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Abstract

We give the first rigorous upper bounds on the error of temporal difference ( )
algorithms for policy evaluation as a function of the amount of experience. These
upper bounds prove exponentially fast convergence, with both the rate of conver-
gence and the asymptote strongly dependent on the length of the backups or the
parameter . Our bounds give formal verification to the long-standing intuition that

methods are subject to a “bias-variance” trade-off, and they lead to schedules
for and that are predicted to be better than any fixed values for these parame-
ters. We give preliminary experimental confirmation of our theory for a version of
the random walk problem.

1 Introduction

In the policy evaluation problem, we must predict the expected discounted return (or value)
for a fixed policy , given only the ability to generate experience in an unknown Markov
decision process (MDP) . A family of well-studied temporal difference (or ) [3] algo-
rithms have been developed for this problem that make use of repeated trajectories under
from the state(s) of interest, and perform iterative updates to the value function. The main
difference between the variants lies in how far they look ahead in the trajectories. The

family of algorithms use the first rewards and the (current) value prediction at the
st state reached in making its update. The more commonly used family of al-

gorithms use exponentially weighted sums of updates (with decay parameter ). The
smaller the value for or , the less the algorithm depends on the actual rewards received
in the trajectory, and the more it depends on the current predictions for the value function.
Conversely, the larger the value for or , the more the algorithm depends on the actual
rewards obtained, with the current value function playing a lessened role. The extreme cases
of and become the Monte Carlo algorithm, which updates each
prediction to be the average of the discounted returns in the trajectories.
A long-standing question is whether it is better to use large or small values of the parameters

and . Watkins [5] informally discusses the trade-off that this decision gives rise to: larger
values for the parameters suffer larger variance in the updates (since more stochastic
reward terms appear), but also enjoy lower bias (since the error in the current value function
predictions have less influence). This argument has largely remained an intuition. However,
some conclusions arising from this intuition– for instance, that intermediate values of and
often yield the best performance in the short term – have been borne out experimentally [4, 2].

In this paper, we provide the first rigorous upper bounds on the error in the value functions of



the algorithms as a function of the number of trajectories used. In other words, we give
bounds on the learning curves of methods that hold for any MDP. These upper bounds
decay exponentially fast, and are obtained by first deriving a one-step recurrence relating the
errors before and after a update, and then iterating this recurrence for the desired number
of steps. Of particular interest is the form of our bounds, since it formalizes the trade-off
discussed above — the bounds consist of terms that are monotonically growing with and
(corresponding to the increased variance), and terms that are monotonically shrinking with
and (corresponding to the decreased influence of the current error).

Overall, our bounds provide the following contributions and predictions:

1. A formal theoretical explanation of the bias-variance trade-off in multi-step up-
dates;

2. A proof of exponentially fast rates of convergence for any fixed or ;
3. A rigorous upper bound that predicts that larger values of and lead to faster

convergence, but to higher asymptotic errror;
4. Formal explanation of the superiority of intermediate values of and (U-shaped

curves) for any fixed number of iterations;
5. Derivation of a decreasing schedule of and that our bound predicts should beat

any fixed value of these parameters.

Furthermore, we provide some preliminary experimental confirmation of our theory for the
random walk problem. We note that some of the findings above were conjectured by Singh
and Dayan [2] through analysis of specific MDPs.

2 Technical Preliminaries

Let be an MDP consisting of the transition probabilities and the
reward distributions . For any policy in , and any start state , a trajectory
generated by starting from is a random variable that is an infinite sequence of states
and rewards: . Here each random reward is
distributed according to , and each state is distributed according to .
For simplicity we will assume that the support of is . However, all of our
results easily generalize to the case of bounded variance.

We now recall the standard (also known as -step backup) and methods for
updating an estimate of the value function. Given a trajectory generated by from , and
given an estimate for the value function , for any natural number we define

The update based on is simply . It is implicit that the
update is always applied to the estimate at the initial state of the trajectory , and we regard
the discount factor and the learning rate as being fixed. For any , the
update can now be easily expressed as an infinite linear combination of the updates:

Given a sequence , we can simply apply either type of update sequentially.
In either case, as either becomes large or approaches 1, the updates approach a Monte
Carlo method, in which we use each trajectory entirely, and ignore our current estimate

. As becomes small or approaches 0, we rely heavily on the estimate , and



effectively use only a few steps of each . The common intuition is that early in the sequence
of udpates, the estimate is poor, and we are better off choosing large or near 1.
However, since the trajectories do obey the statistics of , the value function estimates will
eventually improve, at which point we may be better off “bootstrapping” by choosing small

or .

In order to provide a rigorous analysis of this intuition, we will study a framework which
we call phased updates. This framework is intended to simplify the complexities of the
moving average introduced by the learning rate . In each phase, we are given trajectories
under from every state , where is a parameter of the analysis. Thus, phase consists
of a set , where ranges over all states, ranges from to , and
is an independent random trajectory generated by starting from state . In phase , phased

averages all of the trajectories in that start from state to obtain its update of the
value function estimate for . In other words, the updates become

where the are the rewards along trajectory , and is the th state reached along that
trajectory. The updates become

Phased updates with a fixed value of are analogous to standard updates with a
constant learning rate [1]. In the ensuing sections, we provide a rigorous upper bound on
the error in the value function estimates of phased updates as a function of the number of
phases. This upper bound clearly captures the intuitions expressed above.

