theorem 5 formally states
that it respects our commitment semantics.

Theorem 5. If Πc ∩ ΠL 6= ∅ holds for commitment c and
boundary L > 0, let πIL

L be the history-dependent policy de-
fined as Algorithm 1. We have πIL

L ∈ Πc, i.e., CCIL respects
the commitment semantics.

Algorithm 1: CCIL

Input: Environment E = 〈S,A, s0, {P (k), R(k)}Kk=1〉,
commitment c = 〈Φ, T, p〉,
integer L ∈ (0, T ] such that Πc ∩ΠL 6= ∅;

1 b0 ← 〈s0, κ0〉;
2 π0 ← L-updates policy derived by solving the program

in Figure 5;
3 t← 0;
4 while t < T do
5 for i = 1, 2, ..., L do
6 Take action at ∼ πt(·|bt) and observe

reward-next state transition (st, at, rt, st+1);
7 Update knowledge state as bt+1 = 〈st+1, κt+1〉;
8 πt+1 ← πt;
9 t← t+ 1;

10 end
11 for k ∈ κt do
12 p(k)← Prπt

(ST ∈ Φ|St = st; k);
13 U∗st,p(k)(k)← optimal objective value of (10);
14 end
15 πt ← policy derived by solving a modified version

of the program in Figure 5: replacing every b0 with
bt, κ0 with κt, p with p(k), and U∗c (k) with
U∗st,p(k)(k);

16 end

MILP Formulation

The CCL program in Figure 5 introduces quadratic equal-
ity constraints (7e) and (7i) to ensure that the action se-
lection rules derived from occupancy measures in all pos-
sible MDPs are identical. These constraints make the opti-
mization problem non-convex and hard to solve. In practice,
many math-programming solvers are unable to handle pro-
grams with quadratic equality constraints. Although some
solvers can deal with such programs, they often need to take
as input a feasible solution as the starting point, but finding
a feasible solution by itself might be difficult, and the final
solutions are usually sensitive to starting points. Here we in-
troduce a straightforward modification to the CCL program
in Figure 5 that replaces the quadratic equality constraints
with mixed integer constraints, and therefore reformulates it
into a Mixed Integer Linear Program (MILP) that has many
available solvers. The cost of this reformulation is that the
derived policy is restricted to be deterministic.

Specifically, we introduce indicators ∆ into the CCL pro-
gram in Figure 5 as additional decision variables with the



following constraints:

∀b ∈ Bb0[0,L], a ∆ba ∈ {0, 1}; (choose a in b iff ∆ba = 1)

∀b ∈ Bb0[0,L]

∑
a

∆ba ≤ 1; (at most one action is chosen)

∀k, b ∈ Bb0[0,L], a yba(k) ≤ ∆ba; (y is consistent with ∆)

∀bL ∈ Bb0L , s, a ∆bL
sa ∈ {0, 1}; (choose a in s iff ∆bL

sa = 1)

∀bL ∈ Bb0L , s
∑
a

∆bL
sa ≤ 1; (at most one action is chosen)

∀k, bL ∈ Bb0L , s, a xbLsa (k) ≤ ∆bL
sa ; (x is consistent with ∆).

Then, any feasible solution with the above constraints re-
placing constraints (7e) and (7i) of the program in Figure 5
yields a deterministic policy via Equation (8), which can be
alternatively expressed using the indicator variables:

πL(a|ht) =

{
πL(a|bt) = 1{∆bta=1} t < L

πL(a|st, bL) = 1{∆bL
sta=1} t ≥ L. (11)

Note that the objective function of the program in Figure 5
is non-linear due to the max operator. However, it is easy to
reformulate it into a linear objective function with a set of
linear constraints. In particular, one can introduce a scalar
variable z to replace the objective function (7a) with

min
x,y

z

and add the following constraints on z

∀k ∈ κ0 z ≥ U∗c (k)− U(k).

With the above modifications, the program in Figure 5 be-
comes a MILP. The derived policy via (11) using an opti-
mal solution to this MILP is a deterministic policy that min-
imizes the maximum regret of all deterministic policies in
Πc ∩ΠL (assuming this intersection is non-empty).

