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Abstract

Stackelberg games form the core of a number of tools de-
ployed for computing optimal patrolling strategies in adver-
sarial domains, such as the US Federal Air Marshall Service
and the US Coast Guard. In traditional Stackelberg secu-
rity game models the attacker knows only the probability that
each target is covered by the defender, but is oblivious to the
detailed timing of the coverage schedule. In many real-world
situations, however, the attacker can observe the current loca-
tion of the defender and can exploit this knowledge to reason
about the defender’s future moves. We show that this gen-
eral modeling framework can be captured using adversarial
patrolling games (APGs) in which the defender sequentially
moves between targets, with moves constrained by a graph,
while the attacker can observe the defender’s current location
and his (stochastic) policy concerning future moves. We offer
a very general model of infinite-horizon discounted adversar-
ial patrolling games. Our first contribution is to show that
defender policies that condition only on the previous defense
move (i.e., Markov stationary policies) can be arbitrarily sub-
optimal for general APGs. We then offer a mixed-integer
non-linear programming (MINLP) formulation for comput-
ing optimal randomized policies for the defender that can
condition on history of bounded, but arbitrary, length, as well
as a mixed-integer linear programming (MILP) formulation
to approximate these, with provable quality guarantees. Ad-
ditionally, we present a non-linear programming (NLP) for-
mulation for solving zero-sum APGs. We show experimen-
tally that MILP significantly outperforms the MINLP formu-
lation, and is, in turn, significantly outperformed by the NLP
specialized to zero-sum games.

Introduction
Game theoretic approaches to security based on Stackel-
berg game models have received much attention in recent
years, with several finding deployment in real-world settings
including Los Angeles International Airport, United States
Federal Air Marshals Service, United States Transportation
Security Agency, and United States Coast Guard (Jain et
al. 2010; An et al. 2011). At the backbone of these appli-
cations are defender-attacker Stackelberg games in which
the defender (leader) first commits to a randomized secu-
rity policy, and the attacker (follower) uses surveillance to
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learn about the policy before attacking. A Stackelberg equi-
librium of this game yields an optimal security policy for
the defender, accounting for an optimal attacker response,
and considerable literature now exists on computing a Strong
Stackelberg Equilibrium (SSE), which is a Stackelberg equi-
librium with the follower breaking ties in the leader’s fa-
vor (Conitzer and Sandholm 2006; Paruchuri et al. 2008;
Kiekintveld et al. 2009).

To date, most Stackelberg game models assume that the
attacker knows the probability that each target is covered
by the defender, but is oblivious to the actual sequence of
defender moves. For example, the defender may in fact
visit targets according to some fixed (but randomly gener-
ated) patrolling schedule, but the attacker is presumed to
be unable to observe the defender’s location at any point
during the patrol. In many realistic settings, such as the
US Coast Guard it is likely that the attacker can in fact
observe the patrol while it is in progress (e.g., the coast
guard ships can be quite overt). Thus, a more plausible
model in such a setting would allow the attacker to observe
both the randomized policy of the defender (i.e., probabil-
ity distribution over moves) as well as current defender lo-
cation. Such a model, often termed adversarial patrolling
games, has indeed been proposed in recent literature (Basil-
ico, Gatti, and Amigoni 2009; Basilico et al. 2009; 2010;
Basilico, Gatti, and Villa 2011; Basilico and Gatti 2011;
Bosansky et al. 2011; Basilico, Gatti, and Amigoni 2012).
All of this literature, however, shares an assumption which
makes it difficult to deploy the proposed models and asso-
ciated computational techniques in practice: it is assumed
that both players are completely indifferent about the timing
of an attack. This assumption is rather at odds with intu-
ition: even very patient attackers far prefer attacking sooner
rather than later, since delaying increases likelihood of being
caught, whereas defenders clearly would prefer to delay an
attack as long as possible (for example, to have more time
to prepare for the attack and its consequences or to catch
the attacker). A natural way to incorporate temporal pref-
erences of this nature is to introduce exponential discount-
ing. It turns out, however, that solution methods previously
applied in the undiscounted setting are no longer sensible
as soon as discounting is introduced, as they leverage the
very indifference in timing that discounting is meant to elim-
inate. Handling discounting, therefore, requires entirely dif-



ferent techniques. Surprisingly, while abundant work exists
in the undiscounted setting, ours is the first effort to han-
dle infinite-horizon discounted adversarial patrolling games.
While our work is related to several recent treatments of
stochastic Stackelberg games (Letchford et al. 2012; Vorob-
eychik and Singh 2012), none of these consider the special
structure of our problem, and scale poorly in general.

