Adaptive Cognitive Orthotics: Combining Reinforcement Learning
and Constraint-Based Temporal Reasoning

Matthew Rudary
Satinder Singh
Martha Pollack

MRUDARYQUMICH.EDU
BAVEJAQUMICH.EDU
POLLACKM@UMICH.EDU

Computer Science and Engineering, University of Michigan, Ann Arbor

Abstract

Reminder systems support people with im-
paired prospective memory and/or executive
function, by providing them with reminders
of their functional daily activities. We inte-
grate temporal constraint reasoning with re-
inforcement learning (RL) to build an adap-
tive reminder system and in a simulated en-
vironment demonstrate that it can personal-
ize to a user and adapt to both short- and
long-term changes. In addition to advanc-
ing the application domain, our integrated
algorithm contributes to research on tempo-
ral constraint reasoning by showing how RL
can select an optimal policy from amongst a
set of temporally consistent ones, and it con-
tributes to the work on RL by showing how
temporal constraint reasoning can be used to
dramatically reduce the space of actions from
which an RL agent needs to learn.

1. Introduction

Reinforcement learning (RL) has been successfully ap-
plied to a number of problems in control and opera-
tions research, but there have been relatively few ap-
plications to the design of human-computer interac-
tion (HCI) systems; notable exceptions are Singh et al.
(2002), Roy et al. (2000), and Langley (1997). In this
paper, we describe the use of RL and temporal con-
straint reasoning to induce an effective interface for a
cognitive orthotic system—a system intended to sup-
port people with impaired memory and/or executive
function, by providing suitable reminders of functional
daily activities. The goal of such systems is to increase

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

the autonomy of cognitively impaired persons, allow-
ing them to be more self-sufficient and/or to maintain
self-sufficiency longer in the case of progressive decline.
For these systems to be usable by cognitively impaired
people, they must have interfaces that are extremely
intuitive and straightforward, and hence the timing
and content of the interactions must be carefully con-
sidered. Moreover, because people differ from one an-
other in many regards, and because even an individ-
ual user will change over time—particularly if she has
progressive cognitive decline—the interactions must be
personalized to the needs of the user, and adaptive to
both short- and long-term changes in those needs. For
these reasons, simple interaction strategies such as al-
ways issuing a direct reminder for every activity at its
earliest possible execution time are unlikely to maxi-
mize user compliance, user satisfaction, or the preser-
vation of user autonomy.

We have therefore adopted an approach of learning
effective strategies for interacting with the user of a
cognitive orthotic system. Specifically, we use rein-
forcement learning (RL) to induce an interaction pol-
icy, i.e., a function from features of the current state
(e.g., the time of day, the timing of the previous in-
teraction, the user’s mood, and the actions she is sup-
posed to perform) to interface actions, including if and
when to issue a reminder to perform a certain activ-
ity. From the perspective of RL, there is at least one
rather unusual and interesting challenge in building
adaptive cognitive orthotic systems. In general in RL
systems, the set of actions available in every state is
either fixed or quite easy to determine. In contrast, in
our application, determining the set of actions avail-
able in the current state is itself an NP-hard problem.
At any point in time, the system may issue reminders
about any of the activities that the user might perform
at that time and that would allow successful comple-
tion of the current plan. But this set of legitimate
actions depends on the history of the user’s activities

so far as well as on the details of the user’s daily plan,
which in general will contain a number of complex tem-
poral constraints, including disjunctive temporal con-
straints; it is the extraction of the set of currently le-
gitimate actions from the plan that is computationally
hard. Although in principle we could specify that the
fixed set of actions for every state is the collection of all
possible reminders that the system might take at any
time during the day, in practice this approach is highly
inefficient. We therefore integrate two powerful tech-
nologies: constraint-based temporal reasoning, which
employs powerful heuristics and pruning strategies to
efficiently determine what actions are legitimate in the
current state, and RL to learn from experience which
of the legitimate actions is optimal there.