Empirical Results
We evaluate the performance of CCL and CCIL, under var-
ious choices of the boundary L, first on the Twin-States do-
main of Figure 1 that has uncertain rewards, and second on
the Slippery T-Maze gridworld domain of Figure 7 that has
uncertain transition dynamics. CCL and CCIL MILP pro-
grams are solved using CPLEX 12.6.

Results on the Twin-States Domain
The main goals of the experiments on this domain are 1)
to provide a constructive proof of Observations 1 to 3, 2) to
evaluate the loss of the MILP formulation in a domain where
an exact stochastic CCL policy can be computed, and 3) to
compare the performance of CCL and CCIL using various
boundaries against simple policy construction methods.
Short horizon. Here we set the time horizon to two so that
we can find an exact stochastic minimax regret CCL policy1

and compare it with that found using the MILP formulation.

1This exact policy is found not by solving the program in Fig-
ure 5 but as follows. Note that with only two actions available, the

Figure 6 plots the maximum regret under various choices
of boundary L using exact CCL, MILP-CCL, and MILP-
CCIL. Because exact CCL achieves better performance than
MILP-CCL, it is clear that the derived policy must be
stochastic, which provides a constructive proof of Observa-
tion 3.
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Figure 6: Maximum regret in the Twin-States domain of ex-
act CCL, MILP-CCL, and MILP-CCIL when horizon is two.
Markers “*” for MILP-CCIL overlap with makers “o” for
MILP-CCL when L = 1, 2. (Note that MILP-CCIL is not
defined for L = 0).

Longer horizon. Here we are concerned with comparing
MILP-CCL and MILP-CCIL against the following baseline
policy construction methods mentioned in Observation 1
and Observation 2 under longer than 2 time horizon.

• MDPs-Best: First find the optimal policies respecting the
commitment semantics for every possible MDP, i.e. π∗k =
arg maxπ∈Πc

Uπ(k). The MDPs-Best policy is the one
out of {π∗k}Kk=1 that minimizes the maximum regret.

• Greedy: Select the next action that minimizes the maxi-
mum one-step myopic regret over the possible MDPs con-
sistent with the current history, i.e.

at = arg min
a∈At

max
k∈κt

{max
a′∈At

Rsta′(k)−Rsta(k)}

where At is the set of actions available at time t that
are chosen to guarantee the commitment semantics is re-
spected. For this domain, we let At = {a0, a1, a2} if
t < T − 1. When t = T − 1, i.e. for the last action,
At = {a0} if st is B, or At = {a1, a2} if st is A.

agent should not move to state B because it has to move back to
state A using the second action and will get no reward at all. We
exploit this fact to compute an exact stochastic CCL policy, i.e.
an exact solution to the program in Figure 5 by solving another
equivalent mathematical program: 1) Introduce π(a|b), π(a|s; bL)
as decision variables, which are the probability of choosing ac-
tion a under an L-updates policy for t < L and t ≥ L, respec-
tively. Because choosing a0 is sub-optimal, we need to only con-
sider a ∈ {a1, a2}. 2) Express the maximum regret as the objec-
tive function, the only constraint is that π(·|b), π(·|s; bL) should be
valid probability measures. The commitment semantics is automat-
ically satisfied because we don’t need to include action a0.
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Figure 7: Slippery T-Maze. See text for details.

Table 1 summarizes the results. For MILP-CCL, perfor-
mance is monotonic. It takes three steps to resolve the re-
ward uncertainty by taking action a2 in state A, moving to
state B, and then taking action a2 again. This explains why
L larger than three does not improve the performance. If the
horizon is large enough, the agent should explore the reward
of action a2 in both states, then execute the action with the
highest reward before going back to state A to respect the
commitment semantics. We find that is exactly what MILP-
CCL(L ∈ [3, T ]) and MILP-CCIL(L = 1) do when horizon
T ≥ 7, which causes a max regret of 5 when reward of a2 is
the lowest (i.e., 1 in state A and 0 in state B).

