
Reinforcement Learning for 3 vs. 2 Keepaway

Peter Stone, Richard S. Sutton, and Satinder Singh

AT&T Labs | Research
180 Park Ave.

Florham Park, NJ 07932
{pstone,sutton,baveja}@research.att.com

http://www.research.att.com/{~pstone,~sutton,~baveja}

Abstract. As a sequential decision problem, robotic soccer can ben-
e�t from research in reinforcement learning. We introduce the 3 vs. 2
keepaway domain, a subproblem of robotic soccer implemented in the
RoboCup soccer server. We then explore reinforcement learning methods
for policy evaluation and action selection in this distributed, real-time,
partially observable, noisy domain. We present empirical results demon-
strating that a learned policy can dramatically outperform hand-coded
policies.

1 Introduction

Robotic soccer is a sequential decision problem: agents attempt to achieve a
goal by executing a sequence of actions over time. Every time an action can be
executed, there are many possible actions from which to choose.

Reinforcement learning (RL) is a useful framework for dealing with sequen-
tial decision problems [11]. RL has several strengths, including: it deals with
stochasticity naturally; it deals with delayed reward; architectures for dealing
with large state spaces and many actions have been explored; there is an estab-
lished theoretical understanding (in limited cases); and it can deal with random
delays between actions.

These are all characteristics that are necessary for learning in the robotic
soccer domain. However, this domain also presents several challenges for RL,
including: distribution of the team's actions among several teammates; real-time
action; lots of hidden state; and noisy state.

In this paper, we apply RL to a subproblem of robotic soccer, namely 3
vs. 2 keepaway. The remainder of the paper is organized as follows. Sections 2
and 3 introduce the 3 vs. 2 keepaway problem and map it to the RL framework.
Section 4 introduces tile coding or CMACs, the function approximator we use
with RL in all of our experiments. Sections 5 and 6 describe the experimen-
tal scenarios we have explored. Section 7 describes related work and Section 8
concludes.

2 3 vs. 2 Keepaway

All of the experiments reported in this paper were conducted in the RoboCup
soccer server [6], which has been used as the basis for successful international

competitions and research challenges [4]. As presented in detail in [8], it is a fully
distributed, multiagent domain with both teammates and adversaries. There is
hidden state, meaning that each agent has only a partial world view at any given
moment. The agents also have noisy sensors and actuators, meaning that they
do not perceive the world exactly as it is, nor can they a�ect the world exactly
as intended. In addition, the perception and action cycles are asynchronous,
prohibiting the traditional AI paradigm of using perceptual input to trigger
actions. Communication opportunities are limited; and the agents must make
their decisions in real-time. These italicized domain characteristics combine to
make simulated robotic soccer a realistic and challenging domain.

The players in our experiments are built using CMUnited-99 agent skills [9]
as a basis. In particular, their skills include the following:

HoldBall(): Remain stationary while keeping possession of the ball in a posi-
tion that is as far away from the opponents as possible.

PassBall(f): Kick the ball directly towards forward f .
GoToBall(): Intercept a moving ball or move directly towards a stationary

ball.
GetOpen(): Move to a position that is free from opponents and open for a

pass from the ball's current position (using SPAR [15]).

We consider a \keepaway" task in which one team (forwards) is trying to
maintain possession of the ball within a region, while another team (defenders)
is trying to gain possession. Whenever the defenders gain possession or the ball
leaves the region, the episode ends and the players are reset for another episode
(with the forwards being given possession of the ball again).

For the purposes of this paper, the region is a 20m x 20m square, and there
are always 3 forwards and 2 defenders (see Figure 1). Both defenders use the
identical �xed strategy of always calling GoToBall(). That is, they keep trying
to intercept the ball (as opposed to marking a player). Upon reaching the ball,
they try to maintain possession using HoldBall().

Defenders

Forwards

Boundary {HoldBall(),PassBall(f)}
(f is 1 of 2 teammates)

Teammate with ball
or can get there
faster

notBall
GetOpen()

GoToBall()

Ball
kickable

kickable

Fig. 1. A screen shot from a 3 vs. 2
keepaway episode.

Fig. 2. The forwards' policy space.

An omniscient coach agent manages the play, ending episodes when a de-
fender gains possession of the ball for a set period of time or when the ball goes

outside of the region. At the beginning of each episode, it resets the location of
the ball and the players semi-randomly within the region of play. The defenders
both start in one corner and each forward is placed randomly in one of the other
three corners { one forward per corner.