In a series of experiments with a simulated user and
environment, we demonstrate that our approach re-
sults in a personalized and adaptive cognitive orthotic
system. In addition to our contribution to the appli-
cation domain, our integrated learning algorithm also
contributes to research on temporal constraint reason-
ing by showing how RL can be used to select an op-
timal policy from among temporally consistent ones,
and it contributes to the work on RL by showing how
temporal constraint reasoning can be used to dramat-
ically reduce the space of actions from which an RL
agent needs to learn.

2. Cognitive Orthotic Systems

Cognitive-orthotic systems (also called assistive tech-
nology for cognition) are designed to help people
with cognitive impairment better manage their daily
activities. Generally these systems fall into two
classes: activity-cueing systems, which guide their
users through multi-step functional activities such as
bathing or simple meal preparation, and schedule-
management systems, which provide individual re-
minders about multiple activities, in the context of
a daily plan. For a survey of the state-of-the-art in
cognitive orthotics, see (LoPresti et al., 2004).

In the current project, we modify and extend an exist-
ing schedule-management system, Autominder (Pol-
lack et al., 2003), to allow personalization and short-
and long-term adaptation. Autominder has three ma-
jor components: a plan manager, which models and
maintains status information about the user’s plan of
daily activities, a client modeler, which processes in-
formation obtained from sensors to infer whether and
when activities have been performed, and a reminder
generation module, which reasons about discrepancies
between what the user is supposed to do and what she
has been observed doing, and on that basis, determines

Table 1. A realistic plan.

[Activity [Start time [Duration [Notes]
TakeMeds1 6:00-7:00 1-2 min 1
TakeMeds2 9:00-10:00 1-2 min 1
TakeMeds3 12:00-13:00 1-2 min 1
TakeMeds4 14:00-15:00 1-2 min 1
TakeMedsb 17:00-18:00 1-2 min 1
TakeMeds6 20:00-21:00 1-2 min 1

EatBreakfast 6:30-8:00 10-20 min 2
GotoSC 8:30-8:35 1-5 min 4
PrepareLunch 6:00-7:00 510 min
(disjunctive) 11:15-12:30
EatLunch 11:30-13:00 10—20 min 3
CookDinner 17:40-19:10 20-30 min
EatDinner 18:00-19:30 15-30 min 5
CleanKitchen 6:40-7:40 .
(disjunctive) 18:15-21:00 1520 min 6
Bathe 19:00-21:00 10-15 min 7
Exercise 16:30—-20:30 20 min 8

Notes from last column of table above

1. At least 2.5 hrs and no more than 3.5 hrs between
successive TakeMeds actions.

2. At least 30 minutes between the end of TakeMedsl and
the beginning of EatBreakfast.

3. Start of EatLunch must follow end of PrepareLunch.

4. Go to the senior center. Must follow end of EatBreak-
fast.

5. Start of EatDinner must follow end of CookDinner.

6. If in the morning, start of CleanKitchen must follow end
of EatBreakfast. Otherwise, start of CleanKitchen must
follow end of EatDinner.

7. Start of Bathe must follow end of EatDinner.

8. If before dinner, end of Exercise must precede start of
EatDinner by at least 10 minutes. If after dinner, start
of Exercise must follow end of EatDinner by at least 20
minutes. Must end before start of Bathe.

what reminders to issue.

Table 1 shows an example of a plan of daily activities
and constraints among them that any reminder system
has to be able to handle. (We use this plan in our sim-
ulations later in the paper). This example plan, which
may be created by the user herself, or by a caregiver,
helps illustrate the need for actively reasoning about
reminders. Note that in this plan, a user is supposed
to eat breakfast no sooner than 30 minutes after tak-
ing the first medicine of the morning. Autominder
will not have a fixed a prior: time for issuing an eat-
breakfast reminder, but will instead set the time for
eating breakfast based on its determination of when
the user actually takes the first medicine. But should
a reminder be issued for eat-breakfast at all, and if
so, when? At minimum, if the user is observed to eat
breakfast on her own, before a prompt is issued, Auto-
minder should not issue a reminder at all. Beyond this,
a simple scheme, such as always issuing the reminder
at the earliest possible time, may not be optimal for

several reasons. First, such an approach may make
the user overly reliant on the system, with the unde-
sirable effect of decreasing, rather than increasing, her
independence. Second, if as in the example plan the
kitchen can be cleaned in the morning or in the evening
and the user prefers to do it in the evening, the morn-
ing reminder may only serve to annoy the user and be
ignored. Finally, a failure to consider interactions be-
tween reminders may lead to unacceptable sequences
of reminders, for example, reminding the user to get
up and go take medicine, and then, just as she’s re-
turned to sit down, reminding her to get up and go
prepare lunch. Other criticisms apply to other overly
simplistic schemes.

