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Abstract

Recent work on predictive state representa-
tion (PSR) models has focused on using pre-
dictions of the outcomes of open-loop ac-
tion sequences as state. These predictions
answer questions of the form “What is the
probability of seeing observation sequence
o1, o2, . . . , oN if the agent takes action se-
quence a1, a2, . . . , aN from some given his-
tory?” We would like to ask more expressive
questions in our representation of state, such
as “If I behave according to some policy un-
til I terminate, what will be my last observa-
tion?” We extend the linear PSR framework
to answer questions like these about options
– temporally extended, closed-loop courses
of action – bounding the size of the linear
PSR needed to model questions about a cer-
tain class of options. We introduce a hier-
archical PSR (HPSR) that can make predic-
tions about both options and primitive action
sequences and show empirical results from
learning HPSRs in simple domains.

Existing work with predictive state representations
(PSRs) focuses on using predictions about open-loop
action sequences as state. These predictions answer
questions of the form “What is the probability of see-
ing observation sequence o1, o2, . . . , oN if the agent
takes action sequence a1, a2, . . . , aN in some given his-
tory?” Littman et al. (2002) showed that predictions
of this form are sufficient in that they can perfectly
capture state and can be used to make any predic-
tion, i.e., answer any question, about the system. In
general, the number of predictions in the state vec-
tor grows linearly with the number of underlying or
hidden system states and this can be too large for
practical purposes. Of course, if one truly wants a
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perfect model that can answer any question about the
system at all, one cannot in general circumvent this
impracticality. In practice, we may be interested only
in a subset of all possible questions, e.g., questions re-
lating to predictions useful for effective planning. A
fundamental motivation for this research is the follow-
ing: can we build predictive models whose complexity
scales not with the complexity of the underlying sys-
tem but with the complexity of the set of questions
we want to be able to answer? In this paper, we take
a first step towards an answer by showing that PSR
models that are restricted to making predictions about
options (known to be useful for planning) can be much
smaller than full PSR models and hence much more ef-
ficiently learnable. In addition, we define and test a
hierarchical PSR (HPSR) that can make predictions
both about options and primitive action sequences.

1. Background and Definitions

Before we show how to construct a PSR that makes
predictions about options, we introduce some notation
and state our assumptions. We assume that the agent
is in a discrete-time environment with a set of discrete,
primitive actions A and a set of discrete observations
O. At each time step x, the agent chooses some action
ax ∈ A to execute and then receives some observation
ox ∈ O. A primitive history is a possible sequence
of primitive actions and observations a1o1a2o2 . . . akok

from the beginning of time.

In addition to the primitive actions, we assume that
the agent has a set of options Ω. An option ω ∈ Ω
can be viewed as a temporally extended action that
prescribes a closed-loop way of behaving until some
(stochastic) termination condition is met. Each op-
tion has three components: 1) a policy that gives a
probability distribution over actions for any history;
2) a termination condition that assigns a probability
to each history (the probability that the option will
terminate given that it reached that history); and 3)
an initiation set (a set of histories from which the op-
tion can be started). Options were defined by Sutton
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et al. (1999) for MDPs, where state is used in place
of history; our definition generalizes theirs to partially
observable settings.

We define an option history as a possible sequence of
options and observations ω1o1ω2o2 . . . ωkok from the
beginning of time, where oi in this context is the last
observation during the execution of option ωi. We will
assume that the agent chooses how to act by selecting
an option, executing it until completion, selecting an-
other option, and so on.1 So at any point in time, the
agent can view its history in two ways: 1) a high-level
view as an option history (through the last completed
option); or 2) a low-level view as a primitive history.2

Note that a particular option history could correspond
to any one of several possible primitive histories. Thus
the option history provides some abstraction from the
primitive history.