We generalize previous approaches to adversarial pa-
trolling games (APGs) in several important directions. First,
we introduce exponential discounting, as we had already
motivated above. Second, while we maintain the assump-
tion that patrol moves are constrained by a network (for ex-
ample, representing physical barriers), we additionally in-
troduce costs that the defender incurs for traversing edges of
the network. This cost models variations in terrain and/or
equipment/vehicle that one needs to use to traverse a given
edge (for example, a boat or a helicopter). Third, with a
few exceptions (e.g., (Basilico and Gatti 2011)), most of
the previous work assumed a single defense resource; our
model allows for multiple homogeneous resources. In ad-
dition, we make several contributions towards computing
Stackelberg equilibria in this very general class of infinite-
horizon discounted APGs. First, we demonstrate that even
in APGs in which attacks take a single time unit, a stationary
Markov defense policy (i.e., a policy which only conditions
on the last defense move) may be arbitrarily suboptimal,
thereby resolving an important open question. Second, we
provide a mathematical programming formulation for com-
puting optimal defender policies that condition on arbitrary,
but bounded, horizon of previous defense moves. Third, we
present a mixed-integer linear programming formulation for
approximating solutions to APGs, with provable approxima-
tion guarantees. Fourth, we present a non-linear program-
ming formulation for the special case of zero-sum APGs.
In our experiments, we demonstrate this formulation to be
highly scalable compared to alternative approaches.

Adversarial Patrolling Games
An adversarial patrolling game (APG) is described by the tu-
ple {T,G,C,U c

D(i), Uu
D(i), U c

A(i), U
u
A(i), γD, γA}, where

T is the set of n targets patrolled by the defender, G =
(T,E) is a graph with targets as vertices and E the set of
directed edges constraining that the defender can only move
from i to j if (i, j) ∈ E, and C = {cij} is a matrix of
costs of traversing an edge (i, j) ∈ E. U c

D(i) and Uu
D(i) are

the utilities to the defender if an attacker chooses a target
i ∈ T when it is visited by the defender, and not, respec-
tively, whileU c

A(i) andUu
A(i) are the corresponding attacker

utilities. Some of the nodes in T may in fact not be potential
targets of attack, either because they are too difficult to pene-
trate for the attacker, or because they are not worth anything
to the attacker. We can easily capture both of these aspects
by assigning a large negative attacker utility to impenetrable
targets, and assigning zero utility to nodes that the attacker
has no interest in attacking. Finally, γD, γA ∈ (0, 1) are the
discount factors of the defender and attacker (in some cases,
we also allow γA = γD = 1). It is useful to consider the
representation of this graph as an adjacency matrixA, where
Aij = 1 if and only if there is an edge from target i to tar-

get j. We assume that the defender uses R homogeneous re-
sources to patrol the targets, and let z = {z1, . . . , zn} denote
the coverage vector, i.e., a vector where zi = 1 indicates that
target i is covered by a defense resource and

∑
i zi = R. We

denote the space of all such coverage vectors by Z. In our
discrete time model, the resolution of iterations is assumed
to correspond to defense moves that can feasibly be taken in
a chosen unit of time. We assume that this time resolution is
sufficiently small that the attacker can only take as long, or
longer, than a single time unit to execute an attack. We let
h ≥ 1 denote the number of time steps that an attack takes
to execute.

The game is structured as follows. First, the defender
commits to a patrolling policy, π, which is in general an
arbitrary function from all observed history (i.e., the se-
quence of past coverage vectors) to a probability distribu-
tion over the coverage vectors patrolled in the next iteration.
Second, the attacker finds out the patrolling policy π (e.g.,
through surveillance) and chooses a policy a as a best re-
sponse, which, just like π, can condition on a previous se-
quence of the defender’s moves, as well as defender’s cur-
rent coverage vector z. The attacker’s response policy de-
termines whether the attacker waits or attacks a particular
target i ∈ T at any point in time. Once both the defender
and the attacker have chosen their respective policies, their
payoffs are evaluated solely based on the timing of the at-
tack decision, and whether or not the defense patrol passes
through the attacked target within h steps of the attack. If
an attack on target i commences at time t, for example, the
utility to the attacker is γt+h

A Uu
A(i) if the defender does not

pass through i in the time interval [t+1, t+h], while the at-
tacker’s utility is γt+v

A U c
A(i) if the patrol passes through i at

time v ≤ h. The corresponding payoffs to the defender are
symmetric. To summarize, then, the utility to each player in
this effectively two-stage game is the expected discounted
utility (as a function of both π and a) computed at time step
1. (To be clear, even though we refer to this setup as an
infinite-horizon discounted game, in our model both players
only care about their expected utility as evaluated at the very
first time step of the game).

Finally, we assume, entirely for convenience, that all
defense resources begin at a fixed starting point (“base”),
which we denote as a coverage vector z0.
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Figure 1: Example of a simple New York Bay patrolling
scenario.



