
Approximate Predictive State Representations

Britton Wolfe
Computer Science and

Engineering
University of Michigan
Ann Arbor, MI 48109

bdwolfe@umich.edu

Michael R. James
AI and Robotics Group
Toyota Technical Center

2350 Green Road, Ann Arbor,
MI 48105

michael.r.james@gmail.com

Satinder Singh
Computer Science and

Engineering
University of Michigan
Ann Arbor, MI 48109

baveja@umich.edu

ABSTRACT
Predictive state representations (PSRs) are models that rep-
resent the state of a dynamical system as a set of predictions
about future events. The existing work with PSRs focuses
on trying to learn exact models, an approach that cannot
scale to complex dynamical systems. In contrast, our work
takes the first steps in developing a theory of approximate
PSRs. We examine the consequences of using an approxi-
mate predictive state representation, bounding the error of
the approximate state under certain conditions. We also
introduce factored PSRs, a class of PSRs with a particular
approximate state representation. We show that the class of
factored PSRs allow one to tune the degree of approximation
by trading off accuracy for compactness. We demonstrate
this trade-off empirically on some example systems, using
factored PSRs that were learned from data.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Theory

Keywords
predictive state representations, reinforcement learning, fac-
tored models

1. INTRODUCTION
Predictive state representations (PSRs) [8] are a class of

models that represent the state of a dynamical system as
a set of predictions about the probability of future events.
Much of the existing work with PSRs has focused on learn-
ing exact models of a system; such work will apply only to
small systems. In order to scale PSRs to work with larger,
complex systems, one must make approximations. These ap-
proximations can be in the model parameterization or in the
state representation, both of which will be needed in order
to learn a model of a complex system. This work addresses
the need for a theory of approximation in PSRs. We show

Cite as: Approximate Predictive State Representations, Britton Wolfe,
Michael R. James and Satinder Singh,Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal, pp. 363-370.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that one can represent predictive state using an approxima-
tion for which the error does not grow over time but remains
bounded. We introduce a class of approximate models called
factored PSRs. Factored PSRs address the need for model-
ing complex dynamical systems by allowing one to trade off
model compactness for accuracy. We demonstrate empiri-
cally that one can learn reasonably accurate factored PSRs
from a single trajectory of experience. Furthermore, even in
the cases when it is possible to learn an exact model, learning
a factored PSR can be faster because it can be significantly
more compact than an exact model.

2. BACKGROUND
We begin with an introduction to linear PSRs, which are a

well-studied class of PSRs [8, 5, 12, 16] that form the basis
of our work. First we will formalize the predictions that
compose the state vector of a PSR.

Predictions: We assume that the agent is in a discrete-
time environment with a set of discrete actions A and a set
of n observation variables, each of which has a discrete, finite
domain. At each time step x, the agent chooses some action
ax ∈ A to execute and then receives some n-dimensional
observation ox = [o1

x, o2
x, . . . on

x]. A history is a possible se-
quence of actions and observations a1o1a2o2 . . . aτoτ from
the beginning of time. A test is a sequence of possible fu-
ture actions and observations aτ+1oτ+1 . . . aτ+koτ+k, where
τ is the current time step. The prediction for a test t =
aτ+1oτ+1 . . . aτ+koτ+k from a history h = a1o1 . . . aτoτ is
defined as the probability of seeing the observations of t

when the actions of t are taken from history h. Formally,
this prediction is

p(t|h)
∆
=

τ+k
Y

i=τ+1

Pr(oi|a1,o1, . . . aτ ,oτ , aτ+1,oτ+1, . . . ai)

where ax represents the event “ax is the action at time x,”
and ox represents the event “ox is the observation vector at
time x.”

System-dynamics matrix: We will describe linear
PSRs using the concept of a system-dynamics matrix, in-
troduced by Singh, James, and Rudary [12]. A system-
dynamics matrix D fully specifies a dynamical system, and
in turn any system completely defines some system-dynamics
matrix D. The matrix D has one row for each possible his-
tory (including the empty or null history φ) and one column
for each possible test.1 The entry in a particular row and

1The tests (and histories) can be arranged in length-
lexicographical ordering to make a countable list.

column is the prediction for that column’s test from that
row’s history. Despite the fact that D is ∞ × ∞, it will
have a finite rank m for a large class of systems, including
POMDPs with a finite number of latent states; the rank m is
no greater than the number of latent states in the POMDP
[12]. For systems with a finite rank m, one can find a set
Q of m linearly independent columns such that all other
columns are linearly dependent upon Q. The tests corre-
sponding to these columns (also denoted Q) are called core
tests. At any history h, the prediction for any test t is a
history-independent linear function of the predictions for Q.
In other words, the predictions for Q are a sufficient statistic
for computing the prediction of any other test.