A primitive test is a sequence of possible future primi-
tive actions and observations a1o1 . . . akok. An option
test is similarly defined by replacing actions with op-
tions; the observations in the test correspond to the
last observation of each option. We define the pre-
diction for a primitive test t = a1o1 . . . akok from a
primitive history h = a1o1 . . . ajoj as the probability
of seeing the observations of t given that the actions of
t are taken from history h. Formally, this prediction is

p(t|h) ≡

k∏

i=1

Pr(Oj+i = oi|A
1 = a1, O1 = o1,

. . . Aj = aj , Oj = oj , Aj+1 = a1, O
j+1 = o1,

. . . Aj+i = ai),

where Ax and Ox are the random variables for the
action and observation of the xth time step. A pre-
diction for an option test ω1o1 . . . ωkok from an option
history hω is similarly defined as the probability that
o1, . . . , ok are the last observations, respectively, of the
options ω1, . . . , ωk taken from option history hω.

1.1. The System-dynamics Matrix and Linear

PSRs

As shown by Singh et al. (2004), a fundamental con-
struct in defining PSRs is the system dynamics matrix.
The size of the PSR model for a system, and hence its
learnability, is determined by the rank of this concep-

1A primitive action a can be “wrapped” in an option
that simply executes a and then terminates, if the agent
needs to be able to take a directly.

2Our work deals with a two-level hierarchy of actions
(primitive and options); it is straightforward to add levels
to this hierarchy (i.e. options over options over primitive
actions).

Figure 1. A system-dynamics matrix. Here h is a history,
H a set of histories, t a test, and T a set of tests.

tual matrix. Thus, throughout this paper we will de-
fine the system dynamics matrix that corresponds to
the questions we are interested in answering for that
system and define the complexity of our model from
the rank of the resulting matrix. In this subsection, we
define this matrix D for primitive tests and histories
as in the original PSR work. This matrix (Figure 1) is
∞×∞ and has one row for each possible history (in-
cluding the empty or null history hφ) and one column
for each possible test.3 The entry in a particular row
and column is the prediction for that column’s test
from that row’s history. We will denote the submatrix
of D for a set of tests T and histories H as p(T |H).

For a large class of systems (including POMDPs with a
finite number of hidden states), the D matrix will have
some finite rank n. For these systems, one can find a
set Q of n linearly independent columns such that all
other columns are linearly dependent upon Q. The
tests corresponding to these columns (also denoted Q)
are called core tests. At any history h, the prediction
for any test t is a linear function of the predictions
for Q. Thus the predictions for Q from any h (writ-
ten as a row vector p(Q|h)) form the state vector of
a linear PSR at history h. This state vector is called
the prediction vector. We use mt for the column vec-
tor of weights such that ∀h, p(t|h) = p(Q|h)mt; such
an mt exists for any t. A linear PSR is composed of
the predictions for Q from the null history of the sys-
tem, and the update parameters used to update the
prediction vector as the agent moves to new histo-
ries. The update parameters are the mt’s for the tests
{a ∈ A, o ∈ O, qi ∈ Q : ao, aoqi}. The update proce-
dure is to obtain p(Q|hao) from p(Q|h) after taking a
and seeing o from h. For any qi ∈ Q, one can use the
existing state vector p(Q|h) and the update parame-
ters mao and maoqi

to calculate

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=
p(Q|h)maoqi

p(Q|h)mao

.

3The tests (or histories) can be arranged in length-
lexicographical ordering to make a countable list.
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2. Extending Linear PSRs to Options

Now we return to the issue of constructing a PSR that
can make predictions about options. Recall that we
want to construct such a model because it may be
smaller and easier to learn than a linear PSR that
makes primitive predictions for the whole system, and
because the predictions about options should be use-
ful for planning. For a given system and set Ω of
options, all option predictions can be arranged in an
option-level system dynamics matrix DΩ by listing all
option histories for the rows and all option tests for
the columns. In general, however, this DΩ could have
larger rank than the D matrix for the primitive sys-
tem.4 We show this by example, by constructing an
option test tω whose predictions are linearly indepen-
dent of all primitive tests (i.e. all columns of D). One
can construct DΩ to contain D as a submatrix by al-
lowing Ω to contain an option for each primitive action
that just executes that primitive action and then ter-
minates. Since this DΩ contains the columns of D and
the column for tω, which is linearly independent of D,
its rank will be larger than D. The primary idea be-
hind the following example is that one can construct tω

by using an option policy that is a non-linear function
of the prediction vector.