3 vs. 2 keepaway is a subproblem of robotic soccer. The principal simpli�-
cations are that there are fewer players involved; they are playing in a smaller
area; and the players are always focussed on the same high-level goal: they don't
need to balance o�ensive and defensive considerations. Nevertheless, the skills
needed to play 3 vs. 2 keepaway well would clearly also be very useful in the full
problem of robotic soccer.

3 Mapping Keepaway onto Reinforcement Learning

Our keepaway problem maps fairly directly onto the discrete-time, episodic RL
framework. The RoboCup Soccer server operates in discrete time steps, t =
0; 1; 2; : : :, each representing 100 ms of simulated time. When one episode ends
(e.g., the ball is lost to the defenders), another begins, giving rise to a series of
episodes. RL views each episode as a sequence of states, actions, and rewards:

s0; a0; r1; s1; : : : ; st; at; rt+1; st+1; : : : ; rT ; sT

where st denotes the state of the simulator at step t, at denotes the action taken
based on some, presumably incomplete, perception of st, and rt+1 2 < and st+1
represent the resultant reward and the next state. If we wish to refer to an event
within a particular episode, we add an additional index for the episode number.
Thus the state at time t in the mth episode is denoted st;m, the corresponding
action is at;m, and the length of the mth episode is Tm. The �nal state of any
episode, sTm is the state where the defenders have possession or the ball has
gone out of bounds. In this case we consider, all rewards are zero except for the
last one, which is minus one, i.e., rTm = �1;8m. We use a standard temporal
discounting technique which causes the RL agorithms to try to postpone this
�nal negative reward as long as possible, or ideally avoid it all together.1

A key consideration is what one takes as the action space from which the RL
algorithm chooses. In principle, one could take the full joint decision space of
all players on a team as the space of possible actions. To simplify, we consider
only top-level decisions by the forward in possession of the ball, that is, at 2
fHoldBall(), PassBall(f), GoToBall(), GetOpen()g.

That is, we considered only policies within the space shown in Figure 2.
When a teammate has possession of the ball,2 or a teammate could get to the

1 We also achieved successful results in the undiscounted case in which rt = 1; 8t.
Again, the RL algorithm aims to maximize total reward by extending the episode
as long as possible.

2 \Possession" in the soccer server is not well-de�ned since the ball never occupies the
same location as a player. One of our agents considers that it has possession of the
ball if the ball is close enough to kick it.

ball more quickly than the forward could get there itself, the forward executes
GetOpen(). Otherwise, if the forward is not yet in possession of the ball, it exe-
cutes GoToBall(); if in possession, it executes either HoldBall() or PassBall(f).
In the last case, it also selects to which of its two teammates to bind f . Within
this space, policies can vary only in the behavior of the forward in possession of
the ball. For example, we used the following three policies as benchmarks:

Random Execute HoldBall() or PassBall(f) randomly
Hold Always execute HoldBall()
Hand-coded

If no defender is within 10m: execute HoldBall()
Else If receiver f is in a better location than the forward with the ball and
the other teammate; and the pass is likely to succeed (using the CMUnited-
99 pass-evaluation function, which is trained o�-line using the C4.5 decision
tree training algorithm [7]): execute PassBall(f)
Else execute HoldBall()

4 Function Approximation

In large state spaces, RL relies on function approximation to generalize across
the state space. To apply RL to the keepaway task, we used a sparse, coarse-
coded kind of function approximation known as tile coding or CMAC [1, 16].
This approach uses multiple overlapping tilings of the state space to produce
a feature representation for a �nal linear mapping where all the learning takes
place (see Figure 3). Each tile corresponds to a binary feature that is either 1
(the state is within this tile) or zero (the state is not within the tile). The overall
e�ect is much like a network with �xed radial basis functions, except that it is
particularly eÆcient computationally (in other respects one would expect RBF
networks and similar methods (see [12]) to work just as well).

It is important to note that the tilings need not be simple grids. For exam-
ple, to avoid the \curse of dimensionality," a common trick is to ignore some
dimensions in some tilings, i.e., to use hyperplanar slices instead of boxes. A sec-
ond major trick is \hashing"|a consistent random collapsing of a large set of
tiles into a much smaller set. Through hashing, memory requirements are often
reduced by large factors with little loss of performance. This is possible because
high resolution is needed in only a small fraction of the state space. Hashing
frees us from the curse of dimensionality in the sense that memory requirements
need not be exponential in the number of dimensions, but need merely match
the real demands of the task. We used both of these tricks in applying tile coding
to 3 vs. 2 keepaway.