Table 1: Max regret with varying horizon in Twin-States.
Horizon T 3 5 7 9 11 13

Greedy 5 5 9 13 17 21
MDPs-Best 3 7 13 19 25 31

MILP-CCL, L = 0 3 6 10 15 19 22
MILP-CCL, L = 1, 2 1 3 6 8 9 11

MILP-CCL, L ∈ [3, T ] 1 3 5 5 5 5
MILP-CCIL, L = 1 1 3 5 5 5 5

Results on the Slippery T-Maze
The main goals of the experiments reported here are to eval-
uate CCL and CCIL with the MILP formulation in a domain
where 1) the transition dynamics are uncertain, and 2) the
commitment probability is less than one, and thus stochas-
tic action selection is more likely to be crucial to achieving
better performance. The domain consists of two corridors
that are connected as shown in Figure 7. The agent starts in
the cell with a black dot and can move in four directions.
Staying in cell “r” results in a positive unit of reward every
time step, but the agent commits to being in cell “c” at the
time horizon. There are an uncertain number of consecutive
slippery cells between cell “s” and the black dot cell. In a
slippery cell movement actions succeed with probability .8.
Cell “s” is known to be slippery. The agent does not know
in advance the number of slippery cells, which makes the
transition dynamics uncertain.

Figure 8 shows the results under commitment time hori-
zon T = 10 and commitment probability p = 0.6. The max-
imum regret of MILP-CCL is equal to the objective value of
the mathematical program, which can be directly obtained,
while the performance of MILP-CCIL is estimated by aver-
aging many simulated episodes. The latter is seen to achieve
better maximum regret than the former for low values of L.
Interestingly, and perhaps unexpectedly, unlike for the Twin-
States domain, the performance of MILP-CCL is not mono-
tonic in boundary L. The explanation lies in the fact that
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Figure 8: Maximum regret in Slippery T-Maze of MILP-
CCL and MILP-CCIL using various choices of the boundary
under horizon T = 10 and probability p = 0.6.

though the MILP-CCL policy is a deterministic function of
history, the part of the policy that occurs after the boundary
L when viewed as a function of env-state alone is stochastic.
This is because the knowledge-state at time L is stochastic
due to the stochastic transition dynamics (recall that the pol-
icy after L is allowed to condition on the knowledge state
at time L). Thus if L is too large, the agent cannot take ad-
vantage of this stochasticity and suffers larger regret than for
intermediate values of L. On the other hand if L is too small,
then the knowledge-state at L is not informative enough to
be helpful. Also interestingly, MILP-CCIL can take advan-
tage of this implicit stochasticity using smaller L. However,
when L is large, MILP-CCIL achieves the same poor per-
formance as MILP-CCL, because when L is large the agent
is likely to be in the vertical corridor where it no longer gets
new knowledge about how many slippery cells there are and
therefore iterative lookahead does not help.

Conclusion
In this paper we developed a commitment semantics for
achieving a specific state by a certain time with at least a cer-
tain probability in environments that have non-probabilistic
uncertainty about the possible MDP the committing agent
is facing as well as probabilistic uncertainty about the con-
sequences of actions (within the true MDP). Our Commit-
ment Constrained Lookahead (CCL) family of algorithms
plan (offline) low-regret policies respecting the commitment
semantics. We provided analysis and empirical results on the
impact of the knowledge-state-update boundary, which is an
input-parameter to CCL, on the performance of the planned
policy. We extended CCL to Commitment Constrained It-
erative Lookahead (CCIL), which is an iterative algorithm
that adjusts the policy online. Exact CCL and CCIL require
solving non-convex programs and thus we also introduced
a MILP formulation that restricts the agent to deterministic
policies. Our empirical results indicate that the MILP ver-
sions of both CCL and CCIL outperform baseline methods,
and that CCIL is more robust than CCL.
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Technical Proofs
Proof of Theorem 1. We need to show any policy in Πc ∩
ΠL one-to-one maps to a feasible solution to the program in
Figure 5.

For any policy π ∈ Πc ∩ ΠL, we are going to define vec-
tors m(π) and n(π) such that they satisfy the constraints
of the program in Figure 5 if treated as the decision vari-
ables x and y, respectively. Given any policy π ∈ Πc ∩ ΠL,
let n(π, k) be its knowledge state-action occupancy mea-
sure if the true MDP is k for knowledge states in Bb0[0,L],
and m(π, k) be its env-state-action occupancy measure for
env-states from time step L on.