Example: The POMDP system has 2 states (s1 and
s2); 4 actions, (α, β, swap, and stay); and 4 observations
(oα, oβ , o1, o2). Action α always produces observation oα

and leaves the state unchanged. Similarly, action β always
produces observation oβ and leaves the state unchanged.
The swap action changes the state, and stay leaves the
state unchanged. The observation after swap or stay de-
pends upon the ending state s′: if s′ = s1, then the ob-
servation is o1 with probability p and o2 with probability
1−p. If s′ = s2, the probabilities are reversed (p for o2 and
1 − p for o1). The initial state distribution is {0.5, 0.5}.

For p = 0.2, rank(D) = 2, and one set of core tests for
this system is {α oα, stay o1}. Consider an option ω with
a policy that chooses α with probability (p(stay o1|h))2 (a
non-linear function of the prediction vector), and chooses β
otherwise; after one action, ω terminates. The option test
p(ωα|h) is not a linear function of the prediction vector:

pred. vec.
tests → α oα stay o1 ωα

β oβ 1.0 0.5 0.25
histories stay o1 1.0 0.68 0.4624

stay o2 1.0 0.32 0.1024

This rank-3 matrix is a submatrix of DΩ, so rank(DΩ) ≥

3 > rank(D) = 2. Note that one can define other options

that choose α based upon other non-linear functions of the

prediction vector, further increasing the rank of DΩ.

Despite the fact that rank(DΩ) can be more than

4While D contains enough information to compute DΩ,
the linear rank of D may be less than that of DΩ.

rank(D) in general, if we limit ourselves to a partic-
ular class of options, then rank(DΩ) ≤ rank(D) (see
Theorem 4 in the Appendix). In fact, rank(DΩ) can
be much less than rank(D), as demonstrated empiri-
cally in Section 4. This class of options has two prop-
erties: 1) policies depend only on the history since
the option began executing (which still permits them
to be closed-loop); and 2) termination conditions are
deterministic functions of the observations since the
option began executing. For the remainder of this pa-
per, we will limit our attention to this class of op-
tions; examples are presented in Section 4. Since
rank(DΩ) ≤ rank(D), one can construct a linear PSR
to model DΩ just as for D, and the number of core
tests needed for the model of DΩ will be no more than
for the model of D.

3. Hierarchical PSRs

Building a model of DΩ allows one to make predictions
about the outcomes of options, providing an abstract
model of the system that can be smaller and easier
to learn than a primitive model of the whole system.
However, the DΩ model does not allow one to make
primitive predictions, which the agent may need in or-
der to learn other options, for instance. We introduce
a hierarchical PSR (HPSR) that can make both primi-
tive and option-level predictions. We will first describe
what an HPSR is and how it can be used, and later
describe how one can learn an HPSR.

The HPSR Model: An HPSR is composed of
several linear PSRs: one high-level model MΩ that
makes predictions about options, and one primitive-
level model Mωi for each option ωi ∈ Ω that makes
primitive predictions only while ωi is executing. The
agent uses an HPSR in the following way: At the first
time step, it chooses some option ωi to execute, and
initializes MΩ and Mωi with their respective initial
prediction vectors. At each time step through the
termination of ωi, the agent updates the prediction
vector of Mωi according to the standard linear PSR
update procedure and uses Mωi to make predictions
about any primitive tests. When ωi terminates (call
this time t∗), the prediction vector for MΩ is updated
based upon the last observation of ωi.

5 Also at time
t∗, the agent chooses another option ωj to begin ex-
ecuting. The agent initializes Mωj by asking Mωi

to make a prediction about each of the core tests of

5Since one only updates the high-level model upon op-
tions’ termination, it always makes predictions based upon
the state at the last option’s termination. This abstraction
is necessary since it is unclear how to update the prediction
for an option test as one takes primitive actions.
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Mωj ; these predictions are then the prediction vector
for Mωj . Until ωj terminates, Mωj is responsible for
any primitive predictions, and its prediction vector is
updated at each time step. This process continues as
the agent chooses options to execute.