In the versions of Autominder that are currently be-
ing used in field tests, the decisions about whether
and when to issue a reminder are made using an it-
erative refinement process, which starts with a simple
initial reminder plan that in fact includes a reminder
for every activity not yet done, at its earliest execu-
tion time. This initial plan is then successively rewrit-
ten, using hand-crafted rules and a local-search mech-
anism, until it is determined to be of sufficiently high
quality when a hand-crafted evaluation rule is applied.
This process is repeated whenever there is a change in
the execution status of the user plan. This approach
to reminder generation is limited for several reasons.
First, it is difficult and costly to manually specify the
rewrite rules and evaluation function, and in order to
achieve the goal of personalization, they would have to
be redesigned for each user. Second, even if this were
done, there is no good way to validate their optimality.
Third, manually specified rules are fixed, and thus not
adaptive to changes in the user’s needs.

3. RL-Based System Architecture

To address the limitations just discussed, we employ
RL to infer an optimal interaction policy for each user
of the cognitive orthotic system. Our learning archi-
tecture, depicted in Figure 1, has the same compo-
nents as any standard RL-based learning architecture
(e.g., Sutton & Barto, 1998) except for the additional
dynamic action proposer component that is novel to
this application. The environment, which consists of
the user and her physical surroundings as well as the
sensors are simulated in our current experiments and
described in detail in Section 4. The state estima-
tor and actuators components are original Autominder
components. Autominder’s Client Modeler performs
state estimation; however, for our initial experiments,
we assumed that the sensors provide perfect informa-
tion; hence there is little actual inference being done

by this module. Actuation is similarly quite simple
in our experiments, and involves issuing a specific re-
minder, which is then input to the simulator. The
most interesting component is the action proposer.

True State

Sensors
Sensors

Actions

Environment
User

Reminder Production

‘ Actuators ‘

3 v
ﬁ)r‘ Percepts
State Estimator
Client Modeler
Selected Actions 4 Estimated

2
Plan Action Proposer
Plan Manager

Figure 1. The architecture of the RL system for an
adaptive interface to the Autominder cognitive orthotic.
Generic RL components are in Roman typeface; compo-
nents from Autominder are in bold; and components in
the simulator are italicized.

3.1. Action Proposer: Temporal Constraint
Based Reasoning

At the start of a day, the system is given the user’s
plan, i.e., a record of all activities the user is supposed
to perform, along with constraints on the times and
manner of their performance; Table 1 is an example.
The action proposer has to compute which activities,
if any, the user can do at each time step while still al-
lowing the remaining activities to be done without vi-
olating any constraints (that are not already violated).
This is a challenging task and we adapt Autominder’s
Plan Manager to this end.

The plan is modeled as a Disjunctive Temporal
Problem (DTP), a constraint-satisfaction problem <
V,C >, where V is a set of time points and C is a set
of constraints of the form [l < 21 —y; < wg] V[l <
2o — Y2 < ug] V... [ln < Zp — yn < uyp], such that
zi,y; € V oand l;,u; € (R). The time points V rep-
resent the start and end of each modeled activity; ad-
ditionally, there is a distinguished time point called
the Temporal Reference Point (T'R) that is used for
encoding absolute (clock-time) constraints. Figure 2
provides some constraints from our example plan. We
assume that TR is set to midnight, and that minutes
are the time unit used. The start of an activity is
subscripted with S, and the end with E.