Example 1. USCG’s Patrolling Problem as an APG:
USCG safeguards important infrastructure at US coasts,
ports, and inland waterway. For this example, we chose a
simple Newark Bay and New York Harbor patrolling sce-
nario, shown in Figure 1. We chose five possible targets,
with the graph roughly representing geographic patrolling
constraints (assuming a boat patrol). The number near each
target represents the amount that the attacker gains and the
defender loses if the corresponding target is successfully at-
tacked; both sides receive the utility of zero if an attack is
unsuccessful. The highly connected target with zero value
represents the base of operations. �

While we are not the first to consider adversarial pa-
trolling scenarios (see, e.g., (Basilico, Gatti, and Amigoni
2009; Basilico et al. 2009) for more details), we are the first
to include discounting in our model. We can use Example 1
to demonstrate the importance of considering the discount
factor in adversarial patrolling settings.

Proposition 1. Assuming that the attacker is infinitely pa-
tient when in fact he is not can result in an arbitrarily sub-
optimal patrolling policy.

Proof. Consider example 1, and suppose that γD = γA = 1,
that is, the attacker is infinitely patient, h = 1, and the
game is zero-sum. This means that the attacker is willing
to wait indefinitely before attacking, and attack as soon as
the defender commits to either of the most valuable targets.
Consequently, the attacker will obtain utility of 1 no matter
what the defender does, and any defense is optimal, includ-
ing staying at base with probability 1. If we suppose that, in-
stead, the attacker’s discount factor is 0.5, a policy of always
staying at base still gives the attacker utility of 1, while the
defender can lower it to 1/2 by defending the two most valu-
able targets with probability 1/2 each. The ratio between
the optimal policy, and a policy obtained if we assume that
γA = 1 can be made arbitrarily large by amplifying target
values.

Stackelberg Equilibria in APGs
It is well known that in general-sum stochastic games there
always exists a Nash equilibrium (NE) in Markov stationary
policies (Filar and Vrieze 1997). The import of this result
is that it allows one to focus NE computation on this very
restricted space of strategies. In this section we show that
this result does not in general extend to APGs, and, indeed,
a Markov stationary policy could be arbitrarily suboptimal.

Proposition 2. The leader’s optimal policy in APGs may
not be Markov stationary even if cij = 0 for all (i, j) ∈ E,
U c
D(j) = −U c

A(j), and Uu
D(j) = −Uu

A(j) (i.e., the play-
ers merely have different discount factors, but agree on the
relative importance of targets).

Proof. Consider an APG with three targets, 1, 2, and 3. Tar-
gets 1 and 2 have a value of 1 and target 3 has a value of 0;
that is, if the attacker attacks 1 or 2 and the corresponding
target is not defended, the attacker gains, and the defender
loses, 1, whereas if the attacked target is covered, no loss
or gain is accrued to either player. Additionally, if target 3

is attacked, everyone receives 0 payoff no matter what the
defender’s strategy is. Targets 1 and 2 are connected to each
other and each is connected to itself; target 3 can be reached
from either 1 or 2, but does not connect back to these, al-
though it is connected to itself; it is, effectively, an absorbing
state. Visually, this setup is illustrated in Figure 2. Suppose

1 2 

3 value = 0 

value = 1 value = 1 

Figure 2: Counterexample: a Markov stationary policy for
the defender need not be optimal in APGs.

that the defender’s discount factor is 0.1 and the attacker’s
is 0.9, that is, the defender is largely concerned about what
happens during the first time step, while the attacker is will-
ing to wait. Finally, suppose that the defender starts at target
1.

Since targets 1 and 2 are identical in every way, there is an
optimal Markov stationary policy that plays the same strat-
egy in both of these. For the same reason, the probability of
staying put at either target 1 or 2, or moving to the other val-
ued target (that is, moving from 1 to 2 or from 2 to 1) is the
same in some optimal Markov stationary policy. Let us call
this probability p. Thus, the probabilities of moving from 1
to 2, from 2 to 1, or staying at 1 or at 2, all equal p. Then the
probability of moving to target 3 from either 1 or 2 is 1−2p,
which implies that p ≤ 0.5.

Since target 3 has a value of 0 to both players and is ab-
sorbing, clearly the attacker would attack either target 1 or
target 2 (he is indifferent between these), accruing the utility
of 1 (which is lost to the defender) if ever he observes the
defender having landed on (and stuck at) target 3.

