Asynchronous Modified Policy Iteration with
Single-sided Updates

Satinder P. Singh
Department of Brain and Cognitive Sciences
MIT
Cambridge, MA 02139
singh@psyche.mit.edu

Vijaykumar Gullapalli
Computer Science Department
University of Massachusetts

Ambherst, MA 01003

vijay@cs.umass.edu

December 20, 1993

Abstract

We present a new algorithm for solving Markov decision problems that extends
the modified policy iteration algorithm of Puterman and Shin [6] in two important
ways: 1) The new algorithm is asynchronous in that it allows the values of states to
be updated in arbitrary order, and it does not need to consider all actions in each
state while updating the policy. 2) The new algorithm converges under more general
initial conditions than those required by modified policy iteration. Specifically, the
set of initial policy—value function pairs for which our algorithm guarantees conver-
gence is a strict superset of the set for which modified policy iteration converges. This
generalization was obtained by making a simple and easily implementable change to
the policy evaluation operator used in updating the value function. Both the asyn-
chronous nature of our algorithm and its convergence under more general conditions
expand the range of problems to which our algorithm can be applied.

Keywords: Markov Decision Problems, Asynchronous, Single-sided.

The research presented here was done while the first author was a graduate student at the Department
of Computer Science at the University of Massachusetts. This material is based upon work supported by
funding provided to Prof. Andrew G. Barto by the AFOSR, Bolling AFB, under Grant AFOSR-F49620-
93-1-0269 and by the NSF under Grant ECS-92-14866.

1 Introduction

The problem of finding optimal policies in finite Markovian decision processes (MDPs) can
be reduced to the problem of solving a finite system of non-linear equations known as the
Bellman optimality equation (Bellman [2], see also Bertsekas [3]). There are two classical
iterative dynamic programming (DP) methods for solving the Bellman equation: policy
iteration (Howard [5]), and value iteration (see Ross [7]). Puterman and Shin [6] have
shown that it is more appropriate to think of these two classical methods as two extremes
of a continuum of iterative methods, consisting of what they call modified policy iteration
algorithms.

Modified policy iteration is a synchronous algorithm, i.e., it updates information about
every state of the MDP in each iteration. Puterman and Shin proved that under certain
initial conditions, any synchronous modified policy iteration method is guaranteed to yield
an optimal policy. Recently, Williams and Baird [9] derived an asynchronous algorithm that
can be viewed as a form of asynchronous modified policy iteration (Barto [1]). Williams
and Baird proved convergence of their algorithm, hereafter called the W&B algorithm,
under initial conditions similar to those specified by Puterman and Shin (P&S). In this
paper, we present a new algorithm that is also an example of asynchronous modified policy
iteration, but converges under less restrictive initial conditions than both the P&S and the

W&B algorithms.

2 Solving Markovian Decision Processes

Consider an MDP with a finite state set X, a finite set of actions A, a payoff function
R: X x A — R, and a state transition function P : X x Ax X — [0, 1]. A stationary policy,
m: X — A,is afunction that assigns an action to each state. The optimal decision problem
requires finding a policy that maximizes some given objective functional defined over policy
space. A commonly used functional is the expected value of the infinite-horizon sum of
discounted payoffs as a function of the start state: V7™(z) = E{> 2,7y R*(z:)|zo = z},
where V™ (z) is the value of state under policy 7, 0 < v < 1 is the discount factor, z;
and a; are the state and action at step ¢, a; = m(z;), and R*(z) is the payoff received on
executing action a in state . Here, the expectation is over the random state transitions
and the possibly random payoffs received at each time step.

Let P be the set of stationary policies. An optimal policy! 7* € P is such that Vz € X,
and for all # € P, V™ (z) > V™(z). The value function for an optimal policy is denoted
V*. The optimal value function V* satisfies the following Bellman equation:

V(z) = max |R*(z)+7~ Z P(z,y)V(y)

acA yeX

where P%(z,y) is the probability of a transition to state y when action a is executed in

!For finite MDPs it is known that there is a stationary optimal policy (e.g., Ross [7]).

state . An optimal policy 7* can be found from V* as follows:
m*(z) = argmax,e, |R*(z)+7v Y P(z,y)V"(y)|,
yeX

where ties between actions can be broken arbitrarily.