Autominder’s plan manager checks the consistency of a
plan initially, and subsequently updates it in response
to four types of triggering events: (1) the addition of a
new planned activity; (2) the deletion of or modifica-
tion to the constraints on an existing planned activity;

“Breakfast starts between 6:30 and 8:00.”

390 < Breakfasts — TR < 480

“Breakfast takes between 10 and 20 minutes.”
10 < Break fasty — Breakfasts < 20
“Cleaning the kitchen can be done in the
morning or the evening.”

400 < CleanKitchens — TR < 460 V

1095 < CleanKitcheng — TR < 1260
“Breakfast should occur at least 30 minutes after
taking morning meds.”

30 < Breakfasts — TakeMedsly < oo
“Bathing and exercising cannot overlap.”

0 < Batheg — Ezerciseg < oo V

0 < Exercises — Batheg < co

Figure 2. Examples of DTP Constraints in Autominder

(3) the execution of a planned activity; (4) the passage
of a time boundary in the plan. In each case, the plan
manager formulates a set of disjunctive temporal con-
straints that represent the triggering event, and then
attempts to solve the DTP defined by the union of
those constraints and the constraints already in the
plan. Although solving a DTP is an NP-hard problem,
heuristic techniques have been developed that make it
feasible to perform DTP solving for problems of the
size handled by Autominder (Stergiou & Koubarakis,
1998; Armando et al., 1999; Tsamardinos & Pollack,
2003). The approach used is to convert the original
problem to one of selecting a single disjunct from each
constraint, such that the result is consistent. By choos-
ing a single disjunct from each constraint, one obtains
a Simple Temporal Problem (STP) (Dechter et al.,
1991), a temporal constraint-satisfaction problem like
a DTP, but where each constraint is restricted to a
single inequality. Given a DTP D, each STP S con-
structed in this fashion is called a component STP of
D. A DTP is consistent iff one of its component STPs
is; hence, to solve a DTP, it suffices to search for a
consistent component STP. Checking the consistency
of an STP requires only polynomial time. The com-
plexity of DTP solving comes from the fact that there
are exponentially many ways of selecting individual
disjuncts, and hence, potentially exponentially many
component STPs to be checked. However, a number
of powerful CSP pruning techniques can be brought
to bear in searching the space of component STPs for
consistent ones.

The action proposer component in the learning archi-
tecture has the plan as input and can observe the es-
timated state sequence, and uses the plan manager to
perform the following three steps at each time step.
First, it encodes any triggering events that have oc-
curred in this time step with disjunctive temporal con-

straints. Second, it solves the DTP that consists of
the union of those constraints and the previous DTP.!
In the process, it extracts component STPs from the
(possibly augmented) DTP. As we noted earlier, there
may be exponentially many of these, so we limited the
number we extracted to 20, which turned out to be
greater than the number actually in the DTPs in our
experiments. For future work, in which the size of the
plans we work with may be larger, we are exploring
ways of extracting component STPs that vary signif-
icantly from one another, rather than simply taking
the first 20 identified. Finally, for each component
STP, the action proposer extracts all events that are
both live and enabled: these become the actions that
are proposed to the RL agent. To compute this set,
the plan manager first derives the d-graph, the all-pairs
shortest path matrix for the STP. The d-graph directly
provides the time window for each event e: it is the in-
terval [lc, ue], where [, is the minimal distance from e
to TR, while u, is the minimal distance from TR to
e. An event is live iff the current time is within its
time window, and it is enabled iff all the events that
must necessarily precede it, which can also be directly
read off the d-graph, have already occurred. Note that
the d-graph also provides deadline information for each
event, which is also used in the RL process.

Once the action proposer has proposed the set of ac-
tions available (the do-nothing action is always avail-
able), they become candidates for the learning step;
one will be selected and executed in the simulation
environment,.