Linear PSR: A linear PSR represents the state of the
system at h as the vector of predictions for Q from h. This
vector is called the prediction vector, written as p(Q|h). A
linear PSR model M is composed of the predictions for
Q from the null history (the initial predictive state), and
the update parameters used to update the prediction vec-
tor as the agent moves to new histories. We use mt to
denote the history-independent vector of weights such that
∀h : p(t|h) = p⊤(Q|h)mt; such an mt exists for any t by
definition of Q. The update parameters for a linear PSR
are the mt’s for each one-step test (ao) and each one-step
extension (aoqi) of each core test qi ∈ Q. The update
procedure is to obtain p(Q|hao) from p(Q|h) after taking
the action a and seeing the observation o from the history
h. For any qi ∈ Q, one can use the existing state vector
p(Q|h) and the update parameters mao and maoqi

to cal-

culate p(qi|hao) = p(aoqi|h)
p(ao|h)

=
p⊤(Q|h)maoqi

p⊤(Q|h)mao

. The update

parameters can also be used to calculate the mt for any test
t, enabling the PSR to make a prediction for any test.

3. APPROXIMATE STATE REPRESENTA-
TION

For complex systems, the number of predictions that are
required in the state vector (i.e. the number of core tests)
is prohibitively large, so one must use some approximate,
compact representation of the predictive state (e.g. prod-
uct of factors). As with a full state, a model must update
its approximate state after each time step. In general, the
updated state will not be amenable to the desired compact
representation, so the model must map the updated state
to a compact updated state. This mapping can introduce
some error in the state at each time step. In this section,
we show that if the approximation error introduced at each
time step is bounded, there exists a bound on the error of
the predictive state vector that is independent of time (i.e.
the approximation errors do not accumulate over time).

An approximate PSR consists of an approximate, compact
state representation and some approximate model M̂ to up-
date the state. We will use x̃τ to denote the approximate
predictive state at time τ ; thus x̃τ is shorthand for p̃(Q|hτ),
where hτ is the history through time τ . The approximate
state representation and model determine the approximate
predictive state x̃τ at each time τ in the following way (Fig-

ure 1): passing x̃τ−1 through the update process of M̂ for
aτoτ yields some predictive state x̂τ . As mentioned above,
x̂τ might not have the desired compact form, so the model
must map x̂τ to some x̃τ that will have the desired com-
pact form; we let F be the function that maps x̂τ to x̃τ for
each τ . One can measure the quality of approximation by

comparing x̃τ with the true predictive state xτ at time τ ,
which is determined by the true PSR model M (Figure 1).
The primary result of this section is a bound on the error
of x̃τ that is independent of τ (Theorem 3) when M̂ is M;

of course, selecting an M̂ that is optimized for F will do no
worse.

The results in this section rely heavily upon the work by
Boyen and Koller [1] that bounds approximation error for
latent-state models (e.g. POMDPs or DBNs). Latent-state
models represent state as belief state, a distribution over a
set of unobserved random variables called “latent states.”
After each time step τ the latent state model P calculates
the new belief state στ from the most recent action and
observation and the old belief state στ−1. One can pass an
approximate belief state σ̃τ−1 through the true belief state
update P to get an estimate σ̂τ of the true στ (Figure 1).
Boyen and Koller [1] showed that the error D(στ ‖ σ̂τ) is a
constant factor less than the error D(στ−1 ‖ σ̃τ−1), where
D(v ‖ w) is the Kullback-Leibler (KL) divergence of two

stochastic vectors v and w: D(v ‖ w)
∆
=

P

i vi log vi

wi
.

We use this fact about the belief state update to bound the
predictive state error, employing a belief state approxima-
tion procedure that is implicitly defined by our approximate
PSR. Note that the latent-state model is only used for anal-
ysis of the error bound, and any accurate latent-state model
of the system may be used in calculating such a bound.

We associate each x̃τ with some belief state σ̃τ that im-
plies the same future predictions as x̃τ (Figure 1). Each
x̃τ and σ̃τ are related through the outcome matrix U [12]:
x̃τ = U⊤σ̃τ .2 The U matrix has one row for each latent
state and one column for each test in xτ . The (i, j)th entry
is the probability of test j succeeding when one starts in
latent state i. Note that when M̂ = M, x̃τ = U⊤σ̃τ implies
x̂τ+1 = U⊤σ̂τ+1 [8]. Thus, each predictive state in Figure 1
has a corresponding belief state.

Two steps remain to bound the error in x̃τ : 1) bound the
error in σ̃τ and 2) relate that to the error in x̃τ . The bound
for σ̃τ is given by Boyen and Koller [1], provided that F

meets the following condition:

Definition A series x̃0, x̃1, x̃2, . . . of approximate predictive
states incurs error ǫ at each time step τ if for all τ , the
implicit, approximate belief states σ̃τ and σ̂τ corresponding
to x̃τ and x̂τ satisfy D(στ ‖ σ̃τ) − D(στ ‖ σ̂τ) ≤ ǫ (Figure
1).

For the rest of this section, we will assume that this condition
is met. Now we state two results from Boyen and Koller [1];
Lemma 1 is used to define the rate of contraction for the
bound on the error of σ̃τ (Lemma 2).

(Boyen & Koller [1]) Lemma 1. For any row-stochastic

matrix C, let γC
∆
= mini1,i2

P

j min(Ci1j , Ci2j). Then for

any stochastic vectors v and w, D(C⊤v ‖ C⊤w) ≤ (1 −
γC)D(v ‖ w).