3 Asynchronous Policy Iteration

The algorithms defined in this paper are asynchronous iterative algorithms of the following
general form:

(Vk+1,7fk+1) = Uk(VkﬂTk)

where (V4,) is the k** estimate of (V*,7*), and U}, is the asynchronous update operator
applied at iteration k. We now define the relevant asynchronous update operators that can
be used in an iteration.

3.1 Asynchronous Update Operators

For ease of exposition, define

Q" (z,a) = R*(z) +v 3 P*(z,y)V(y), (1)

yeX

where QY (z,a) is the expected “value” of taking action a in state z when the resulting
states are evaluated using the value function V. We define the following asynchronous
update operators:

1. A policy evaluation operator, B,(Vk,7), uses the current value function V; and the
current policy 7 to update the value of state z. If Uy = B,, then

[Qhemle) iz
Vi (i) = {V;c(l) otherwise, and

Tet1 — T

2. A single-sided policy evaluation operator, T, (Vk, 7x), also uses the current value func-
tion V4 and the current policy 7 to update the value of state x as follows:

max(QV¢(z, 7 (x T fi==x
Vip1(2) = { V;c(i)(Q (& me{)), Vile) oftherwise, and

Tet1 — T

The policy evaluation operator T, is called single-sided because it never causes the
value of a state to decrease.

3.

3.2

A single-action policy improvement operator, L2(Vj, 7x), uses the current value func-
tion V4 and the current policy 7 to update the policy for state as follows:

V;C-l-l = V;ﬂ:)a'nd
{ a if y =2 AND Q"*(z,a) > QV*(z, mx(z))

Tri1(y) = mr(y) otherwise.

The operator L¢ is termed single-action because it only considers action a in updating
the policy for state x.

A policy improvement operator, L,(Vk, 7x), that corresponds to the sequential appli-
cation of the operators L3t L322 ... Lo, Therefore, (Vit1, Tet1) = Lz(Vk, mx) implies
that

Ver1 = Vi,and

{ argmax,cq QV*(z,a) ify ==,

Ter1(y) Tr(y) otherwise.

The operator L,(V,w) considers all possible actions in state z and updates m(z) to
be the optimal action with respect to V.

Asynchronous Single-sided Policy Iteration (ASPI)

The ASPI algorithm is defined by the iteration

(‘/;c+1,7Tk_|_1) == Uk(v;c;ﬂ'k); k:0,1,2,..., (2)

where U € {T | z € X}U{L2 |z € X,a € A}. Many other DP algorithms are also of the

form given in Equation 2; the differences lie in the choice of operators Uy. For example,

3.3

The W&B algorithm: U € {B, |z € X}U{L% |z € X,a € A}.
Asynchronous value iteration: Uy € {B,L, | ¢z € X}.

The order-m Gauss-Sidel P&S algorithm: U, = B™L, m > 1, where B= B, B,,... B
and L = Ly, L, . ..Llel.

Gauss-Sidel value iteration algorithm: U, = BL.

The policy iteration algorithm: Uy = B> L.

Convergence Results

Let the set of non-overestimating value functions, {V € R¥!|V < V*}, be denoted V.
The convergence analysis of the ASPI algorithm presented in this paper will be based on
the assumption that the initial value-policy pair (Vp,m) € (V X P). No constraints are
placed on the initial policy m. In contrast with this initial condition, to prove convergence

Zx|

of their algorithm, Puterman and Shin require that (Vp, 7o) be such that V5 € {V €
R™!| max, (R +~[P]"V) > 0}, which is a strict subset of V. Similarly, the initial condition
required for convergence of the W&B algorithm is that for all z € X, Q"(z, mo(z)) > Vo(z),
which is again a strict subset of (V x P).

We begin by proving the following Lemmas.

Lemma 1: For the ASPI algorithm, Vi, > V4 for all k.

Proof: By the definitions of operators T, and L2, the value of any state is never de-
creased.

Q.E.D.

Lemma 2: If (1, m) is such that V5 € V, then the ASPI algorithm ensures that V; € V
for all k.

Proof: We will prove Lemma 2 by induction. Clearly, by assumption, V5 € V. Assume
that V,, € V for all K < m. There are only two kinds of operations possible in iteration
m + 1:

1. Operator U,, = L¢ for some arbitrary state-action pair in X x A. Then, V41 =
Vi < V.

2. Operator U,, = T, for some arbitrary state # € X. Then U, will only impact
Vm+1(m).

Vpi(a) = max(Q¥(z,mm(a)), Vin(2))
= max([B™®)(z) +7 Y PO (2,y)Vin(y)], Vin())

< max([R’T"‘(z)(m) +7) Pwm(z)(m;y)V*(y)]a Vin(2))
< max([R’T*(z)(m) +7) PW*(E)(m,y)V*(y)]: Vin(2))
< V*z).