5 Policy Evaluation

The �rst experimental scenario we consider is policy evaluation from an omni-
scient perspective. That is, the players were given �xed, pre-determined policies

Dimension #1

D
im

e
n

s
io

n
 #

2

Tiling #1

Tiling #2

Fig. 3. Our binary feature representation is formed from multiple overlapping tilings
of the state variables. Here we show two 5 � 5 regular tilings o�set and overlaid over
a continuous, two-dimensional state space. Any state, such as that shown by the dot,
is in exactly one tile of each tiling. A state's tiles are used to represent it in the RL
algorithm. The tilings need not be regular grids such as shown here. In particular,
they are often hyperplanar slices, the number of which grows sub-exponentially with
dimensionality of the space. Tile coding has been widely used in conjunction with
reinforcement learning systems (e.g., [16]).

(not learned on-line) and an omniscient agent attempts to estimate the value of
any given state from the forwards' perspective. Let us denote the overall policy
of all the agents as �. The value of a state s given policy � is de�ned as

V �(s) = E

(
1X
t=0

trt+1 j s0 = s; �

)
= E

�
�T�1 j s0 = s; �

	

where 0 � < 1 is a �xed discount-rate parameter (in our case = 0:9), and T
is the number of time steps in the episode starting from s.3 Thus, a state from
which the forwards could keep control of the ball inde�nitely would have the
highest value, zero; all other states would have negative value, approaching -1
for states where the ball is lost immediately. In this section we consider an RL
method for learning to approximate the value function V �.

As is the case throughout this paper, both defenders always call GoToBall()
until they reach the ball. The forwards use the hand-coded policy de�ned in
Sections 2.

Every simulator cycle in which the ball is in kicking range of one of the for-
wards we call a decision step. Only on these steps does a forward actually have to
make a decision about whether to HoldBall or PassBall(f). On each decision step
the omniscient coach records a set of 13 state variables, computed based on F1,
the forward with the ball; F2, the other forward that is closest to the ball; F3, the
remaining forward; D1, the defender that is closest to the ball; D2, the other de-
fender; and C, the center of the playing region (see Figure 4). Let dist(a,b) be the
distance between a and b and ang(a,b,c) be the angle between a and c with vertex
at b. For example, ang(F3,F1,D1) is shown in Figure 4. We used the following 13
3 In the undiscounted case, the parameter can be eliminated and V �(s) =
EfT j s0 = sg.

state variables: dist(F1,C), dist(F1,F2), dist(F1,F3), dist(F1,D1), dist(F1,D2),
dist(F2,C), dist(F3,C), dist(D1,C), dist(D2,C), Minimum(dist(F2,D1),dist(F2,D2)),
Minimum(dist(F3,D1),dist(F3,D2)), Minimum(ang(F2,F1,D1),ang(F2,F1,D2)),
and Minimum(ang(F3,F1,D1),ang(F3,F1,D2)).

By running the simulator with the standard policy � through a series of
episodes, we collected a sequence of 1.1 million decision steps. The �rst 1 million
of these we used as a training set and the last 100,000 we reserved as a test set.
As a post-processing step, we associated with each decision step t, in episode m,
the empirical return, �Tm�t�1. This is a sample of the value, V �(st;m), which
we are trying to learn. We used these samples as targets for a supervised learning,
or Monte Carlo, approach to learning an approximation to V �. We also applied
temporal-di�erence methods, in particular, the TD(0) algorithm (see Sutton and
Barto (1998) for background on both kinds of method).

It is not entirely clear how to assess the performance of our methods. One
performance measure is the standard deviation of the learned value function from
the empirical returns on the test set. For example, the best constant prediction
(ignoring the state variables) on the test set produced a standard deviation of
0.292. Of course it is not possible to reduce the standard deviation to zero even if
the value function is learned exactly. Because of the inherent noise in the domain,
the standard deviation can be reduced only to some unknown base level. Our
best result reduced it to 0.259, that is, by 11.4%. Our tests were limited, but we
did not �nd a statistically signi�cant di�erence between Monte Carlo and TD
methods.

Another way to assess performance is to plot empirical returns vs estimated
values from the test set, as in Figure 5. Due to the discrete nature of the simula-
tion, the empirical returns can only take discrete values, corresponding to �k

for various integers k. The fact that the graph skews to the right indicates a
correlation between the estimated values and the sample returns in the test set.

= Ball

F1

F3

F2

D1
D2

C

C = center

Fig. 4. The state variables
input to the value function
approximator.

Fig. 5. Correlation of our best approximation of V �

to the sample returns in the training set.