(Boyen & Koller [1]) Lemma 2. For any τ , Ehτ [D(στ ‖

σ̃τ)] ≤ ǫ
γ
, where hτ is the history through time τ and γ

∆
= mina γTa ,

with Ta being the latent state transition matrix for action a.

2We assume that at least one such σ̃τ exists for each x̃τ .
This is satisfied if each x̃τ lies in the convex hull of possible
predictive states.

ǫ

D(σ2 ‖ σ̂2)
M PP

D(σ2 ‖ σ̃2)M̂

M

F F
M̂ P̂ P̂

x0

x̃0

σ0 σ1 σ2

σ̃1 σ̃2σ̃0

σ̂1 σ̂2

x1

x̂1

x̃1

x2

x̂2

x̃2

Figure 1: The approximation process. The belief states on the right correspond with the predictive states
on the left. Arrow style and label indicates which model or function performs the transformation. The state
updates (performed by the models M, M̂, P, and P̂), are each a function of the most recent action and
observation (omitted for clarity). Note that each σ̃τ is determined by its correspondence with x̃τ and not
necessarily as a function of σ̂τ . The errors shown on the right side illustrate an F that incurs error ǫ at each
time step.

Now we relate the error of σ̃τ to that of x̃τ . Since x̃τ is
not necessarily a stochastic vector, one cannot directly use
KL divergence to measure its error. However, x̃τ implies a
set of stochastic vectors, one for each unique action sequence
of its core tests. The predictions for all of the possible tests
with a given action sequence must sum to 1. Thus, one can
partition the entries of x̃τ according to their tests’ action
sequences. One can implicitly add a complement test to
each partition, which succeeds if and only if no other test in
that partition succeeds (assuming that the action sequence
is taken).3 Each partition (with the implicit complement
test) then forms a stochastic vector. For simplicity, we will
assume that all tests in the state vector fall in the same parti-
tion; our bound on the KL divergence of the single partition
is easily extended to each of multiple partitions.

We define the error E(x̃τ) of x̃τ as D(yτ ‖ ỹτ), where y

is just x augmented with the complement test prediction.
To translate KL divergence of belief states to KL divergence
of predictive state, we again appeal to the U matrix. Let
V be the matrix formed by adding a column to U for the
complement test. Since V is a stochastic matrix, Lemma 1
gives a contraction rate γV which is used in the bound on
E(x̃τ). This bound (Theorem 3) is the main result of this
section, showing that the error of the approximate predictive
state does not grow without bound over time.

Theorem 3. For any τ , Ehτ [E(x̃τ)] ≤ (1 − γV) ǫ
γ
.

Proof. By definition of V , Ehτ [E(x̃τ)] = Ehτ [D(V ⊤στ ‖
V ⊤σ̃τ)]. By Lemma 1, this quantity is less than or equal to
(1 − γV)Ehτ [D(στ ‖ σ̃τ)], which itself is less than or equal
to (1 − γV) ǫ

γ
because of Lemma 2.

In addition to being the first error bound for approximate
predictive state representations, Theorem 3 has two poten-
tial advantages over the corresponding bound on belief state
error (Lemma 2). First, the bound itself is smaller by a fac-
tor of γV . The second advantage arises because the ǫ, γ, and
γV in our error bound are calculated based upon an accurate
latent-state model of the system. Since our bound holds for
any accurate latent-state model, it also holds for the accu-
rate latent-state model that yields the smallest bound. Note
that one does not actually need to figure out which accurate
model will give the best error bound in order for that bound
to apply.

3The complement test is an example of a set test [15], de-
scribed in more detail later.

4. APPROXIMATE MODELS
To learn a PSR model of a complex system, one will need

to employ both a compact, approximate parameterization
and a compact, approximate state representation. Both of
these approximations are possible with the factored PSRs
described in this section. Factored PSRs are a class of ap-
proximate PSRs that allow one to trade off compactness and
accuracy of the approximate model. Like DBNs, our fac-
tored PSRs use a factored form to compute the joint prob-
ability of a set of random variables. However, our random
variables are observation dimensions, whereas DBNs’ ran-
dom variables also include latent state variables.

4.1 A Simple Approximation
We will begin by describing the most compact factored

PSR: one that assumes that future observation dimensions
are conditionally independent given history. This is a gross
approximation that we will relax later, but it provides a sim-
ple illustration. We define a set of functions {gi : 1 ≤ i ≤ n}
such that gi selects the ith observation dimension from a
history, test, or observation vector. For example, gi(t) =
aτ+1o

i
τ+1 . . . aτ+koi

τ+k for t = aτ+1oτ+1 . . . aτ+koτ+k. Note
that the test gi(t) does not specify values for the full ob-
servation vector but only the ith dimension; this leaves the
other observation dimensions as wild cards, so gi(t) is a set
test [15]. Set tests are so named because the prediction is the
sum of the predictions of a set of tests: the set generated by
filling in the wild cards with each possible observation value.

The assumption that the future observation dimensions
are conditionally independent given the history h is expressed
in the equation

∀h, t : p(t|h) =

n
Y

i=1

p(gi(t)|h), (1)

for any sequence or set test t. This equation suggests a
method for compactly representing the predictive state p(Q|h):
for each core test qj ∈ Q and dimension i, maintain the pre-
diction p(gi(qj)|h). The compactness arises when core tests
have the same action/observation sequences for some obser-
vation dimensions (i.e. when gi(qj1) = gi(qj2) for j1 6= j2).
In that case, the gi(qj) predictions can be multiplied in dif-
ferent ways to compute predictions for exponentially many
full-dimension tests.