Hence V11 € V.

Q.E.D.

Theorem 1: Given an initial value-policy pair (V5, mo), such that V5 € V, the ASPI algo-
rithm (Viy1, mer1) = Ur(Vk, mr) converges to (V*,7*) under the following conditions:

Al) For each z € X, T, appears in {Uy} infinitely often, and

A2) For each (z,a) € X x A, L2 appears in {U} infinitely often.

Proof: The formal proof of this theorem is presented in Appendix A.? Intuitively,
the proof is based on the following observation. It is possible to partition the sequence
{Ug} into disjoint subsequences of finite length, such that each subsequence satisfies the
following property: V& € X, there is a sub-subsequence that is an arbitrary permutation
of L2 L% ... Ls* followed by a T,. Each such subsequence leads to a contraction in the
max-norm of the error in the approximation to V*. Lemma 2 and the contraction mapping
theorem can then be used to infer convergence to (V*,7*).

Corollary 1: Define the operator ' = T, T}, . . 'T-'c|x| and operator L = L, L,, ... Llel.

Let the operator Uy, = T™L, where m > 1. Then, given a starting value-policy pair (Vj, 7o),
such that V5 € V, the iterative algorithm (Vii1, 7et1) = Ur(Vi, mr) converges to (V*,7*).

4 Discussion

The ASPI algorithm, like the W&B algorithm, is more “finely” asynchronous than con-
ventional asynchronous DP algorithms such as asynchronous value iteration (AVI) in two
ways:

1. ASPI allows arbitrary sequences of policy evaluation and policy improvement opera-
tors as long as they satisfy conditions A1 and A2. AVI, on the other hand, is more
coarsely asynchronous because it does not separate the two functions of policy im-
provement and policy evaluation. In effect, AVI iterates a single operator that does
policy improvement followed immediately by one step of policy evaluation®.

2. Because AVI uses the policy improvement operator, it has to consider all actions in
the state being updated. ASPI on the other hand can sample a single action in each
state to perform single-action policy improvements.

The only difference between ASPI and the W&B algorithm, and between the syn-
chronous algorithm presented in Corollary 1 and the P&S algorithm, is in the use of the
single-sided policy evaluation operator. This small, easily implementable change allows
convergence under less restrictive initial conditions.

A. Proof of Theorem 1

Throughout this section we will use the shorthand (Viyn, mi4n) = {Uk}f""h_l(‘/}, m;) for

(Vizh,mien) = Upn1Uipn—a ... U(Vi, m).

2The operators T and L2 defined in Section 3.1 and the initial condition stated in this section are
based on the assumption that the objective functional was to be maximized. If the objective functional is
to be minimized, the following changes have to be made to obtain a convergence result corresponding to
Theorem 1: V has to be the set of non-underestimating value functions, the max in the definition of Ty
will have to be replaced by a min, and the argmax in the definition of L} will have to be replaced by an
argmin.

30f course, the policy evaluation operator used by AVI is not single-sided.

For ease of exposition, define the identity operator I(Vj,) that makes no changes at all,
le.

(Ver1, Teq1) = I(Vi, 1) = (Vi, 7).
Further, define the composite operator C, = T, L, for all z € X.

Fact 1: Consider a sequence of operators {Uj}.™"! such that for I < k < (I 4+ h — 1),
U € {C. |z € X}, and for all z € X, C, € {Up};™" . Thenif V; € V, ||[Vign — V*||oo <
YV = Voo

Proof: This is a simple extension of a result in Bertsekas and Tsitsiklis [4].

Fact 2: Consider the iteration (V) ,,mk41) = Ur(Vj,7), where U, € {C, | ¢ € X}. If
Vs €V, and for all z € X, C, € {Uy} infinitely often, then limy o, V) = V*.

Proof: This result follows from Fact 1 and the contraction mapping theorem. Note
that the iteration defined in Fact 2 is a single-sided version of asynchronous value iteration
that updates both a value function as well as a policy.

Q.E.D.