3.2. Payoff Function

Computing a suitable payoff function is also rather
challenging in our problem. For example, in our sam-
ple plan, the user is supposed to take morning medica-
tion between 6:00 and 7:00, and to take her second dose
of medication 2.5 to 3.5 hours later, within the 9:00-
10:00 time frame. But suppose the user doesn’t take
that first dose at all; then how much payoff should re-
sult from taking the second dose? Or suppose the user
takes her first dose late, making it impossible to satisfy
both constraints on the second dose? To address such
complexities, we perform batch training in our exper-
iments, collecting data for a whole day before going
back and training our agent on that day’s data. This
allows us to compute the payoff at each time step of the

!For the experiments we conducted, the attempt to
solve the DTP will fail in only one situation: if the user
fails to execute an activity. In this case, the plan manager
adjusts the constraints of future dependent events so that
they will be evaluated as if the missed event had occurred
at its latest possible time.

day by looking at the whole day’s experience. We build
a chronologically sorted list containing the start and
end times of each activity completed and the time of
each reminder issued, and then consider the elements
of this list in order. Each reminder results in a payoff
of —0.6; this is because we prefer not to remind un-
less necessary. Each activity time point (beginning or
end) whose prerequisites are satisfied and all of whose
related constraints are satisfied gets a payoff of 1.0. If
one or more prerequisites were not met, but all the
other constraints were satisfied, a payoff of 0.1 is ob-
tained; thus the agent is rewarded a small amount if
the user takes her second dose of medicine even if she
didn’t take the first dose. Finally if any of the hard
time constraints are not satisfied (e.g., lunch was sup-
posed to be eaten between 11:30am and 1pm and was
eaten at 2pm), the agent is punished with a payoff of
—1.0. The payoff component uses the plan manager to
determine whether any constraints and prerequisites
were violated.

3.3. Learning Algorithm

The learning agent interacts with its environment and
uses the observed state-action-payoff sequence to com-
pute a policy that maximizes the expected summed
payoff over a day. We use function approximation-
based Q-learning (Watkins, 1989) for our learning al-
gorithm. The agent has a separate linear neural net-
work for each activity, plus one for the do-nothing ac-
tion. For lack of space we omit those details of the
learning algorithm that are now standard in RL and
can be found in textbooks (e.g., Sutton & Barto, 1998).
Details specific to our application such as the state
input features and the specific training methodology
used are described with the empirical results.

4. Simulation Environment

We conducted a set of experiments with a simulated
user and environment. As mentioned earlier, our sim-
ulated sensors were trivial, reporting perfect informa-
tion about performed activities, but we endeavored to
build a richer, more realistic model of potential users,
focusing on two key relevant aspects of their behavior:
how they perform when they don’t receive a reminder,
and how they react to reminders.

Recall that the daily plan is expressed as an (evolv-
ing) DTP, which may contain several consistent com-
ponent STPs. We begin simulation of each day by
randomly selecting one component STP, which one can
view as the simulated user’s initial plan for that day.
As time passes, this STP may become inconsistent; for
instance, a reminder may cause the user to perform

activities in a different order. If this occurs, the simu-
lator selects a new component STP that is consistent
with the actual execution times of activities. This pro-
cess is equivalent to a person coming up with a rough
schedule for the day, but modifying it as needed. We
will use the phrase current STP to denote the STP
that is currently driving the simulated user’s activi-
ties.

Given a current STP with live and enabled action A, if
there is no reminder for A, its simulated performance
depends on three adjustable parameters: forgetfulness
(fa), punctuality (p), and variability (v). Note that
a different forgetfulness setting can be associated with
each action type, whereas punctuality and regularity
are global features of the simulated user. The forget-
fulness factor specifies the probability that the user
will forget the activity. If a particular activity A is
not forgotten, then the simulator selects a time for A
randomly from within its time window. The mean of
the randomly selected time depends on p (smaller p
means that the time selected will be closer to the be-
ginning of the time window), while the variance of the
selected time depends on wv.

These three parameters allow us to specify a range of
user behaviors. For instance, high p and low v repre-
sent someone who habitually does things at the last
minute. On the other hand, moderate values for p and
v indicate a user who is erratic in the timing of her
activity execution. These can then be coupled with
particular values of fa, to model, for instance, some-
one who usually forgets a certain type of activity, but
generally does it at the earliest possible time when she
remembers at all.