This method starts with the set of tests Q and uses them
to decide what predictions should be included in the approx-
imate state. However, finding a set of core tests Q for the

whole system is the difficult learning problem we were try-
ing to avoid by using an approximate model. We now show
that one does not need to find Q but can determine which
predictions of the form gi(t) to include in the approximate
state vector independently for each i. The following theorem
is the basis of this fact. It shows that under the assumption
of Equation 1, the prediction of gi(t) is independent of part
of history: the observation dimensions not selected by gi.

Theorem 4. The statement ∀h, t : p(t|h) =
Qn

i=1 p(gi(t)|h)

(Equation 1) implies p(gi(t)|h) = p(gi(t)|gi(h)) for all his-
tories h and tests t.

Proof. By the definition of prediction, p(gi(t)|h) = p(hgi(t)|φ)
p(h|φ)

.

We then apply Equation 1 to both numerator and denomi-
nator to get

Qn

j=1 p(gj(hgi(t))|φ)
Qn

j=1 p(gj(h)|φ)
=

p(gi(ht)|φ)

p(gi(h)|φ)
·

Y

j 6=i

p(gj(h)|φ)

p(gj(h)|φ)
.

We factored out the case where gj(hgi(t)) is gj(ht) from the
cases where it is gj(h) (i.e. gi(t) has no overlap with the jth
dimension). Then

p(gi(ht)|φ)

p(gi(h)|φ)
· 1 =

p(gi(h)gi(t)|φ)

p(gi(h)|φ)

=
p(gi(t)|gi(h)) p(gi(h)|φ)

p(gi(h)|φ)
= p(gi(t)|gi(h)).

Combining Theorem 4 with Equation 1 implies p(t|h) =
Qn

i=1 p(gi(t)|gi(h)). Thus, under the conditional indepen-
dence assumption of Equation 1, each observation dimension
can be modeled completely independently. That is, Equa-
tion 1 implies that a factored model can be used as well as
a factored state representation. The factored model can be
more compact than a non-factored model of the system (cf.
Section 5), and it will make the same predictions as the non-
factored model (under the assumption of Equation 1). This
is the basis for our completely factored model.

A Completely Factored Model: Our completely fac-
tored model for a dynamical system with n observation di-
mensions consists of n linear PSRs (M1 . . .Mn). To make
the prediction for a multi-dimensional test t, one obtains the
prediction for each gi(t) from the respective Mi, multiply-
ing those predictions together as in Equation 1 to get an
estimate for p(t|h). The Mi only makes predictions about
observation dimension i, so it can ignore all the observations
from history except dimension i (Theorem 4). One learns
the model Mi by passing only dimension i of an agent’s ex-
perience into a linear PSR learning algorithm such as in [16].
Thus the core tests and the state update procedure for Mi

are restricted to dimension i: at history h, the prediction
vector of Mi is p(Qi|gi(h)) for core tests Qi that are set
tests in dimension i. For the state update, Mi computes

p(q|gi(hao)) = p(q|gi(h)aoi) = p(aoiq|gi(h))

p(aoi|gi(h))
for each q ∈ Qi

upon taking action a and seeing observation o.
The number of core tests for Mi is rank(Di), where Di

is a system-dynamics matrix with one row for each gi(h)
and one column for each gi(t); the entry in that row and
column is p(gi(t)|gi(h)). Theorem 5 (below) shows that
rank(Di) ≤ rank(D), where D is the system-dynamics ma-
trix of the whole system. In practice, rank(Di) can be much

less than rank(D), as illustrated in Section 5. Lower rank
leads to smaller models, which are often easier to learn.

4.2 Factored PSRs
The completely factored model is based upon the strong

assumption that the future observation dimensions are con-
ditionally independent of each other given history (Equa-
tion 1). In this section, we describe factored PSRs, a gen-
eralization of the completely factored model that does not
make such a strong independence assumption. Like the com-
pletely factored model, a factored PSR consists of n linear
PSRs (M1 . . .Mn), one for each observation dimension. A
factored PSR is a generalization of the completely factored
model because each Mi is allowed to model any subset of
the observation dimensions that includes dimension i, rather
than modeling just dimension i. We let f i be the function
that selects the observation dimensions for Mi; when ap-
plied to a sequence of actions and observations, we define
f i(a1o1 . . . akok) as a1f

i(o1) . . . akf i(ok). One can view
f i(h) as selecting somewhere between gi(h) and the full h.

The learning and state update procedures for a factored
PSR with a given (f1 . . . fn) are the same as for the com-
pletely factored model, except each gi is replaced with f i.