Suppose that the defender is at target 1 (target 2 can be
considered symmetrically). Let VA be the attacker’s ex-
pected discounted value of observing defender at target 1.
The attacker will wait another step if and only if his expected
utility of waiting exceeds his expected utility of attacking
immediately, that is, if 0.9((1 − 2p) + 2pVA) ≥ (1 − p),
where the quantity on the left-hand-side is the expected util-
ity of waiting, and (1−p) is the expected utility of attacking
either target 1 or target 2 immediately. Since VA ≤ 1, the
necessary condition for forcing the attacker to wait in our
example is that 1 − p ≤ 0.9 or p ≥ 0.1. Therefore, if the
attacker were to wait, the defender’s loss is bounded from
below by 0.1((1− 2p)+2pVD) ≥ 0.1− 0.2p ≥ 0.08. If the
attacker were to attack immediately, on the other hand, the
expected loss to the defender is 1 − p, which is minimized
when p = 0.5. Thus, the defender will force the attacker to
wait and lose at least 0.08 in expectation.

Now consider the following non-stationary policy for the



defender. The defender plays p = 0.5 for the first two
rounds, then moves to target 3 with probability 1. Clearly,
the attacker will wait and attack in round 3, since his ex-
pected utility of waiting both rounds is 0.92 = 0.81 > 0.5,
which is what he would attain from attacking immediately.
For the defender, however, the expected loss from this policy
is 0.12 = 0.01, much smaller than the expected loss from an
optimal Markov stationary policy.

Computing Solutions for APGs
A MINLP Formulation for General-Sum APGs
Our first step is to present a very general MINLP formulation
for computing a Strong Stackelberg equilibrium in general-
sum APGs. Recall that z0 corresponds to the fixed initial
vector of defense resource deployment, that is, the initial
coverage vector, and let K be the fixed number of previous
defense moves that the defender keeps track of in computing
and executing a defense policy. We define s = {z1, . . . , zK}
as the history of the K previous moves, the first K − 1 of
which may be ∅, if the defender has only begun less than K
steps ago. Sometimes we casually refer to s as state. Let
Bsz = 1 if and only if z is a valid transition for the defender
following the last defender move in s, zK . Below, we show
how to construct this matrix given the adjacency matrix A
for the graph constraining defender’s moves. Let S be the
set of all such feasible K-length histories (i.e., sequences of
moves such that Bzk,zk+1 = 1 for all 1 ≤ k < K), ignoring
the leading ∅ entries. We overload notation to let z0 denote
the initial history s at the beginning of the game.

To obtain the matrix B, consider a pair of coverage vec-
tors z and z′, and let Ts be the set of covered targets un-
der z and Tz′ the set of targets covered under z′. Let
Gzz′ = {Tz, Tz′ , E} be a bipartite graph with a directed
edge (i, j) ∈ E if and only if i ∈ Tz , j ∈ Tz′ , and Aij = 1.
The following proposition is then relatively direct.

Proposition 3. For each s ∈ S, z′ ∈ Z, Bsz′ = 1 if and
only if Gzz′ has a perfect matching, where z is the last move
by the defender in s.

Proof. For one direction, suppose that Gzz′ has a perfect
matching. This means that every covered target in z is
matched to exactly one covered target in z′, which implies
that there is a feasible move for a resource situated at each
target covered under z to z′ and, since this is a matching,
no two resources move to the same location. For the other
direction, suppose that the maximum matching is not a per-
fect matching. Since this matching matches the largest num-
ber of covered targets, it must be that under every possi-
ble matching there exists an infeasible move for some re-
source.

The convenience of this result is that the existence of a
perfect matching can be checked in time polynomial in the
number of resources r (Edmonds 1965).

Define Q as a binary tensor with Qszs′ = 1 if and only if
s followed by z results in a new K-long sequence of moves
s′ (note that this tensor can be computed from the problem
definition). The tensor Q will be useful below to allow us to

cleanly express which state results by appending a move z
to a previous state s. Let π denote the set of variables that
compute defense policy, with πsz the probability of choos-
ing a coverage vector z after a history of previous moves s.
Define bs as an indicator variable with bs = 1 if and only
if the attacker chooses to wait in state s, and let asj be an
indicator variable with asj = 1 if and only if the attacker
attacks target j in state s, if he chooses to attack at all. De-
fine VD(s) as the maximum expected utility of the defender
after observing history s, and VA(s) is the corresponding ex-
pected utility of the attacker; both of these will be computed,
along with the optimal policy, in the optimization program
below. Let P (s) be the total expected costs incurred by the
defender’s optimal patrolling strategy following the history
of moves s.