This so far specifies the user’s behavior in the ab-
sence of reminders. This changes, however, when re-
minders are given. In our experiments, the user re-
sponds immediately to a reminder by performing the
specified activity, except when annoyed by having re-
ceived overly frequent reminders; in that case she does
not respond at all (i.e., she fails to perform the ac-
tivity for which the reminder was issued). A fourth
parameter of the simulator, the annoyance time factor
(a) specifies the minimum period of time that must
pass after one reminder is issued before the user will
respond to a subsequent reminder.

Of course, reliance on a simulated user is highly im-
perfect; to truly validate our results we will need to
replicate them with real users. However, it was neces-
sary first to demonstrate that in principle our approach
is feasible, before trying it with people.

Table 2. The simple plan used in many of the experiments.

[[Activity | Start time [Duration |
A | Go to the Living Room 2-6 1-3
B Watch TV 10-18 4-6
C Go to the Kitchen 28-33 1-5
D Play Bingo 38-43 4-6

1. Activity A is a prerequisite for Activity B.
2. Activity C is a prerequisite for Activity D.

5. Experiments

We performed experiments using two different plans.
First, we performed a suite of experiments using the
simple plan shown in Table 2 to illustrate particular
types of personalization and adaptation exhibited by
our agent. Then we showed that our agent can han-
dle more realistic plans by acting on the more com-
plex plan shown in Table 1. Though we vary the for-
getfulness and annoyance time parameters, in all ex-
periments the punctuality and variability are fixed at
moderate values.

5.1. The simple plan

Our experiments using the plan in Table 2 were aimed
at showing that our approach can produce interaction
policies that are (1) personalized to a user’s particular
behavior patterns, (2) capable of short-term adapta-
tion to sudden day-to-day differences in behavior that
are the result of observable factors, and (3) capable
of long-term adaptation to mostly gradual behavioral
changes over time, particularly those that are not as-
sociated with any observable state features.

Personalization #1 In the first experiment, we
model a user who always remembers to perform ac-
tivities A and B, but always forgets activities C and
D. Clearly, the optimal policy here is to remind the
client about activities C and D, but not about A and
B. Though it is a very simple policy, it is not “cookie-
cutter”: it is a policy that could not be established for
all users, but must be determined in response to this
particular user’s proclivities.

For this experiment, we collected data over 10 runs
with different seeds for the random number generator.
For each run, we collected 50 days of experience using
a random policy; in this policy, a reminder decision is
made independently for each activity. If an activity is
not enabled, then no reminder is issued. Otherwise,
with 50% probability, no reminder is issued for an ac-
tivity; the rest of the time, a random time is chosen
uniformly from the time window for that activity, and
a reminder is issued at that time if the activity has not
yet been performed. We then trained the agent using

the first n of these days for several different values of
n. The feature set used to train the nets consists of
four binary features; these indicate, for each activity,
whether or not the activity has been completed. To
evaluate the policy learned in this experiment, it is
sufficient to simulate a single day using the policy.

Figure 3A shows the average return over the 10 runs
vs. the number of days of experience used in training.
The value of the optimal policy is 6.8; this is the value
achieved by all policies learned using at least 10 days
of experience.

Personalization #2 In the second experiment activ-
ities A and B are forgotten while C and D are remem-
bered. In addition, we added the complication of an
annoyance period of 9 minutes; that is, any reminder
that is given within 9 minutes of the previous reminder
is ignored. Consequently, reminders for activity A and
B will only be effective if the former occurs near the
beginning of A’s time window, while the latter occurs
near the middle to end of B’s time window.

The data collection and training methodology for this
experiment is identical to that of the prior experiment.
We added binary features that indicate for each activ-
ity whether a reminder has been issued for that ac-
tivity within the last 5,10,15 minutes to the state fea-
tures. The results from this experiment are shown in
Figure 3B. The system converges to the optimal policy
which has value 6.8 with about 20 days of data.