For making predictions, we will still use Mi to calculate
the probability of success for observation dimension i. Un-
like the completely factored model, here Mi models more
than just dimension i, so its predictions for dimension i can
be conditioned upon other dimensions that it models, im-
proving their accuracy (Theorem 7). To compute joint prob-
abilities, we are faced with combining predictions from mul-
tiple Mi models. There are several possible ways to do this;
here we present one possibility. To make the prediction for
a test t = a1o1 . . . akok from some history h, Mi will com-
pute a probability for oi

τ for each 1 ≤ τ ≤ k. The probability
for oi

τ is conditioned upon f i(hτ−1) and the dimensions of
f i(oτ) that are less than i, where hτ is ha1o1 . . . aτoτ . For-

mally, this probability is
Pr(fi([o1

τ o2
τ ...oi

τ])|fi(hτ−1)aτ)

Pr(fi([o1
τ o2

τ ...o
i−1
τ])|fi(hτ−1)aτ)

. The

approximate prediction for p(t|h) from the factored PSR is
the product of these probabilities for each i and each τ .

This prediction method comes from applying the chain
rule of probability to the set {oi

τ : 1 ≤ τ ≤ k, 1 ≤ i ≤ n} in
ascending order of τ , and in ascending order of i within each
τ . The choice of ascending i within each τ was arbitrary;
another order will yield a different estimate for p(t|h), in
general. One can obtain estimates for different orderings
from the same factored PSR, combining those estimates to
get an overall prediction.

Choosing f i: There is a trade-off to consider when
choosing f i: having f i select more of the observation vector
can lead to better predictions, but having f i select less of
the observation vector can decrease the model size, which
typically makes it easier to learn. One extreme choice is
f i(h) = h, which makes Mi a model for the whole system.
The other extreme choice is f i = gi, which completely ig-
nores information in the observation dimensions other than
i. We prove two results about moving between these ex-
tremes: Theorem 5 shows that decreasing the scope of f i

will never increase the number of core tests for Mi, and
thus never increase the size of the model. Theorem 7 shows
that increasing the scope of f i will not make Mi less accu-
rate in predicting the future of observation dimension i.

To prove these results, we first formalize the notion of

f i+(o)f i(o)

o

f i′ (o)

f i−(o)

Figure 2: How the f functions select from o (the
entire rectangle).

scope, illustrated in Figure 2. We say that f i′ has larger

scope than f i (written f i ⊆ f i′) if f i(o) is a sub-vector of

f i′(o) for any o. Theorem 5 proves that decreasing the scope
of f i will never increase the number of core tests for Mi.

Theorem 5. For f i and f i′ with respective system-dynamics

matrices Di and Di′ , if f i ⊆ f i′ , then rank(Di) ≤ rank(Di′).

Proof. This proof describes matrices V and W such that

Di = V Di′W , which implies rank(Di) ≤ rank(Di′). The

matrix V will combine the rows of Di′ , yielding an interme-
diate matrix X of predictions that has rows for the histories

of Di and columns for the tests of Di′ . The matrix V ex-
ists because the row for any history f i(h) in X is equal to

a linear combination of rows of Di′ . This can be seen by
conditioning upon the observation dimensions of h selected

by f i′ but not by f i, which we denote by f i+ (Figure 2).
The column for any test f i(t) in Di is equivalent to a sum

of columns of X because f i(t) is a set test in X . It has
wild cards for the f i+ observations at each time step of t.
Therefore, there exists a matrix W such that Di = XW ,

which equals V Di′W .

As mentioned earlier, applying this theorem with f i′(h) =
h proves that rank(Di) ≤ rank(D) for any f i. (Recall that
rank(Di) and rank(D) are the numbers of core tests needed
for Mi and a full model M, respectively.) Section 5 shows
that the empirical estimate for rank(Di) can be significantly

less than that of rank(Di′), which supports making the scope
of f i small.

On the other hand, having f i with a larger scope can
give better predictions; the intuition is that conditioning
one’s predictions upon more of history cannot yield worse
predictions, in expectation. Specifically, an f i with larger
scope will not increase the expected KL-divergence of the
predictions given f i(h) from the predictions given the full
history h (Theorem 7). To prove this, we use the following
fact:

Lemma 6. For random variables Y, B, C, EB,C [D(Y |B, C ‖
Y) − D(Y |B, C ‖ Y |B)] ≥ 0.

Proof. The expected value given here is equal to the
KL-divergence D(Pr(B, C, Y) ‖ Pr(Y)Pr(B)Pr(C|Y, B)),
which is always non-negative. To see this equivalence, note
that the expected value is equal to

X

b,c

Pr(b, c)

2

4

0

@

X

y

Pr(y|b, c) log
Pr(y|b, c)

Pr(y)

1

A

−

0

@

X

y

Pr(y|b, c) log
Pr(y|b, c)

Pr(y|b)

1

A

3

5

=
X

y,b,c

Pr(y, b, c)

»

log
Pr(y|b, c)

Pr(y)
− log

Pr(y|b, c)

Pr(y|b)

–

=
X

y,b,c

Pr(y, b, c) log
Pr(y|b)

Pr(y)

Pr(b)Pr(c|y, b)

Pr(b)Pr(c|y, b)

=
X

y,b,c

Pr(y, b, c) log
Pr(y, b, c)

Pr(y)Pr(b)Pr(c|y, b)

which is the KL-divergence mentioned above.

The following theorem compares the expected difference
between two KL-divergences: the divergence (from the ac-
curate predictions) of predictions conditioned upon f i, and

the divergence of predictions conditioned upon f i′ ; when

f i ⊆ f i′ , the expected divergence with f i′ is no greater.