An important step is computing the probability of making
the move z ∈ Z exactly t time steps after a sequence of
defense moves s without passing through z in the meantime,
which we denote by αt

sz . Clearly,

α1
sz = πsz ∀ s ∈ S, z ∈ Z. (1)

Moreover, we now show that it can be computed recursively
for an arbitrary t. First, for each “neighbor” of s, r (ex-
cluding z itself), we compute the probability that z can be
reached if s is followed by r in exactly t − 1 steps with-
out passing through z (this is computed by the quantity∑

s′∈S Qsrs′α
t−1
s′z , where Q serves to compute s′ that fol-

lows after adding a move r to s). Next, since πsr is the
probability of reaching a neighbor r from s in one step,
πsr
∑

s′∈S Qsrs′α
t−1
s′z computes the probability of reaching

z from s in exactly t steps by going through r. Finally, the
quantity of interest is just the sum over all neighbors r, ex-
cept z itself (which we do not pass in this calculation), i.e.,

αt
sz =

∑
r∈Z|r 6=z

πsr
∑
s′∈S

Qsrs′α
t−1
s′z ∀ s, z, 1 < t ≤ h. (2)

The usefulness of defining and computing αt
sz as we have

done above is that the corresponding events are disjoint for
different values of t. Therefore, we can compute the proba-
bility of reaching z starting at s in at most h steps directly as∑h

t=1 α
t
sz . If the attacker attacks target j ∈ T upon observ-

ing a sequence of defense moves s, the utility of both play-
ers is the discounted expected utility over the h-step horizon,
where utility at each step t is determined by the probability
that there is some coverage vector that covers j in exactly t
steps. Thus, the expected utility to the attacker is1−

∑
z∈Z|zj=1

h∑
t=1

αt
sz

γh−1A Uu
A(j)

+
∑

z∈Z|zj=1

h∑
t=1

αt
szγ

t−1
A U c

A(j).

The defender’s utility is symmetric.
Now, we need to deal with computing the expected costs

P (s), using the primitives cij that are given to us as a part of
the problem definition. First, recall that there is a valid move



from a coverage vector z to another, z′, iff there is a perfect
matching in the bipartite graph Gzz′ from z to z′ induced by
G. LetMzz′ be the set of all perfect matchings onGzz′ . We
define the cost of moving from z to z′ as the cheapest way
to achieve this move. Formally,

czz′ = min
E∈Mzz′

∑
(i,j)∈E

cij .

Next, notationally we use csz′ to mean czz′ where z is the
last defender move in s. Finally, note that the expected to-
tal cost in state s, P (s) depends on the attacker’s decision
whether to attack or to wait in that state, bs. If the attacker
chooses to attack, the game terminates in exactly h time
steps, and we can compute the total cost over that horizon
recursively. Specifically, let P t

sj(attack) denote the total
cost with t steps before the game ends if the attacker attacks
target j in state s, and let Ps(attack) be the total expected
cost if the attacker attacks.

P 1
sj(attack) =

∑
z∈Z

πszcsz, (3)

while for all s ∈ S, 1 < t ≤ h,

P t
sj(attack) =

∑
z∈Z|zj=1

πszcsz +
∑

z∈Z|zj=0

πsz(csz

+ γD
∑
s′∈S

Qszs′P
t−1
s′j (attack)). (4)

The first term is the cost accrued if the defender passes
through target j immediately t steps prior to the end of the
game, whereas the second term computes the cost in the case
when the defender does not immediately pass through j with
t steps remaining. Then Ps(attack) =

∑
j asjP

h
sj(attack).

In the case that the attacker chooses to wait, Ps(wait) is
the sum of immediately incurred costs and discounted future
costs:

Ps(wait) =
∑
z∈Z

πsz

(
csz + γD

∑
s′∈S

Qszs′P (s
′)

)
.

Thus, the total expected costs are

P (s) = (1− bs)Ps(attack) + bsPs(wait). (5)

The final set of pieces for the formulation is a set of con-
straints for computing the attacker’s decisions about attack-
ing or waiting (bs), about which target to attack (asj), and
corresponding expected utilities to both defender and at-
tacker. Let RA(s) denote the expected utility the attacker
receives in state s, and let RD(s) be the corresponding de-
fender utility. The following set of constraints computes the
decision to attack or wait:

0 ≤ VA(s)−RA(s) ≤ bsM ∀ s ∈ S (6a)

0 ≤ VA(s)− γA
∑
z∈Z

πsz
∑
s′∈S

Qszs′VA(s
′)

≤ (1− bs)M ∀ s ∈ S. (6b)

Constraint 6a corresponds to choosing to attack immediately
in state s, whereas constraint 6b is the expected utility if

the attacker chooses to wait. A similar set of constraints
computes the decisions asj as well as corresponding utilities
RA(s) and RD(s).