The biggest inuence on performance was the kind of function approximation
used|the number and kind of tilings. We experimented with a few possibilities
and obtained our best results using 14 tilings, 13 that sliced along a single state
variable (one for each of the 13 state variables), and 1 that jointly considered
dist(F1,D1) and dist(F1,D2), the distances from the forward with the ball to the
two defenders.

6 Policy Learning

Next we considered reinforcement learning to adapt the forwards' policies to
maximize their time of possession. To address this challenge, we used Q-learning [16],
with each forward learning independently of the others. Thus, all forwards might
learn to behave similarly, or they might learn di�erent, complementary policies.
Each forward maintained three function approximators, one for each of its pos-
sible actions when in possession of the ball (otherwise it was restricted to the
policy space given by Figure 2). Each function approximator used the same set
of 14 tilings that we found most e�ective in our policy evaluation experiments.

Below we outline the learning algorithm used by each forward. Here ActionValue(a; x)
denotes the current output of the function approximator associated with action a
given that the state has features x. The function UpdateRL(r) is de�ned below.

{ Set counter = �1
{ If episode over (ball out of bounds or defenders have possession)

� If counter > 0, UpdateRL(�1)

{ Else, If the ball is not kickable for anyone,

� If counter � 0, increment counter
� If in possession of the ball, GoToBall()
� Else, GetOpen()

{ Else, If ball is within kickable range

� If counter > 0, UpdateRL(0)
� Set LastAction = Max(ActionValue(a,current state variables)) where a
ranges over possible actions, LastVariables = current state variables

� Execute LastAction
� Set counter = 0

{ Else (the ball is kickable for another forward)

� If counter> 0, UpdateRL(0) (with action possibilities and state variables
from the other forward's perspective)

� Set counter = �1

UpdateRL(r):

{ TdError = r � counter�1 +counter Max(ActionValue(a,current state vari-
ables)) - ActionValue(LastAction,LastVariables)

{ Update the function approximator for LastAction and LastFeatures, with
TdError

TIMEf1 f1 f1 f2 f2 f3 f3

Update: f1 f1 f1 f2 f2 f3

Kick:

Fig. 6. A timeline indicating sample decision steps (kicks) and updates for the three
forwards f1, f2, and f3.

Note that this algorithm maps onto the semi-markov decision process frame-
work: value updates are only done when the ball is kickable for someone as
indicated in Figure 6.

To encourage exploration of the space of policies, we used optimistic ini-

tialization: the untrained function approximators initially output 0, which is
optimistic in that all true values are negative. This tends to cause all actions to
be tried, because any that are untried tend to look better (because they were
optimistically initialized) than those that have been tried many times and are
accurately valued. In some of our runs we further encouraged exploration by
forcing a random action selection on 1% of the decision steps.

With = 0:9, as in Section 5, the forwards learned to always hold the ball
(presumably because the bene�ts of passing were too far in the future). The
results we describe below used = 0:99. To simplify the problem, we gave
the agents a full 360 degrees of noise-free vision for this experiment (object
movement and actions are still both noisy). We have not yet determined whether
this simpli�cation is necessary or helpful.

Our main results to date are summarized in the learning curves shown in
Figure 7. The y-axis is the average time that the forwards are able to keep the
ball from the defenders (average episode length); the x-axis is training time (sim-
ulated time � real time). Results are shown for �ve individual runs over a couple
of days of training, varying the learning-rate and exploration parameters. The
constant performance levels of the benchmark policies (separately estimated)
are also shown as horizontal lines. All learning runs quickly found a much bet-
ter policy than any of the benchmark policies, including the hand-coded policy.
A better policy was even found in the �rst data point, representing the �rst
500 episodes of learning. Note that the variation in speed of learning with the
value of the learning-rate parameter followed the classical inverted-U pattern,
with fastest learning at an intermediate value. With the learning-rate parameter
set to 1=8, a very e�ective policy was found within about 15 hours of training.
Forcing 1% random action to excourage further exploration did not improve per-
formance in our runs. Many more runs would be needed to conclude that this
was a reliable e�ect. However, Figure 8, showing multiple runs under identical
conditions, indicates that the successful result is repeatable.

7 Related Work

Distributed reinforcement learning has been explored previously in discrete en-
vironments, such as the pursuit domain [13] and elevator control [3]. This task

0 10 20 30 40 50

4

5

6

7

8

9

10

11

12

13

Average
Possession

Time
(seconds)

Training Time
(hours, in bins of 500 episodes)

Hand-coded
Random

1/4

1/8

1/64 with 0.01 exploration1/16

1/64

Always hold

0 10 20
4

5

6

7

8

9

10

11

12

13

14

Epsiode
Duration
(seconds)

Hours of Training Time
(bins of 1000 episodes)

handcoded random always hold

Fig. 7. Learning curves for �ve individual runs
varying the learning-rate parameter as marked.
All runs used optimistic initialization to en-
courage exploration. One run used 1% random
actions to further encourage exploration.