The HPSR Component Models: Each linear
PSR within an HPSR models some system-dynamics
matrix, as described in Section 1.1, so we will de-
scribe each linear PSR by the system-dynamics ma-
trix which it models. The high-level linear PSR (that
makes predictions about options) models the option-
level system-dynamics matrix DΩ. The primitive-level
linear PSR for an option ωi ∈ Ω models a system-
dynamics matrix that we will call Dωi , which con-
tains predictions for all primitive tests from a subset of
primitive histories that we call Hωi

trunc; we now address
Hωi

trunc in more detail.

Because the agent chooses how to act by selecting an
option, executing it until completion, selecting another
option, and so on, we do not need the HPSR to make
primitive predictions from every primitive history, but
only those that could be generated by some sequence
of options. For any such primitive history h, there is
some option ωi ∈ Ω that was being executed (or just
completed) at h. We define Hωi to be the primitive
histories where ωi was being executed, just finished
being executed, or could be initiated.6 One can divide
each h ∈ Hωi into two parts h1 and h2 such that h2

is the history since ωi began, and h1 is the history
prior to that point.7 The set of histories Hωi

trunc for
the system-dynamics matrix Dωi is the set of h2’s for
each h ∈ Hωi .

We want the h2 row of Dωi to be predictions from when
ωi has generated sequence h2. However, these predic-
tions could depend upon what has happened before
the execution of ωi. The history before ωi’s execution
(h1) can be captured in the null history (hφ) row of
Dωi by setting it equal to the h1 row of D. The dy-
namics of the system then constrain the h row of Dωi

to be equal to the h1h row of D, for each h ∈ Hωi

trunc.
But note that the history before ωi’s execution will
be different each time ωi executes, leaving us with the
question “Which history should we choose as h1?” In
practice, we choose an empirical average over the his-
tories from which ωi starts. Thus each row of Dωi is a
weighted average of some rows of D.8

6Since multiple option histories could generate a prim-
itive history h, a given h could be in Hωi for multiple i’s.

7Some h’s could be divided in more than one way and
still satisfy the condition that ωi generated h2; each such
division is considered in the construction of H

ωi
trunc. Also

note that h1 or h2 (or both) could be the null history hφ.
8Specificially, if h has weight f(h) in the empirical av-

Note that a model of Dωi will make predictions based
upon the average history from which ωi starts. How-
ever, during an execution of ωi that started from some
h1, we want our model to make predictions given the
fact that ωi started from h1. Otherwise, the predic-
tions will not reflect the actual primitive history of the
agent. A model for Dωi can – in certain cases which we
describe in the Appendix – make predictions that do
reflect the actual primitive history of the agent. This
is done by using an initial prediction vector that re-
flects the specific history from which ωi begins; each
initial prediction vector (for each different history from
which ωi starts) can be computed online as described
above. Note that the model update parameters and
core tests are learned from Dωi and are the same each
time ωi executes.

Sizes of Component Models: We now show
bounds on the ranks of DΩ and each Dωi modeled
by the HPSR; these ranks are important because it is
often difficult to learn a linear PSR for a high-rank
system-dynamics matrix. For DΩ, Theorem 4 shows
that rank(DΩ) ≤ rank(D). For each Dωi , we first
note that each row of Dωi is a linear combination of
the Hωi rows of D (by construction), which implies
that rank(Dωi) ≤ rank(D). For some options ωi, we
can obtain a tighter upper bound on the rank of Dωi

by bounding the rank of the Hωi rows of D, which will
also be a bound for rank(Dωi). In the proof below, we
will refer to the Hωi rows of D as Di.

Theorem 1. For a POMDP system with a set of hid-
den states S, rank(Di) ≤ |Si|, where Si ⊆ S is the set
of hidden states in which ωi could be executing.