Theorem 7. For f i ⊆ f i′ and any subset X of future ob-

servations, EH [D(X|H ‖ X|f i(H))−D(X|H ‖ X|f i′(H))] ≥
0, where H is the random variable for history through some
time step.

Proof. We use Z to denote the random variable D(X|H ‖

X|f i(H)) − D(X|H ‖ X|f i′(H)); this makes Z a function
of the random variable H. We use the following functions
to denote the random variables corresponding to different

parts of H: acts selects the actions and F i, F i′ , F i+, and
F i− each select some observation dimensions, detailed in

Figure 2. We let f i and f i′ be realizations of the random
variables (acts, F i), and (acts, F i, F i+), respectively, con-
sistent with their definitions above. First we apply iterated
expectations: EH [Z] = E

acts,F i [EF i+,F i− [Z|acts, F i]]. We
now show that the inner expectation is always non-negative,
so the whole expression is non-negative. For a given f i,

EF i+,F i− [Z|f i] = EF i+,F i− [D(X|f i
, F

i+
, F

i− ‖ X|f i)

−D(X|f i
, F

i+
, F

i− ‖ X|f i
, F

i+)].

One can apply Lemma 6 directly to this expression to show

that it is non-negative, using the following mapping: Y
∆
=X|f i,

B
∆
=F i+, and C

∆
=F i−.

5. EXPERIMENTAL RESULTS
This section describes our results on learning factored

PSRs to model three domains of varying complexity. The
data for the first two domains comes from simulations, while
the data for the last domain comes from cameras overlooking
a section of a highway.

5.1 Simulated Domains
The simulated domains allow us to provide some simple

empirical illustrations of our theorems on two example sys-
tems. The first system is smaller to permit a comparison
with exact predictions, while the second system is an ex-
ample where approximate models and state representations
are required for model learning. Both systems highlight the
trade-off between the compactness and accuracy of a fac-
tored PSR; we compare a “baseline”model that uses f i = gi

with an “augmented” model that uses an f i′ with larger
scope. As part of the approximation scheme for the learned
models, the entries of the prediction vector were clipped to
fall in [ǫ, 1] after each time step of the testing sequence. Each
learned model was evaluated throughout a testing sequence
of length 214 to account for any compounding of the approx-
imation error over time.

The first system is a grid world (Figure 3) in which the
agent can move any of the four cardinal directions and ob-
serves the colors of the adjacent floor tiles (or a wall) in each

10
2

10
4

10
6

10
8

10
−6

10
−4

10
−2

Grid World

Training Length

Jo
in

t P
re

di
ct

io
n

E
rr

or

Baseline
Augmented
Full

Figure 4: Grid world: median joint
prediction error over 50 trials.

0 20 40 60 80
0

20

40

60

80

Grid World: Number of Core Tests

Baseline

A
ug

m
en

te
d

0 50 100
0

20

40

60

80

100

120

Traffic System: Number of Core Tests

Baseline

A
ug

m
en

te
d

2
3
4

Figure 5: Average number of core tests for the augmented versus
baseline models (grid world on the left and simulated traffic system
on the right). One point is plotted for each Mi and training sequence
length; the marker shapes indicate congestion threshold for the sim-
ulated traffic system. The line x = y illustrates how the augmented
model usually has more tests.

Figure 3: Grid world and simulated traffic domains.

of the four cardinal directions (a four-dimensional observa-
tion). Our baseline f i selects just the ith observation di-

mension, while the augmented f i′ also selects the dimension
corresponding to the tile 90 degrees counterclockwise from
the ith dimension. Each component model Mi was learned
using a variant of the suffix-history algorithm [16] applied

to f i (or f i′) of the agent’s single experience trajectory.
To evaluate the predictive accuracy of our model, we used

the mean squared error of one-step predictions, where the
tests evaluated at time τ are those with action aτ and any
observation [16]. We bounded each estimated marginal pre-
diction of the factored forms in [0, 1]. For the augmented
model, we used five random orderings of the observation di-
mensions to get five estimates for p(t|h); the median of these
estimates was used as the model’s prediction. As expected
(Theorem 7), the augmented model makes better predictions
than the baseline model (Figure 4); for the larger training
sizes, this difference is several orders of magnitude. The aug-
mented model also makes better predictions than a single
linear PSR for the whole system learned using suffix-history
(Figure 4). This illustrates that more data is required to
learn a reasonably accurate full model than to learn a rea-
sonably accurate, more compact, approximate model. The
increased accuracy of the augmented model over the baseline

model requires more core tests (Figure 5), as suggested by
Theorem 5. This demonstrates that the factored PSR archi-
tecture allows one to choose f i to trade off model simplicity
and accuracy.

Our second system simulates one direction of a three-lane
freeway (Figure 3). This system simulates the problem faced
by an agent in a vehicle whose goal is to track and predict
the movements of the other vehicles around it. The agent is
given the current positions of all cars within some range, as
would be returned from a radar system with multiple sen-
sors. However, some simplifications were introduced. Cars
take discrete positions in this system, and the field of view is
defined relative to our agent’s vehicle: the agent can see all
three lanes for three spaces in front and behind its current
location. Since our work focuses on modeling rather than
control, our agent simply maintains a constant velocity in
the middle lane. At each time step, the agent observes only
the positions of each other car in its field of view (i.e. veloc-
ities are not given as observations); each car corresponds to
a different observation dimension.