Putting it all together, we obtain the following MINLP
formulation (in which M is a large constant):

max VD(z0)− P (z0) (7a)

s.t. :
∑
z∈Z

πsz = 1,
∑
j∈T

asj = 1 ∀ s ∈ S (7b)

πsz ≤ Bsz ∀ s ∈ S, z ∈ Z (7c)
0 ≤ VA(s)−RA(s) ≤ bsM ∀ s ∈ S (7d)

0 ≤ VA(s)− γA
∑
z∈Z

πsz
∑
s′∈S

Qszs′VA(s
′)

≤ (1− bs)M ∀ s ∈ S (7e)
VD(s)−RD(s) ≤ bsM ∀ s ∈ S (7f)

VD(s)− γD
∑
z∈Z

πsz
∑
s′∈S

Qszs′VD(s′)

≤ (1− bs)M ∀ s ∈ S (7g)

0 ≤ RA(s)−

1−
∑

z∈Z|zj=1

h∑
t=1

αt
sz

 γh−1A Uu
A(j)

−
∑

z∈Z|zj=1

h∑
t=1

αt
szγ

t−1
A U c

A(j)

≤ (1− asj)M ∀ s ∈ S, j ∈ T (7h)

RD(s)−

1−
∑

z∈Z|zj=1

h∑
t=1

αt
sz

 γh−1D Uu
D(j)

−
∑

z∈Z|zj=1

h∑
t=1

αt
szγ

t−1
D U c

D(j)

≤ (1− asj)M ∀ s ∈ S, j ∈ T (7i)
πsz ≥ 0, bs, asj ∈ {0, 1} ∀ s ∈ S, z ∈ Z, j ∈ T (7j)
constraints 1− 5.

Mixed-Integer Linear Programming
Approximation
What makes the MINLP formulation above difficult is the
combination of integer variables, and the non-convex inter-
action between continuous variables involving πsz with the
variables computing expected utilities, patrolling costs, and
αt
sz . If at least one of these variables is binary, we can lin-

earize these constraints using McCormick inequalities (Mc-
Cormick 1976). To enable the application of this technique,
we discretize the probabilities πsz which the leader’s policy
can use, following the approach set forth in Vorobeychik and
Singh (2012).

Let pl denote a lth probability value and let L =
{1, . . . , L} be the index set of discrete probability values we
use. Define binary variables dlsz which equal 1 if and only
if πsz = pl, and 0 otherwise. We can then write πsz as

πsz =
∑
l∈L

pldlsz ∀ s ∈ S, z ∈ Z. (8)



The next step is to introduce new variables for the bilinear
terms. Thus, we rewrite

πsz
∑
s′∈S

Qs,z,s′VA(s
′) =

∑
l∈L

plxlsz,

where xlsz = dlsz
∑

s′∈S Qs,z,s′VA(s
′). Finally, we rewrite

this equality as the following equivalent set of McCormick
inequalities:∑

s′∈S
Qs,z,s′VA(s

′)−M(1− dlsz) ≤ xlsz

≤
∑
s′∈S

Qs,z,s′VA(s
′) + Z(1− dlsz) (9)

−Mdlsz ≤ xlsz ≤Mdlsz. (10)

Since all our bilinear terms involve πsz , they can all be
linearized in precisely the same manner, and so we omit
the details. The bottom line is that it suffices to only dis-
cretize the defense probabilities πsz to enable us to linearize
all of the bilinear terms. The result is that we obtain a
mixed-integer linear programming formulation, which now
computes an approximately optimal policy for the defender.
Moreover, we can bound the quality of this approximation
using the results of Vorobeychik and Singh (2012) directly.

Special Case: Zero-Sum APGs
An important special cases of adversarial patrolling games
is when they are zero-sum. Specifically, in this class we
assume that cij = 0 for all (i, j) ∈ E (that is, as long as
an edge exists, it is free to traverse it). Additionally, γA =
γD = γ (i.e., both players have identical discount factors),
U c
D(i) = −U c

A(i), and Uu
D(i) = −Uu

A(i). As a result, it
suffices to consider only defender’s decision variables πsz
and attacker’s maximum expected utility starting in state s
(and computed by the mathematical program below), VA(s).
Optimal patrolling policy can then be computed using the
following non-linear program (NLP):

min
∑
s∈S

VA(s) (11a)

s.t. :
∑
z∈Z

πsz = 1 ∀ s ∈ S (11b)

πsz ≤ Bsz ∀ s ∈ S, z ∈ Z (11c)

VA(s) ≥

1−
∑

z∈Z|zj=1

h∑
t=1

αt
sz

 γh−1Uu
A(j)

+
∑

z∈Z|zj=1

h∑
t=1

αt
szγ

t−1U c
A(j) ∀ s ∈ S, j ∈ T

(11d)

VA(s) ≥ γ
∑
z∈Z

πsz
∑
s′∈S

Qs,z,s′VA(s
′) ∀ s ∈ S (11e)

πsz ≥ 0 ∀ s ∈ S, z ∈ Z (11f)
constraints 1− 2.