∀b ∈ Bb0[0,L], a

nba(π, k) = Pr
π

(Bt = b, At = a|B0 = b0; k)

∀s, a
mbL
sa (π, k)

=

{
Prπ(St = s,At = a,BL = bL|B0 = b0; k) t ≥ L
0 t < L

where t is the time of knowledge state b. We next show
nba(π, k) satisfies the constraints if treated as yba(k) and
mbL
ba (π, k) satisfies the constraints if treated as xbLba (k).
If treated as yba(k), nba(π, k) satisfies constraint (7c) be-

cause nba(π, k) ≥ 0.
If treated as yba(k), nba(π, k) satisfies constraint (7d) be-

cause if b′ = b0, for the LHS of (7d) we have∑
a′

nb′a′(π, k)

=
∑
a′

nb0a′(π, k) (because b′ = b0)

=
∑
a′

Pr
π

(B0 = b0, A0 = a′|B0 = b0; k)

= Pr
π

(B0 = b0|B0 = b0; k)

=1

and for the RHS of (7d) we have

RHS of (7d)

=
∑
b,a

nba(π, k)P̃ b
′

ba(k) + δb′b01{k∈κ′}

=
∑
b,a

nba(π, k)P̃ b0ba (k) + δb0b01{k∈κ0} (because b′ = b0)

=0 + 1 = 1 = LHS of (7d)

If b′ ∈ Bb0[0,L] \ {b0}, for the LHS of (7d) we have∑
a′

nb′a′(π, k)

=
∑
a′

Pr
π

(Bt′ = b′, At′ = a′|B0 = b0; k) (t′ is time of b′)

= Pr
π

(Bt′ = b′|B0 = b0; k)

and for the RHS of (7d) we have

RHS of (7d)

=
∑
b,a

nba(π, k)P̃ b
′

ba(k) + δb′b01{k∈κ′}

=
∑
b,a

nba(π, k)P̃ b
′

ba(k) (because b′ 6= b0)

=
∑
b,a

Pr
π

(Bt = b, At = a|B0 = b0; k) Pr(Bt′ = b′|b, a; k)

(t is time of b, t′ is time of b′)

= Pr
π

(Bt′ = b′|B0 = b0; k) = LHS of (7d)

If treated as yba(k), nba(π, k) satisfies constraint (7d) be-
cause

∀b ∈ Bb0[0,L), a

nba(π, k) = Pr
π

(Bt = b, At = a|B0 = b0; k)

=π(a|b) Pr
π

(Bt = b|B0 = b0; k)

and therefore for any k

yba(k)∑
a′ yba′(k)

=
π(a|b) Prπ(Bt = b|B0 = b0; k)∑
a′ Prπ(Bt = b, At = a′|B0 = b0; k)

=π(a|b)

which is independent of k.
Similarly one can show that mbL

ba (π, k) satisfies con-
straints (7g), (7h), and (7i) if treated as xbLba (k).

If treated as xbLba (k), mbL
ba (π, k) also satisfies constraint

(7j) because π ∈ Πc.
Constraints (7b) and (7f) are naturally satisfied because

they are defining new variables.
Now for the other direction, given a feasible solution x, y

to the program, let policy π be the derived policy via (8).
Then π is in ΠL by definition. Further we havembL

sa (π, k) =
xbLsa (k), nba(π, k) = yba(k), and therefore π is also in Πc

because x satisfies commitment constraint (7j).

Proof of Theorem 2. Because CCL with boundary L finds a
minimax regret policy in Πc ∩ΠL, it is sufficient to show

∀L > 0,Π0 ⊂ ΠL

This holds because given any Markov policy π0 ∈ Π0, we
can define an L-updates policy πL ∈ ΠL that is equivalent
to π0

πL(a|ht) =

{
πL(a|bt) = π0(a|st) t < L

πL(a|st, bL) = π0(a|st) t ≥ L

Thus, we know that π0 ∈ ΠL.

We first prove Theorem 4 and then Theorem 3.



Proof of Theorem 4. It’s sufficient to show that the state-
ment holds when L′ = L + 1. We next show that given
any policy πL ∈ ΠL, there exists an (L + 1)-updates pol-
icy, πL+1, that mimics πL when P (k) = P (k′) ∀k, k′, and

therefore ρ
π∗L+1
c ≤ ρπ

∗
L
c .