Cars enter the field of view stochastically, contingent upon
a fixed congestion threshold θ: no new cars enter the field of
view if there are already θ cars in the field of view. Each car
that enters the field of view is assigned an unused observa-
tion dimension that remains unchanged until it disappears
from the field of view. Each car has a default velocity that
it will maintain unless the car in front of it was going too
slowly at the last time step. In that case, the car will change
lanes or slow down, depending on traffic in the neighboring
lanes.

Learning a single PSR for the whole system was intractable
because the prediction vector would have size combinatorial
in the number of cars: a conservative lower bound on this
size is 125,000 for the congestion threshold of 4. Figure 5
shows that our component models Mi use much smaller
state vectors; they automatically exploited the structure
among the observation dimensions that results from the spa-
tially localized interaction between cars.

Our baseline f i just selects the position of car i; the aug-

mented f i′ also selects the position of the car directly in

10
4

10
6

10
8

10
−3

10
−2

10
−1

Threshold = 2
M

ar
gi

na
l P

re
di

ct
io

n
E

rr
or

Training Length
10

4
10

6
10

8
10

−3

10
−2

10
−1

Threshold = 3

Training Length
10

4
10

6
10

8
10

−3

10
−2

10
−1

Threshold = 4

Training Length

Baseline
Augmented

Figure 6: Simulated traffic system: median marginal prediction error over 50 trials versus training length.
The title denotes congestion threshold.

front of i. The factored PSR for this system will consist of
multiple copies of one linear PSR M, since each observation
dimension corresponds to a car of initially unknown default
velocity. Each time a new car i enters the field of view, a
new copy Mi of M will be initialized. When car i leaves
the field of view, Mi is discarded. To train M, we take
the agent’s single training sequence and divide it up into
multiple overlapping trajectories: a trajectory begins when
a car enters the field of view and ends the first time the car
exits the field of view. The trajectories for car i are passed

through f i (or f i′) and then given to a variant of the reset
algorithm [5] to learn the linear PSR M.

Because the joint observation space was so large, we eval-
uated the accuracy of the marginal predictions for each car:
at each time τ we used Mi to get an estimate p̂(i, τ) of the
likelihood of car i moving to its actual next space. Our error
measure is the mean over τ and i of (1.0 − p̂(i, τ))2. Note
that 0.0 error is not always attainable, since not even the
full history will always be sufficient to predict the next po-
sition of each car. Overall, as with our first example, the
augmented model made better predictions (Figure 6) but
required more core tests (Figure 5).

5.2 Real-world Traffic Data
Our third domain is a real-world version of the simulated

traffic domain presented above. We used the data collected
by the Next Generation SIMulation (NGSIM) project [14]
that captures traffic movement along approximately 500 me-
ters of six-lane freeway in the San Francisco Bay area [13].
This is a rich data set, useful for analyzing many different
aspects of traffic movement (e.g. [9, 2]).

Our model is built to predict traffic movements relative
to a given reference car (i.e. the car in which the model
would be employed). We assume that observations are only
possible within some field of view that is defined relative to
the front, center point of the reference car. In our experi-
ments, the field of view extends 15 feet on either side, 100
feet behind, and 150 feet in front. Figure 7 shows the field
of view of some car at one time point of the data. One can
see that, even though traffic lanes are clearly present, the
cars’ positions in the lanes vary significantly.

The factored PSR consists of one component model for
each car. The observations of the component model were dis-
cretized, instantaneous, relative accelerations in the x (side-

Figure 7: An overhead snapshot from a time step
of the NGSIM traffic data. The rectangles are cars,
and the direction of travel is toward the right of the
page. The field of view is defined relative to the car
marked by the ’x’.

to-side) and y (forward-and-back) dimensions. Acceleration
values were measured in feet per second squared. The y
acceleration was discretized into bins of width 1; the data
ranged from approximately -10 to 10. The x acceleration was
discretized into 3 bins: (−∞,−20), [−20, 20], and (20,∞).
The threshold of 20 was selected after noting a strong cor-
relation in the data between lane changes and spikes in x
acceleration of magnitude 20 or greater.

The data that we used to train our model consists of tra-
jectories of relative accelerations: for each reference car, we
obtain one trajectory of data each time a car passes through
the field of view (or if a car enters the field of view and re-
mains there until the end of the data). We used each car in
the training data as a reference car, adding all the associated
trajectories into the training set for our PSR. We used the
NGSIM I-80 traffic data from the 4:00–4:15 time period for
training. In both testing and training, we subsampled the
given data with a period of 1 second (rather than the 1/10
second interval of the data files).

For testing, we used a subset of the 5:00–5:15 data from
the NGSIM I-80 traffic data; the testing data represents
approximately one minute of real time. We evaluated our
model on each trajectory for each reference car in the test-
ing data. Our evaluation uses the same error measure as
in the simulated traffic system, except that in this case the
model predicts the likelihood of the actual next acceleration
(rather than the actual next position, as used for evaluation
with the simulated system). Predictions about position are
easily calculated from the predictions of acceleration and the
last observed position and velocity.