Fig. 8. Multiple successful runs un-
der identical characteristics. In this
case, undiscounted reward and 1%
random exploration were used. Q-
values were initialized to 0.

di�ers in that the domain is continuous, that it is real-time, and that there is
noise both in agent actions and in state-transitions.

Reinforcement learning has also been previously applied to the robotic soccer
domain. Using real robots, Uchibe used RL to learn to shoot a ball into a goal
while avoiding an opponent [14]. This task di�ers from keepaway in that there
is a well-de�ned goal state. Also using goal-scoring as the goal state, TPOT-RL
was successfully used to allow a full team of agents to learn collaborative passing
and shooting policies using a Monte Carlo learning approach, as opposed to the
TD learning explored in this paper [10]. Andou's \observational reinforcement
learning" was used for learning to update players' positions on the �eld based
on where the ball has previously been located [2].

In conjunction with the research reported in this paper, we have been ex-
ploring techniques for keepaway in a full 11 vs. 11 scenario played on a full-size
�eld [5].

8 Conclusion

In this paper, we introduced the 3 vs. 2 keepaway task as a challenging subprob-
lem of the entire robotic soccer task. We demonstrated (in Section 5) that RL
prediction methods are able to learn a value function for the 3 vs. 2 keepaway
task. We then applied RL control methods to learn a signi�cantly better policy
than could easily be hand-crafted. Although still preliminary, our results sug-
gest that reinforcement learning and robotic soccer may have much to o�er each
other.

Our future work will involve much further experimentation. We would like to
eliminate omniscience and centralized elements of all kinds, while expanding the
task to include more players in a larger area. Should the players prove capable
of learning to keep the ball away from an opponent on a full �eld with 11 players
on each team, the next big challenge will be to allow play to continue when the
defenders get possession, so that the defenders become forwards and vice versa.

Then all players will be forced to balance both o�ensive and defensive goals as
is the case in the full robotic soccer task.

References

1. J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH, 1981.
2. T. Andou. Re�nement of soccer agents' positions using reinforcement learning. In

H. Kitano, editor, RoboCup-97: Robot Soccer World Cup I, pages 373{388. Springer
Verlag, Berlin, 1998.

3. R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement
learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Processing Systems 8, Cambridge, MA, 1996. MIT Press.

4. H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa, H. Matsubara,
I. Noda, and M. Asada. The RoboCup synthetic agent challenge 97. In Proceedings

of the Fifteenth International Joint Conference on Arti�cial Intelligence, pages 24{
29, San Francisco, CA, 1997. Morgan Kaufmann.

5. D. McAllester and P. Stone. Keeping the ball from cmunited-99. In P. Stone,
T. Balch, and G. Kraetszchmar, editors, RoboCup-2000: Robot Soccer World Cup

IV, Berlin, 2001. Springer Verlag. To appear.
6. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research

on multiagent systems. Applied Arti�cial Intelligence, 12:233{250, 1998.
7. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.
8. P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic

Soccer. MIT Press, 2000.
9. P. Stone, P. Riley, and M. Veloso. The CMUnited-99 champion simulator team. In

M. Veloso, E. Pagello, and H. Kitano, editors, RoboCup-99: Robot Soccer World

Cup III, pages 35{48. Springer Verlag, Berlin, 2000.
10. P. Stone and M. Veloso. Team-partitioned, opaque-transition reinforcement learn-

ing. In M. Asada and H. Kitano, editors, RoboCup-98: Robot Soccer World Cup

II. Springer Verlag, Berlin, 1999. Also in Proceedings of the Third International

Conference on Autonomous Agents,1999.
11. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge,Massachusetts, 1998.
12. R. S. Sutton and S. D. Whitehead. Online learning with random representations.

In Proceedings of the Tenth International Conference on Machine Learning, pages
314{321, 1993.

13. M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages
330{337, 1993.

14. E. Uchibe. Cooperative Behavior Acquisition by Learning and Evolution in a Multi-

Agent Environment for Mobile Robots. PhD thesis, Osaka University, January 1999.
15. M. Veloso, P. Stone, and M. Bowling. Anticipation as a key for collaboration in

a team of agents: A case study in robotic soccer. In Proceedings of SPIE Sensor

Fusion and Decentralized Control in Robotic Systems II, volume 3839, Boston,
September 1999.

16. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,
Cambridge, UK, 1989.