The crucial difference between this formulation for zero-
sum APGs from the general formulation is that this variant

has no integer variables. Still, there are bilinear constraints
that remain. Nevertheless, we demonstrate below that this
NLP scales extremely well with the number of targets, in-
deed, far better than either the general MINLP or the dis-
cretized MILP approximation.

Experiments: Adversarial Patrolling on
Exogenous Graphs

In our experimental studies below we use a somewhat sim-
plified model in which U c

D(i) = U c
A(i) = 0 for all tar-

gets i ∈ T , and restrict attention to zero-sum adversarial
patrolling settings, with δ = γD = γA. We generate the
values of successful attacks Uu

A(i) i.i.d. from a uniform dis-
tribution on the unit interval; since the game is zero-sum,
Uu
D(i) = −Uu

A(i). Throughout, we use δ = 0.95, ex-
cept where specified otherwise.1 We use a relatively stan-
dard Erdos-Renyi generative model to generate graphs over
which the defender patrols (Newman 2010). In an Erdos-
Renyi model every directed link is made with a specified
and fixed probability p; we refer to this model by ER(p),
or simply ER. Additionally, we consider graphs which are
simple Cycles.

In our experiments, we assume for simplicity that patrols
initially deploy from a base, labeled as target 0, which we
connect to every other target, with network topology effec-
tive only on the rest of the targets.2 Additionally, we assume
that the base has no intrinsic value to the defender, and there-
fore fix Uu

A(0) = 0.
All computational experiments were performed on a 64

bit Linux 2.6.18-164.el5 computer with 96 GB of RAM
and two quad-core hyperthreaded Intel Xeon 2.93 GHz pro-
cessors. We did not make use of any parallel or multi-
threading capabilities, restricting a solver to a single thread,
when relevant. Mixed integer linear programs were solved
using CPLEX version 12.2, mixed integer non-linear pro-
grams were solved using KNITRO version 7.0.0, and we
used IPOPT version 3.9.3 to solve non-linear (non-integer)
programs. The results we report are based on 100 samples
from both the attacker utility distribution and (when appli-
cable) from the network generation model. Throughout, we
report 95% confidence intervals, where relevant.

Comparison to Basilico et al.
Basilico, Gatti, and Amigoni (2009) presented a multiple
math programming approach to adversarial patrolling for a
setting very similar to ours. While it is not difficult to see
that assuming infinite patience for the attacker can lead to
arbitrarily poor results, we now wish to make a more direct
comparison. By setting δ = 1, and reformulating the al-
gorithm in Basilico et al. in a zero-sum setting and with a
single-step attack, we can make a direct comparison between

1We considered other discount factors as well, but this one
strikes the right balance: it creates interesting tradeoffs between
attacking and waiting, and yet creates a setting that is significantly
different from past work which only considers δ = 1.

2We can motivate this by noting that location of a base is also a
strategic choice, and a base located central to the high value targets
makes patrols much more effective.
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Figure 3: Comparison between our NLP formulation and
that developed by Basilico et al. The graph is ER(0.1).

our approach (using the NLP formulation) and theirs. The
results, shown in Figure 3, demonstrate that our approach
yields significantly better solutions, though the difference
between the two becomes less significant as the number of
targets increases.

It is, at first, quite puzzling that our approach yields
solutions better to those using the formulation of Basilico
et al., even “playing on their turf”, that is, having an
attacker that is infinitely patient. In the online supplement
(http://sites.google.com/site/onlineappendices/apgappendix.pdf)
we show why the approach offered by Basilico et al. is
suboptimal. (To our knowledge, we are the first to offer this
analysis of what is currently the state-of-the-art; all of the
related approaches build on the same core framework).

MILP Discretization
Our main approach for approximating solutions to APGs is
by using a mixed-integer linear programming formulation
with discretized probability values. The size and, conse-
quently, complexity of the MILP depends greatly on how
finely we discretize the probability interval. While we can
achieve an arbitrarily optimal solution by discretizing the
probability interval finely enough, an important question is:
how finely do we need to discretize in practice? We address
this question by considering a sequence of increasingly fine
discretizations, starting at L = 1 (p0 = 0 and p1 = 1)
and going up to L = 50 (pl ∈ {0, 0.02, 0.04, . . . , 1}). To
ensure that whatever we find is not particular to a given set-
ting, we also vary the number of targets between 5 and 50,
as well as the network topology (Cycle, ER). The results,
shown in Figure 4, are quite reassuring: L = 10 seems to
suffice across all the settings we considered. From this point
on, results based on a MILP approximation use L = 10,
unless otherwise specified.

Comparison of the Alternative Formulations
We offered several alternative formulations of the defender’s
optimization problem: MINLP (the mixed integer non-linear
programming approach for general-sum APGs), NLP (non-
linear program specific to zero-sum APGs), and MILP.
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Figure 4: MILP objective value as a function of granular-
ity of discretization. The graph is ER(0.1); the results are
similar on other graph classes.