Proof. The proof is similar to the bound on rank(D)
for POMDPs given by Singh et al. (2004). Let T be
the set of all tests and let p(T |si) be the row vector of
probabilities that each test in T succeeds from initial
state si ∈ S. Let U be the |S| × ∞ matrix formed
by stacking the p(T |si) vectors for each si ∈ S. Let
B be the ∞ × |S| matrix such that the jth row is
the POMDP belief state (i.e. distribution over hidden
states S) given the jth history of Hωi . Then Di =
BU , by conditioning upon the hidden state at each
history. Note that the number of non-zero columns of
B is no more than |Si|. Thus, rank(Di) ≤ rank(B) ≤
|Si|.

Therefore, if an option ωi only traverses a subset of
the state space, then the number of core tests in our
primitive-level model for that option will depend only
on the size of that subset, rather than the size of the

erage of histories from which ωi starts, then the h′ row of
Dωi is

∑
h

f(h)D(hh′), where D(hh′) is the hh′ row of D.
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whole state space. So one can use options (in conjunc-
tion with an HPSR) to restrict the portion of the state
space that one wishes to model.

Learning an HPSR: Learning an HPSR consists of
learning each of its linear PSR components, each of
which models some system-dynamics matrix. Given
an estimate D̂ of some system-dynamics matrix D (or
Dωi), one can use the algorithm from James and Singh
(2004) and Wolfe et al. (2005) to find core tests and
calculate update parameters of a linear PSR. The ques-
tion then is how to estimate predictions (portions of
D̂). If one has multiple experience trajectories, one
can use the reset algorithm (James & Singh, 2004)
to estimate some p(t|h) as the number of sequences
that begin with ht divided by the number of sequences
that begin with h, divided by a policy correction term
g(t, h). To define g(t, h), let π(h, a) be the agent’s
average (over the training data) probability of tak-
ing action a from history h, and let hi be the his-
tory h followed by the first i time steps of t. Then
g(t, h) =

∏n
i=1

π(hi−1, ai) for t = a1o1 . . . anon. If
there is only one experience trajectory, one can use
the suffix-history algorithm (Wolfe et al., 2005), which
treats each suffix of that trajectory as an experience
trajectory, and uses the reset algorithm’s method to
estimate p(t|h) from those suffixes.

To learn an HPSR from a single trajectory of experi-
ence, one can learn the model of DΩ by using suffix-
history on the option-level view of the experience.
For each Dωi model, one can use the reset algorithm
(James & Singh, 2004) because there are multiple ex-
ecutions of each option in the training sequence. Each
time an option executes, it generates some sequence
of primitive actions and observations; these sequences
are the trajectories used by the reset algorithm.

4. Experiments

We tested the HPSR learning algorithm on two do-
mains, measuring the HPSR’s accuracy in making
both option and primitive predictions as the amount of
training data (measured in time steps) increases. Both
training and test sequences were generated by having
the agent repeatedly choose from the available options
uniformly at random. Our error measure is a mean
squared error of one-step predictions: for primitive-

level predictions it is 1

|O|L

∑L

j=1

∑|O|
i=1

(p(aj+1oi|hj) −

p̂(aj+1oi|hj))
2, where hj is the history after time step

j, L is the number of primitive actions taken in the
test sequence, p̂(aj+1oi|hj) is the estimate computed
by the learned model, and p(aj+1oi|hj) is the true pre-
diction. This is the same measure used by Wolfe et al.
(2005). The error measure for option predictions is

Figure 2. Rooms domain. The grid squares are the size
of the gray blocks, which are obstacles. The starred loca-
tions are the destinations of options, and the circles denote
doors. There are four primitive actions (N, S, E, W), which
fail to move the agent with probability 0.1, and the obser-
vation is the square in which the agent lands.

similar, replacing aj+1 with the (j + 1)st option exe-
cuted, replacing hj with the history through the end
of the jth option, and replacing L with the number
of options taken in the test sequence. Our testing se-
quence was 10000 time steps long, during which the
entries of each model’s prediction vector were clipped
as needed to fall in [0,1]; note that this is not clipping
the predictions that we measure for accuracy, just the
state vector itself. Both suffix-history and reset algo-
rithms take a single parameter which tunes how con-
servatively they estimate the rank of a submatrix of
D. We ran several trials with a broad range of param-
eters and report the results from the best parameter
settings. Finally, because a set of one-step core tests
exists for any MDP, we modified the core search algo-
rithm to only look at one-step tests.