For the first L actions, an (L+ 1)-updates policy can map
the current knowledge state to a distribution of the next ac-
tions identical to πL. The action that is going to take at time
step L by πL can also be recovered by an (L + 1)-updates
policy, which gives

πL+1(a|ht) =

{
πL+1(a|bt) = πL(a|bt) t < L

πL+1(a|bL) = πL(a|sL, bL) t = L

If P (k) = P (k′) ∀k, k′, then πL+1 can also recover πL for
t ≥ L+ 1. To see this, note if P (k) = P (k′) ∀k, k′ we have

Pr
πL

(bL|bL+1; k) = Pr
πL

(bL|bL+1; k′),∀πL, k, k′ ∈ κL+1

(12)

Therefore, under any L-updates policy πL and conditioned
on being in knowledge state bL+1 at time step L + 1, the
agent thereafter selects actions according to πL(·|st, bL)
with probability defined in Equation (12) that does not de-
pend on k. Because the transition function is known, the oc-
cupancy measure of πL for t ≥ L + 1 conditioned on any
bL+1 can be achieved by a stochastic Markov policy from
bL+1, which can be expressed by an (L+ 1)-updates policy
as πL+1(·|st, bL+1).

Proof of Theorem 3. In general P (k) = P (k′) ∀k, k′ does
not hold, and therefore condition (12) in the proof of Theo-
rem 4 does not hold. Let bL+1 = 〈sL+1, κL+1〉 be a knowl-
edge state at time step L+ 1.

Inspired by this we now give an example as a formal
constructive proof. In this example the env-state space is
{0, 1, 2, 3} and let state 0 be the initial state. There are two
actions a0, a1 and K = 2 possible MDPs. The time horizon
is three and the commitment probability is zero. The transi-
tion dynamics and reward of these MDPs are as follows.

1. In MDP k = 1, Pr(1|0, a; k = 1) = 0.9, Pr(2|0, a; k =
1) = 0.1, Pr(3|1, a; k = 1) = Pr(3|2, a; k = 1) = 1.0
for both a = a0, a1. State 3 is an absorbing state. Doing
a0 in state 3 gives a positive unit of reward. There’s no
reward elsewhere.

2. In MDP k = 2, Pr(1|0, a; k = 1) = 0.1, Pr(2|0, a; k =
1) = 0.9, Pr(3|1, a; k = 1) = Pr(3|2, a; k = 1) = 1.0
for both a = a0, a1. State 3 is an absorbing state. Doing
a1 in state 3 gives a positive unit of reward. There’s no
reward elsewhere.

The maximum regret when L = 2 is 0.5, but L = 1 can
achieve a maximum regret of 0.1.

Proof of Theorem 5. We need to show

Pr
πIL
L

(ST ∈ Φ|S0 = s0; k) ≥ p ∀k ∈ κ0.

Let πL be the CCL L-updates policy derived from the pro-
gram in Figure 5. For any k ∈ κ0, we can calculate the

achieved commitment probability of πIL
L by conditioning on

the knowledge state it will visit at time L > 0,

Pr
πIL
L

(ST ∈ Φ|S0 = s0; k)

=
∑
bL

Pr
πIL
L

(BL = bL|S0 = s0; k) Pr
πIL
L

(ST ∈ Φ|BL = bL; k)

=
∑
bL

Pr
πL

(BL = bL|S0 = s0; k) Pr
πIL
L

(ST ∈ Φ|BL = bL; k)

≥
∑
bL

Pr
πL

(BL = bL|S0 = s0; k) Pr
πL

(ST ∈ Φ|BL = bL; k)

= Pr
πL

(ST ∈ Φ|S0 = s0; k) ≥ p

The second equality holds because πIL
L is identical to πL in

the first L steps. The first inequality holds because CCIL it-
eratively applies L-step lookahead in Algorithm 1 line 15
with the commitment probability achieved by the policy of
the previous iteration calculated in line 12. The modified
program in Algorithm 1 line 15 is always feasible because
Π0 ⊂ ΠL which is shown in the proof of Theorem 2.