We compare all these formulations in terms of objective
value (i.e. average VA(0) over 100 random realizations of
target values and network topologies) and average running
time. The results in Figure 5 suggest that there is not a
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Figure 5: Comparison of average attacker utility achieved
using MINLP, MILP, and NLP formulations, using the Cycle
topology.

significant difference in efficacy of the programming ap-
proaches we propose. Running time, however, does in fact
differentiate them. Experimentally we found that MINLP
running time diverges rapidly from that of MILP: even with
as few as 9 targets, KNITRO solver takes nearly 300 sec-
onds, as compared to solving MILP using CPLEX, which
takes under 2 seconds on comparable problem instances (see
Figure 6). Figure 7 shows that the NLP formulation scales
considerably better than MILP, solving instances with as
many as 1000 targets in under 200 seconds (MILP already
begins to reach its limit by n = 50). It is interesting to note
that the graph topology plays a role in determining the diffi-
culty of the problem: Cycles are solved much faster than ER
graphs.
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Figure 7: Running time comparison between MILP and
NLP on Cycle and ER(0.1) graphs. We omit MINLP which
does not scale, and the two MILP formulations yield similar
results, so we only present MILP (baseline) here.

Attacks Taking Multiple Steps
As our formulation of the defender’s optimization problem
in the case when attacks can take more than a single step
to unfold allows one to make a principled tradeoff between
runtime and approximation quality, we now study this trade-
off. Specifically, we fix the number of steps an attack takes at
h = 3, fix the number of targets at 10, and vary 1 ≤ K ≤ 3,.

The results are shown in Table 1. It is quite clear that
solving this problem optimally is an unlikely proposition:
even with h = 3 and only 10 targets, solving to optimality
requires, on average, over 20 minutes. Fortunately, it ap-
pears that both K = 1 and K = 2 approximations achieve
near-optimal utility, and are much faster.

Conclusion
We presented a very general model of discounted adversarial
patrolling on exogenous networks. We showed that, in gen-
eral, APGs do not have Markov stationary Strong Stackel-
berg equilibria. We then presented a collection of mathemat-
ical programming formulations for solving APGs. Our start-
ing point is a mixed-integer non-linear programming formu-

K expected utility runtime (s)
1 0.52±0.01 0.3±0.02
2 0.48±0.01 7.18±1.16
3 0.47±0.01 1325±243

Table 1: Comparison of attacker’s expected value and de-
fender’s network design cost for the NLP (ND) formulation
solved by IPOPT and KNITRO, and the MILP (ND) formu-
lation. For all, the number of targets is 20 and per-edge cost
is 0.02. For KNITRO, we used 4 restarts; we had not tried
more, as even with 4 a significant fraction of instances (be-
tween 5 and 10%) simply stall.

lation which computes an optimal randomized defense pol-
icy that conditions on bounded, but arbitrary, length history
of previous defense moves, and accounts for attacks that can
take an arbitrary number of steps. In itself, this formulation
is quite clearly intractable. Our step towards a more practi-
cal approach is a mixed-integer linear programming approx-
imation based on a discretized defense policies. Experimen-
tally, we find that this MILP significantly outperforms the
exact MINLP formulation, and, additionally, even a coarse
discretization of the defender’s strategy space already yields
near-optimal solutions. Finally, we present a non-linear pro-
gramming formulation for computing equilibria in zero-sum
variants of adversarial patrolling games, which our experi-
ments show to be far more scalable than the alternatives.

While we presented the first viable solution approach for
discounted adversarial patrolling games, much remains to be
done to manage scalability, which is still a concern, certainly
in the general-sum version of the game, but even in the zero-
sum variant. For general-sum games, there is some hope
that minimax solutions provide good approximations, and
a natural future direction is to investigate this further, per-
haps generalizing similar results from Korzhyk et al. (2011).
For zero-sum games, while scalability is limited due to ex-
ponential problem explosion in both the number of defense
resources and the number of previous moves upon which
defense decisions are conditioned, we offered some hope in
our experiments that good solutions are already achievable
when the defender keeps track of only a few moves. In future
work, we would hope to explore this in greater depth, and
tackle scalability in the number of resources by identifying
structure that allows us to manage each resource indepen-
dently, attempting to extend similar results from Kiekintveld
et al. (2009). Yet another direction for future work would be
to explore branch-and-bound search techniques that leverage
the special structure of the problem.

Patrolling in adversarial settings is both a significant tech-
nical challenge, as well as of practical consequence, with
US coast guard activities just one important example. Our
contributions, both the general model that captures some of
the most salient aspects of such settings, and the solution
techniques, pave the way for deployment of game theoretic
adversarial patrolling approaches in real security scenarios.
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