Rooms Domain: We tested the HPSR learn-
ing algorithm on an MDP grid-world domain with
78 states shown in Figure 2. The 11 starred lo-
cations are the states that the options go between.
We provided options that went from the hallway star
to each other star, and options to go the opposite
way. Each of the five-point stars had an option to
get to each other five-point star; similarly, the four-
point stars had options to reach each other. There
were 60 options in all. The number of core tests
needed for a Dωi model ranged from 3 to 13, in
contrast to the 78 required for a primitive model
of the whole system. The option-level model also
needs significantly fewer core tests (11). The Marko-
vian property allowed us to estimate the prediction
p(a1o1 . . . ajoj |ha

kok) as 0 if hakoka1o1 . . . ajoj never

occurred and p̂(a1o1|o
k)

∏k
i=2

p̂(aioi|oi−1) otherwise,
with p̂(a1o1|o

k) being the fraction of times that o1 fol-
lowed oka1 in the training sequence; this is a form
of intra-option learning, as we use experience from
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Figure 3. Rooms domain results. Means and medians are taken over those of the 50 trials which did not produce singular
core matrices, which prevent the calculation of the update parameters. “LPSR” is a linear PSR for the whole domain.
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Figure 4. Taxi domain results for 20 trials.

one option to estimate the behavior of other options.
The results are shown in Figure 3. The error for
the option predictions reaches 0.0, demonstrating how
an abstract, option-level model can be easy to learn.
For the primitive predictions, we compare the HPSR
against a primitive-level linear PSR that models the
whole system, learned using the suffix-history algo-
rithm. The linear PSR was comparable to the HPSR
for the smaller training lengths, but as the training
length increased, its error stayed nearly constant, sev-
eral orders of magnitude higher than the HPSR’s error.

Taxi Domain: We also ran some experiments to
learn an HPSR for a modification of the taxi domain
from Dietterich (1998) without fuel; this domain is a
25-location grid world with a passenger that can be
in the taxi (i.e. the agent) or at one of 4 colored lo-
cations. The passenger also has a destination that is
one of the four colors. The options were to go from
each color to each other color, to pickup the passen-
ger, and to drop off the passenger (14 total options).
Upon a successful drop off, the passenger would ran-
domly choose a new destination. This domain has 500
states and would require 500 core tests to model with
a single linear PSR; in contrast, the high-level model
of the system requires 80 core tests, and each primi-
tive model within an HPSR requires no more than 180

core tests. Learning a linear PSR for the whole system
was computationally impractical due to the high num-
ber of core tests required. We were, however, able to
learn HPSR models of the system; the accuracy of the
option predictions are shown in Figure 4; the mean
and median primitive prediction error were between
0.000365 and 0.000395 for all but the smallest train-
ing length (where they were 0.0004575 and 0.0004446,
respectively), and a model was learned on every trial
(i.e. no singular core matrices).

In each domain, learning all of the component models
of an HPSR was computationally faster than learning
a linear PSR for the whole system. However, if many of
the options given to the agent traverse a large portion
of the system’s state space, then the Dωi models could
have sizes near that of a model for the whole system,
making HPSR learning slower.

5. Related Work

There has been much work on hierarchical reinforce-
ment learning (Barto and Mahadevan (2003) give a
good overview), but little work combining PSRs and
hierarchical RL. Sutton et al. (2006) used temporal
difference networks (a form of PSR) to estimate pre-
dictions about options, but they did not show that the
options’ predictions are actually computable in their
architecture. In contrast, we proved that a linear PSR
can make accurate predictions about a class of op-
tions. James et al. (2005) used the idea of dividing
up all primitive histories into several submatrices of
D with smaller rank. In their work, the division was
done by the last observation of history, rather than by
the last option executing. Finally, the abstract MDP
of Hauskrecht et al. (1998) is related to our option-
level model in that both provide an abstract model
of the system that is potentially smaller than a de-
tailed model of the system; note that one can build
an option-level model even in partially observable do-
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mains.