We compared our factored PSR against two other classes

0.8 0.82 0.84 0.86 0.88 0.9 0.92

Naive

Factored PSR

1st−order Markov

2nd−order Markov

3rd−order Markov

4th−order Markov

Error

M
od

el
Error in Acceleration Predictions

Model Error

PSR 0.81198427
2 0.81875077
3 0.82011353
1 0.82056525
4 0.83541472

Naive 0.92289034

Figure 8: NGSIM traffic data: mean squared error
of the different models. The numbers 1 through 4
indicate the order of the respective Markov models.

of models. The first is a “naive” model that predicts that
the acceleration in one second will be the same as the last
observed acceleration. The second class of models are kth

order Markov models for 1 ≤ k ≤ 4, which were trained on
the same data we used to train the factored PSR.

Figure 8 compares the error for each of these models on
our testing data. The naive model does much worse than
the other models. The poor performance of the fourth-order
Markov model is likely due to data sparsity in the training
set (i.e. not all length-four histories are seen in the data).
The other Markov models and the PSR obtained similar
error, with the PSR achieving the lowest error.

6. DISCUSSION AND CONCLUSIONS
Assuming statistical independence is an approximation

technique commonly used to make computation tractable
(e.g. [4, 11, 10]). To our knowledge, our work is the first to
use such an independence assumption with predictive state
models. This is a first step in using graphical models tech-
niques to scale PSRs to complex systems.

Examples of leveraging independence in the multi-agent
literature include graphical games [6] and graphical multi-
agent MDPs [3]. These approaches are most beneficial when
each agent is only affected by a small subset of the other
agents. This is in contrast to our traffic systems, where
each agent (i.e. car) can be affected by any of the other
agents, but only in certain contexts. Multi-agent influence
diagrams (MAIDs) [7] could potentially exploit this context-

specific independence; however, their focus is representing
and solving games, where our focus is learning a model.

Our work has taken the first steps toward establishing
a theory of approximation for PSRs. We have provided a
bound on the error of an approximate PSR’s state. We
have introduced factored PSRs, a class of approximate PSRs
that allow one to trade off model compactness and accuracy,
and we have demonstrated the viability of learning factored
PSRs for systems where learning an exact linear PSR is in-
tractable.

Acknowledgments
This work is supported in part by the National Science Foun-
dation under Grant Number IIS-0413004. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

7. REFERENCES
[1] X. Boyen and D. Koller. Tractable inference for complex

stochastic processes. In Proceedings of UAI 1998, pages
33–42, 1998.

[2] E. Brockfeld and P. Wagner. Validating microscopic traffic
flow models. In Proceedings of Intelligent Transportation
Systems Conference, pages 1604–1608, 2006.

[3] D. Dolgov and E. Durfee. Graphical models in local,
asymmetric multi-agent markov decision processes. In
Proceedings of AAMAS 2004, pages 956–963, 2004.

[4] B. E. Engelhardt, M. I. Jordan, and S. E. Brenner. A
graphical model for predicting protein molecular function.
In Proceedings of ICML 2006, pages 297–304, 2006.

[5] M. R. James and S. Singh. Learning and discovery of
predictive state representations in dynamical systems with
reset. In Proceedings of ICML 2004, pages 417–424, 2004.

[6] M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical
models for game theory. In Proceedings of UAI 2001, pages
253–260, 2001.

[7] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In Proceedings of IJCAI
2001, pages 1027–1036, 2001.

[8] M. L. Littman, R. S. Sutton, and S. Singh. Predictive
representations of state. In Advances in Neural Information
Processing Systems 14, pages 1555–1561, 2002.

[9] X. Lu and B. Coifman. Highway traffic data sensitivity
analysis. Technical Report UCB-ITS-PRR-2007-3,
University of California, Berkeley, 2007.

[10] A. McCallum and K. Nigam. A comparison of event models
for naive bayes text classification. In AAAI-98 Workshop
on Learning for Text Categorization, 1998.

[11] R. Sandberg, G. Winberg, C.-I. Branden, A. Kaske,
I. Ernberg, and J. Coster. Capturing Whole-Genome
Characteristics in Short Sequences Using a Naive Bayesian
Classifier. Genome Res., 11(8):1404–1409, 2001.

[12] S. Singh, M. R. James, and M. Rudary. Predictive state
representations: A new theory for modeling dynamical
systems. In Proceedings of UAI 2004, pages 512–519, 2004.

[13] U.S. Federal Highway Administration. Interstate 80 freeway
dataset. http://www.tfhrc.gov/about/06137.htm.

[14] U.S. Federal Highway Administration. Next generation
simulation project.
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[15] D. Wingate, V. Soni, B. Wolfe, and S. Singh. Relational
knowledge with predictive state representations. In
Proceedings of IJCAI 2007, pages 2035–2040, 2007.

[16] B. Wolfe, M. R. James, and S. Singh. Learning predictive
state representations in dynamical systems without reset.
In Proceedings of ICML 2005, pages 985–992, 2005.