Personalization #3 In the third personalization ex-
periment, we model a somewhat more realistic user,
who always forgets activities C and D, but only prob-
abilistically forgets A and B: we set f4 and fg to 25%.
Here, the optimal policy is a little more complicated.
The agent should still always remind for activities C
and D. But now, the agent should issue a reminder for
activity A and B at the end of each one’s time window,
provided that the activity hasn’t been executed yet.
This gives the user ample opportunity to perform the
activity on her own, but still maintains a “safety net”
reminder if the time window is about to close without
the activity being performed. In this experiment we
provided state input features that corresponded to 1,
2, 3, 4, 5, 7 and 9 minutes remaining for the activity
to be done.

The results of Figure 3C are averages of 4 runs
and show that near-optimal performance results after
about 50 days of data. Inspection of the policy learned
showed that in all cases the agent learns to always re-
mind early for activities C and D and to always remind
at the very end for activities A and B. The graph in
Figure 3C is less smooth than the graphs of the other

" Personalization #1: Average over 10 runs Personalization #2: Average over 70 funs

©)
s

Personalization #3: Average over 4 runs D) Short Term Adaptation: Average over 10 runs

Average Return
Average Return

Average Return

Good Sieep Days.

Average Return

—

Bad Sieep Days

S

Number of Days of Data Number of Days of Data

Figure 3. The results of the personalization

experiments because of the randomness introduced by
the 25% forgetting of A and B.

Short-term Adaptation Here the goal was to
demonstrate that the policies learned with our ap-
proach can adapt to short-term variations in the user’s
behavior. In this experiment, the user behaves differ-
ently depending on how well she slept the night before.
If she slept well, her memory is relatively good, but if
she slept poorly (something that could be determined
from pressure sensors in a bed), she becomes forgetful.
We conducted this experiment using extreme values:
fa = 0% for all A following a good night, and f4 =
100% for all A following a bad night.

The data collection methodology was the same here as
in the previous experiments. We added a binary sleep
quality feature, which is equally likely to be good or
bad on any given day. The analysis of results is also
slightly different: we produce different curves for be-
havior on good days and bad days, as shown in Fig-
ure 3D. The optimal policy on good days is never to
remind; this has a value of 8.0 and is learned almost
immediately (i.e., using only 1 day of data). The opti-
mal policy on bad days is to remind for each activity;
this has a value of 5.6, and is learned quickly, but not
as quickly as the policy for good days; it requires ap-
proximately 20 days of training experience (however,
note that these include the roughly 10 good days.)

From an RL perspective, there is little difference be-
tween the short-term adaptation experiment and the
personalization experiments; in both cases the agent
is learning how to map its state input features to good
actions. However, from the point of view of caregivers
the ability to adapt to short-term changes like sleep
patterns is an important capability for a cognitive or-
thotic system.

Long-term Adaptation Experiment The goal here
was to show that the agent can adapt to changes in the
client’s behavior over time, even when those changes
don’t correlate with observed state features. To model
such change, we directly manipulate the f4 parame-
ter for all activities A, using the function shown in

Ti0 ER T R T

® W
Number of Days of Data Number of Days of Data

and short-term adaptation experiments.

the lower panel of Figure 4. This forgetfulness profile
might be seen in a patient who suffers a mild stroke,
represented by the jump in forgetfulness at day 50, and
then enters a cognitive decline.

The data collection for this experiment differs from
the previous experiments. Instead of collecting data
using the random policy described earlier, we just let
the agent act according to an e-greedy policy (where it
chooses the action that looks best currently with 90%
probability and a random action with 10% probabil-
ity). Every 10 days, the agent retrains using the prior
50 days of experience. The data we plot in the upper
panel of Fig. 4 is the reward obtained each day.

Long-Term Adaptation: Average over 15 runs

Average Return
o
T

L L L
0 50 100 150 200 250

Long-Term Cognitive Decline
T T

Forgetfulness %

| . . .
100 150 200 250
Number of Days

Figure 4. Results for the long-term adaptation experiment.

The results shown in Figure 4 are averaged over 15
such runs, and then smoothed by averaging together
the results of 5 consecutive days. The average return is
somewhat below optimal because of the epsilon-greedy
strategy. However, we see that the agent adapts to
the changing behavior readily. Note the dip at day 50
corresponding to the sudden forgetfulness of the client.
This is followed quickly by a rise as the agent adapts
to this behavior. Finally, the average return decreases
somewhat as the forgetfulness increases, leveling out
when the forgetfulness becomes complete.