3 Bounding the Error of Updates

Theorem 1 (Phased Error Recurrence) Let be the set of trajectories generated
by in phase ( trajectories from each state), let be the value function estimate of
phased after phase , and let . Then for any ,
with probability at least ,

(1)

Here the error after phase is fixed, and the probability is taken over only the
trajectories in .

Proof:(Sketch) We begin by writing

Here the expectations are over a random trajectory under ; thus ( ) denotes
the expected value of the th reward received, while is the expected value of
the true value function at the th state reached. The phased update sums the terms

, whose expectations are exactly the appearing above. By a stan-
dard large deviation analysis (omitted), the probability that any of these terms deviate by
more than from their expected values is at most . If no such devi-
ation occurs, the total contribution to the error in the value function estimate is bounded



by , giving rise to the “variance” term in our overall bound above.
The remainder of the phased update is simply . But since

by definition, the contribution to the error is at most ,
which is the “bias” term of the bound. We note that a similar argument leads to bounds in
expectation rather than the PAC-style bounds given here.
Let us take a brief moment to analyze the qualitative behavior of Equation (1) as a function of

. For large values of , the quantity becomes negligible, and the bound is approximately
, giving almost all the weight to the error incurred by variance in

the first rewards, and negligible weight to the error in our current value function. At the
other extreme, when our reward variance contributes error only , but
the error in our current value function has weight . Thus, the first term increases with ,
while the second term decreases with , in a manner that formalizes the intuitive trade-off
that one faces when choosing between longer or shorter backups.
Equation (1) describes the effect of a single phase of backups, but we can iterate this
recurrence over many phases to derive an upper bound on the full learning curve for any value
of . Assuming that the recurrence holds for consecutive steps, and assuming
without loss of generality, solution of the recurrence (details omitted) yields

(2)

This bound makes a number of predictions about the effects of different values for .
First of all, as approaches infinity, the bound on approaches the value

, which increases with . Thus, the bound predicts that the asymptotic
error of phased updates is larger for larger . On the other hand, the rate of con-
vergence to this asymptote is , which is always exponentially fast, but faster for larger .
Thus, in choosing a fixed value of , we must choose between having either rapid conver-
gence to a worse asymptote, or slower convergence to a better asymptote. This prediction is
illustrated graphically in Figure 1(a), where with all of the parameters besides and fixed
(namely, , , and ), we have plotted the bound of Equation (2) as a function of for several
different choices of .

Note that while the plots of Figure 1(a) were obtained by choosing fixed values for and
iterating the recurrence of Equation (1), at each phase we can instead use Equation (1) to
choose the value of that maximizes the predicted decrease in error . In other
words, the recurrence immediately yields a schedule for , along with an upper bound on the
learning curve for this schedule that outperforms the upper bound on the learning curve for
any fixed value of . The learning curve for the schedule is also shown in Figure 1(a), and
Figure 1(b) plots the schedule itself.
Another interesting set of plots is obtained by fixing the number of phases , and computing
for each the error after phases using updates that is predicted by Equation (2).
Such plots are given in Figure 1(c), and they clearly predict a unique minimum — that is, an
optimal value of for each fixed (this can also be verified analytically from equation 2).
For moderate values of , values of that are too small suffer from their overemphasis on a
still-inaccurate value function approximation, while values of that are too large suffer from
their refusal to bootstrap. Of course, as increases, the optimal value of decreases, since
small values of have time to reach their superior asymptotes.

We now go on to provide a similar analysis for the family of updates, beginning with
the analogue to Theorem 1.

Formally, we can apply Theorem 1 by choosing , where is the number of states in
the MDP. Then with probability at least , the bound of Equation (1) will hold at every state for
consecutive steps.
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Figure 1: (a) Upper bounds on the learning curves of phased for several values of , as
a function of the number of phases (parameters , , ). Note that larger
values of lead to more rapid convergence, but to higher asymptotic errors. Both the theory and the
curves suggest a (decreasing) schedule for , intuitively obtained by always “jumping” to the learning
curve that enjoys the greatest one-step decrease from the current error. This schedule can be efficiently
computed from the analytical upper bounds, and leads to the best (lowest) of the learning curves plotted,
which is significantly better than for any fixed . (b) The schedule for derived from the theory as a
function of the number of phases . (c) For several values of the number of phases , the upper bound
on for as a function of . These curves show the predicted trade-off, with a unique optimal
value for identified until is sufficiently large to permit 1-step backups to converge to their optimal
asymptotes.