6. Conclusion

We have shown that a linear PSR can make predictions
about a class of options. We bounded the number of
core tests needed for such a model and gave examples
where modeling the system at the option level provides
a smaller, abstract model of the system. We showed
how a set of options can implicitly divide a state space
for modeling at the primitive level, using this principle
as the basis for a hierarchical PSR that can predict the
outcomes of both options and primitive actions.

Appendix

Bounding rank(DΩ): In this section, we show that
rank(DΩ) ≤ rank(D) when the options of Ω have 1)
policies that depend only on the history since the op-
tion began executing (which still permits them to be
closed-loop); and 2) termination conditions that are
deterministic functions of the observations since the
option began executing. Note that, although we did
not use this fact in our experiments, Lemma 3 proves
that one can ask more general questions about options
than just about the last observation, and the answer
will still be a linear function of the prediction vector
of a primitive-level model. The question need only be
a function of the primitive observation sequence seen
during the option.

Lemma 2. Let T be a set of tests (option tests or
primitive tests) and let H be the set of all primitive
histories. Let hω be any option history. Then the vec-
tor p(T |hω) = vT

hωp(T |H) for some vector vhω .

Proof. Note that D = p(T |H) when T is the set of all
primitive histories. Since p(T |hω) =

∑
h∈H Pr(hω ≡

h)p(T |h), the ith entry of vhω is the probability that
h is the primitive actions/observations of hω.

Lemma 3. Let T be the set of all primitive tests and
H be all primitive histories, and let tω be an option
test. Then p(tω|H) = p(T |H)vtω for some vector vtω .

Proof. Let ω1 be an option that executes the options
of tω in order. We define an indicator variable ψ1 :
O∗ → {0, 1} that returns “success” or “failure” based
upon the observation sequence seen during ω1. This
function ψ1 can be defined such that it is 1 if and
only if the last observations of the respective options
of tω are equal to the observations of tω (due to the
deterministic termination conditions of the options).
Then p(ω1ψ1|h) ≡ Pr(ψ1|h, ω1) equals p(tω|h). (All
of the probabilities in this proof are conditioned upon
the policy of ω1, which we do not write for brevity.)

Let A and O be random vectors for the primitive ac-
tions and observations, respectively, seen during the
execution of ω1 from h.9 Then p(ω1ψ1|h) =

∑

a∈A∗

∑

o∈O∗

ψ1(o)Pr(A = a,O = o|h)

by conditioning on the random variables A,O. We
will use a as shorthand for A = a, and ai as short-
hand for Ai = ai (where Ai is the ith element of A);
similar notation will be used for observations. We will
now focus on a particular a,o, using n as their lengths.
We can break apart Pr(a,o|h) into the probability of
ω1 generating a,o times the probability that ω1 ter-
minates after a,o, given that a,o was generated. We
use β(a,o) to denote the latter, and the former is

Pr(a1|h)Pr(o1|ha1)Pr(a2|ha1o1)

· · ·Pr(on|ha1o1 . . . an−1on−1an)

= (Pr(a1|h) · · ·Pr(an|ha1 . . . an−1on−1))

· (Pr(o1|ha1) · · ·Pr(on|ha1 . . . on−1an))

= Pr(a1|h)Pr(a2|ha1o1) · · ·

Pr(an|ha1o1 . . . an−1on−1)p(t|h)

for t corresponding to a,o. Each of the fac-
tors Pr(ai|h . . .) is equivalent to a corresponding
Pr(ai| . . .) because the policy within ω1 is in-
dependent of history given the actions and ob-
servations within ω1. If we define wa,o =
Pr(a1)Pr(a2|a1o1) · · ·Pr(an|a1o1 . . . an−1on−1), then
p(ω1ψ1|h) =

∑

a∈A∗

∑

o∈O∗

ψ1(o)Pr(A = a,O = o|h)

=
∑

a∈A∗

∑

o∈O∗

ψ1(o)β(a,o)wa,op(a,o|h)

= p(T |h)vtω .