5.2. The complex plan

This experiment used the more realistic plan presented
in Table 1. We added complexity to the plan by sim-
ulating a user that forgets to take her last 3 doses
of medicine as well as to do her exercise. We collect
data as in the long-term experiment—that is, using
an epsilon-greedy strategy and learning as time goes
on—even though the client model is static. The re-
sults are shown in Figure 5 where we see that the
in about 30 days the system performs near-optimally
having learned in terms of the average return to the
agent. Inspection of the policy learned shows that the
agent always reminds early for the forgotten activities
and never reminds for the remembered ones.

Complex Plan

Average Return

0 20 30) 50 60 70 80 %0 100
Number of Days

Figure 5. Results for the experiment with the complex
plan.

6. Conclusion

In a series of simple experiments in a simulated en-
vironment we showed that a combination of RL and
temporal constraint reasoning can produce a cognitive
orthotic system that is personalized and adaptive to
both short- and long-term changes in a user. This
project was a feasibility study along a research trajec-
tory in which we have deployed a non-adaptive Au-
tominder system in field studies with real users and
will move to deploying the adaptive Autominder sys-
tem developed here. One issue that must be consid-
ered in this latter deployment is the length of time
it takes for the reminder policy to converge to opti-
mal; in some of our experiments, as much as 40 days
of data were required. We note, however, that, by
starting with a random policy in our experiments, we
made the RL problem as difficult as possible. When
we use the adaptive system with human users, we will
instead begin with a more reasonable default policy,
in which, for example, we identify certain types of ac-
tivities as likely to be forgotten, and issue reminders
for those more frequently. Not only do we hypothesize
that convergence will be more rapid as a result, but it
is also then reasonable to allow the system to interact

with the user even before convergence.

In addition to deployment with human users, we
have several other plans for continued work. One
of the most interesting involves generalizing the in-
teraction policy that we learn. Currently we only
learn whether and when to issue reminders for indi-
vidual activities, but it would also be useful to learn
how much detail to include in each reminder, thereby
enabling the development of an integrated schedule
management/activity-cueing system.

Finally, our integrated learning architecture should ex-
tend the use of RL to a variety of planning problems
in which currently temporal constraint reasoning is the
method of choice.

References

Armando, A., Castellini, C., & Giunchiglia, E. (1999).
Sat-based procedures for temporal reasoning. 5th
European Conference on Planning.

Dechter, R., Meiri, L., & Pearl, J. (1991). Temporal
constraint networks. Artificial Intelligence, 49, 61—
95.

Langley, P. (1997). Machine learning for adaptive user
interfaces. KI - Kunstliche Intelligenz (pp. 53-62).

LoPresti, E. F., Mihailidis, A., & Kirsch, N. (2004).
Assistive technology for cognitive rehabilitation:
State of the art. Neuropsychological Rehabilitation.
In press.

Pollack, M. E., Brown, L., Colbry, D., McCarthy, C.,
Peintner, B., Ramakrishnan, S., & Tsamardinos, 1.
(2003). Autominder: An intelligent cognitive or-
thotic system for people with memory impairment.
Robotics and Autonomous Systems, 44, 273-282.

Roy, N., Pineau, J., & Thrun, S. (2000). Spoken di-
alogue management for robots. Proceedings of the
38th Annual Meeting of the Assn. for Computational
Linguistics.

Singh, S., Litman, D., Kearns, M., & Walker, M.
(2002). Optimizing dialogue management with re-
inforcement learning: Experiments with the njfun
system. Journal of Artificial Intelligence Research,
16, 105-133.

Stergiou, K., & Koubarakis, M. (1998). Backtracking
algorithms for disjunctions of temporal constraints.

15th National Conference on Artificial Intelligence
(AAAI).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Tsamardinos, 1., & Pollack, M. E. (2003). Efficient so-
lution techniques for disjunctive temporal problems.
Artificial Intelligence, 151, 43-90.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge.