Theorem 2 (Phased Error Recurrence) Let be the set of trajectories generated
by in phase ( trajectories from each state), let be the value function estimate of
phased after phase , and let . Then for any ,
with probability at least ,

(3)

Here the error after phase is fixed, and the probability is taken over only the
trajectories in .

We omit the proof of this theorem, but it roughly follows that of Theorem 1. That proof
exploited the fact that in updates, we only need to apply large deviation bounds to
the rewards of a finite number ( ) of averaged trajectory steps. In , all of the rewards
contribute to the update. However, we can always choose to bound the deviations of the first

steps, for any value of , and assume maximum variance for the remainder (whose weight
diminishes rapidly as we increase ). This logic is the source of the term of the
bound. One can view Equation (3) as a variational upper bound, in the sense that it provides
a family of upper bounds, one for each , and then minimizes over the variational parameter

.

The reader can verify that the terms appearing in Equation (3) exhibit a trade-off as a function
of analogous to that exhibited by Equation (1) as a function of . In the interest of brevity,
we move directly to the analogue of Equation (2). It will be notationally convenient
to define , where is the function appearing inside the
in Equation (3). (Here we regard all parameters other than as fixed.) It can be shown that
for , repeated iteration of Equation (3) yields the -phase inequality

(4)

where



(a) (b)

0 5 10 15 20 25 30 35 40 45 50

0.5

0.6

0.7

0.8

0.9

1

Number of Phases

Er
ro

r

 = 1 

 = 0.8 
 = 0.6

 = 0.4
 = 0.2 

 = 0.1  = 0.0 

Scheduled  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Er
ro

r

t=1 

t=2 

t=5 

t=10 

t=25 

t=100 

Figure 2: (a) Upper bounds on the learning curves of phased for several values of , as a
function of the number of phases (parameters , , ). The predictions are
analogous to those for in Figure 1, and we have again plotted the predicted best learning curve
obtained via a decreasing schedule of . (b) For several values of the number of phases , the upper
bound on for as a function of .

While Equation (4) may be more difficult to parse than its counterpart, the basic pre-
dictions and intuitions remain intact. As approaches infinity, the bound on asymptotes
at , and the rate of approach to this asymptote is simply , which is again
exponentially fast. Analysis of the derivative of with respect to confirms that for all

, is a decreasing function of — that is, the larger the , the faster the convergence.
Analytically verifying that the asymptote increases with is more difficult due
to the presence of , which involves a minimization operation. However, the learning curve
plots of Figure 2(a) clearly show the predicted phenomena — increasing yields faster con-
vergence to a worse asymptote. As we did for the case, we use our recurrence to derive
a schedule for ; Figure 2(a) also shows the predicted improvement in the learning curve by
using such a schedule. Finally, Figure 2(b) again shows the non-monotonic predicted error
as a function of for a fixed number of phases.

4 Some Experimental Confirmation

In order to test the various predictions made by our theory, we have performed a number
of experiments using phased on a version of the so-called random walk problem [4].
In this problem, we have a Markov process with 5 states arranged in a ring. At each step,
there is probability 0.05 that we remain in our current state, and probability 0.95 that we
advance one state clockwise around the ring. (Note that since we are only concerned with the
evaluation of a fixed policy, we have simply defined a Markov process rather than a Markov
decision process.) Two adjacent states on the ring have reward and respectively,
while the remaining states have reward 0. The standard random walk problem has a chain
of states, with an absorbing state at each end; here we chose a ring structure simply to avoid
asymmetries in the states induced by the absorbing states.
To test the theory, we ran a series of simulations computing the estimate of the value
function in this Markov process. For several different values of , we computed the error
in the value function estimate as a function of the number of phases . ( is easily computed,
since we can compute the true value function for this simple problem.) The resulting plot in
Figure 3(a) is the experimental analogue of the theoretical predictions in Figure 1(a). We see
that these predictions are qualitatively confirmed — larger leads to faster convergence to
an inferior asymptote.

Given these empirical learning curves, we can then compute the “empirical schedule” that
they suggest. Namely, to determine experimentally a schedule for that should outperform
(at least) the values of we tested in Figure 3(a), we used the empirical learning curves
to determine, for any given value of , which of the empirical curves enjoyed the greatest
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Figure 3: (a) Empirical learning curves for for several values of on the random walk
problem (parameters and ). Each plot is averaged over 5000 runs of . Also
shown is the learning curve (averaged over 5000 runs) for the empirical schedule computed from the

learning curves, which is better than any of these curves. (b) The empirical schedule.

one-step decrease in error when its current error was (approximately) . This is simply the
empirical counterpart of the schedule computation suggested by the theory described above,
and the resulting experimental learning curve for this schedule is also shown in Figure 3(a),
and the schedule itself in Figure 3(b). We see that there are significant improvements in the
learning curve from using the schedule, and that the form of the schedule is qualitatively
similar to the theoretical schedule of Figure 1(b).

5 Conclusion

We have given the first provable upper bounds on the error of methods for policy evalu-
ation. These upper bounds have exponential rates of convergence, and clearly articulate the
“bias-variance” trade-off that such methods obey.
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