For each test a,o in T , the corresponding entry of vtω

is ψ1(o)β(a,o)wa,o. Since this equation holds for any
history, p(ω1ψ1|H) = p(tω|H) = p(T |H)vtω .

Theorem 4. For system-dynamics matrices D and
DΩ defined as above, rank(DΩ) ≤ rank(D).

Proof. To get the matrix DΩ from D, we apply two lin-
ear transformations, which cannot increase the rank.
The first transformation, which is linear because of
Lemma 3, replaces the primitive tests of D with all op-
tion tests. The second transformation, which is linear
because of Lemma 2, replaces the primitive histories
with all option histories.

9We can use random-length random vectors because
there is a mapping from action (or observation) sequences
to integers (e.g. length-lex ordering).
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Changing the Initial Condition: In this section,
we note cases where one can learn a model for a sys-
tem with one initial condition and use that to model
the system under different initial conditions, changing
only the initial prediction vector. The following lemma
shows that if one builds a linear PSR of an MDP from
a distribution over initial states, then one can use that
PSR to model the system that starts in any one of
those states, as long as that starting state is reachable
(under the agent’s policy) after the initial time step.

Lemma 5. For an MDP system with states S, let b0
be some initial distribution over S, and let b′0 be a
different initial distribution such that ∀si ∈ S, b′0(si) >
0 ⇒ (b0(si) > 0 and si is reachable at some time t >
0). Then learning a linear PSR under initial condition
b0 will give valid core tests and update parameters for
the system under initial condition b′0.

Proof. We let D and D′ be the system-dynamics ma-
trices for the initial conditions b0 and b′0, respec-
tively. For an MDP system, changing the initial con-
dition does not change any row of D other than the
null history row, due to the Markovian property, but
it may render some histories unreachable that were
previously reachable, or vice versa. Our condition
∀si ∈ S, b′0(si) > 0 ⇒ b0(si) > 0 ensures that any
state reachable under b′0 is also reachable under b0.
Thus, if we ignore the null history row, D′ is a subma-
trix of D, so all columns of D′ are linearly dependent
upon those of Q (core tests for D), in all rows but the
null history row. We now show that the null history
row of D′ is a linear combination of the other rows
of D′, which implies that the columns of D′ are lin-
early dependent upon those of Q, making Q valid core
tests for D′. Let T be the set of all primitive tests
and p(T |si) be the vector of predictions for each prim-
itive test from state si. For an initial condition b′0,
the null history row of D′ is

∑
si∈S b

′
0(si)p(T |si), by

conditioning upon the starting state. Our condition
[∀si ∈ S, b′0(si) > 0 ⇒ si is reachable at some time
t > 0] means that each p(T |si) with non-zero weight
in the previous sum is also a row in D′. Thus, the
null history row of D′ is linear combination of other
rows of D′. Finally, since the weights of the linear re-
lationships between the columns of D′ are the same as
those for D, the update parameters from D are valid
in D′.

Two other cases where one can use data from one ini-
tial distribution to model the system under other ini-
tial distributions were shown by Wolfe et al. (2005)
and are restated here:

Theorem 5.1. Let D be a system with finite rank n
that can be modeled by a POMDP with n hidden states.

Let D′ be the system obtained by replacing the initial
belief state of D with a new initial belief state. If the
rank of D′ is also n, then any set of core tests and
update parameters for D′ are a valid set of core tests
and update parameters for D.

Theorem 5.2. Let D be a system-dynamics matrix
and h∗ be a history for D. Let D′ be a system-dynamics
matrix such that D′ has the same dynamics as D, but
its first row is identical to the row of D from history
h∗. If rank(D) = rank(D′), then any set of core tests
and update parameters for D′ are a valid set of core
tests and update parameters for D.
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