Fact 3: Consider (Vit1, Tpt1) = Co(Vi, m) and (Vi,q, My q) = Co(Vi, 7). IV > V3 >V,
then for all mp, 7, € P, Viy1 > Vi 5.

Proof:

Vip(z) = Ren(e) +7) Pz, y)K(y)

yeX

R*(z) +7) P*(2,9)Vi(y)

yeX

= Imnax
acA

because 7}, , () is the optimal action with respect to V}/. Similarly,

Veyi(z) = max |R*(z) +v 3 P*(2,y)Vi(y)
o€ yeX
> R (2) +) Pei (2, y)Valy)
yex
> Rei(a) +7), P (z,y)Vi(y)
yex
> Vipa(2)
Q.E.D.
Lemma 3: Consider a sequence of operators {Us}:"*~! such that for some arbitrary state

z,forallk, I <k<I+h—-2,Us€{L2|z€ X,ac€ A},andforalla € A, L2 € {Us};""2,

and Uppp_1 = T,. Let Vi €V, and let (V,7) = Co(Vi,m) = T L, (Vi,). Then, Vi1 =V.

Proof: Let (Vijp—1,m4n-1) = {Usk §+h_2(1/},7rl). Then for all k, I < k < (I +h — 1),
Vi = Vi, and since Va € A, L2 € {Uk}f"'h_z, Ti+h—1(2) will be an optimal action with respect
to Vi. Therefore, (Vign, mn) = {Ue i (Vi,m) = Te(Vigh—1, mon_1) = To(Vi, Tiyn1) =
(V. mi4n)-
Q.ED.

Define W (z) to be the set of finite length sequences of operators that satisfy the follow-
ing properties: each element {wi}6~' € W(z) has a subsequence {w;}2, where d < h — 1,
and Va € A, L2 € {w}¢, and wy,_; = T(z). Note that for each state z € X, there is a
separate set W (z).

Lemma 4: In ASPI, for any arbitrary state z, consider a subsequence of operators such

that {Up}i™ ™ € W(z). Let (V,7) = Co(Vi,m). If Vi € V, then Vi, > V.

Proof: By definition, any element of W (z) involves applying each operator in the set
{L%|a € A} followed by the operator T,. Although other operators may also be applied in-
termixed with these, intermediate applications of L7 where y # z will not affect the policy
for state z and intermediate applications of any T, can only increase the value function.
This observation, combined with Lemma 3, constitutes a proof.

Q.E.D.

Define W to be a set of finite length sequences of operators that satisfy the following
property: each element of W contains disjoint subsequences, such that Ve € X at least
one distinct subsequence is in W (z).

Lemma 5: Consider any sequence {Uj ;J’h_l e W. ItV € V, then ||Viyp — V¥l <
YNV = Voo

Proof: From Lemma 4 and Facts 1 and 3 it can be seen that applying any sequence of
operators that is an element of W results in a contraction.

Theorem 1: Given an initial value-policy pair (V5, mo), such that V5 € V, the ASPI algo-
rithm (Viy1, mer1) = Ur(Vk, mr) converges to (V*,7*) under the following conditions:

Al) For each z € X, T, appears in {Uy} infinitely often, and

A2) For each (z,a) € X x A, L2 appears in {U} infinitely often.

Proof: The infinite sequence {Ux} has an infinity of disjoint subsequences that are
elements of W. The result that limg o (Vk,) = (V*, 7o) follows from Lemma 5 and the
contraction mapping theorem. Moreover, it is known that there exists an € > 0 such that
if ||V — V*||o < € then the optimal policy with respect to V is also optimal with respect
to V* (e.g., Singh [8]). Because the sequence {V4} is non-decreasing and V;, < V* it can

be concluded that 7o, € {7*}.
Q.E.D.

References

[1] A.G. Barto. personal communication.
[2] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[3] D.P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[4] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[5] R. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA, 1960.

[6] M.L. Puterman and M.C. Shin. Modified policy iteration algorithms for discounted
markov decision problems. Management Science, 24(11), July 1978.

[7] S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New York,

1983.

[8] S. P. Singh. Learning to Solve Markovian Decision Processes. PhD thesis, Department
of Computer Science, University of Massachusetts, 1993.

9] R.J. Williams and L. C. Baird. Analysis of some incremental variants of policy iteration:
First steps toward understanding actor-critic learning systems. Technical Report NU-
CCS-93-11, Northeastern University, College of Computer Science, Boston, MA 02115,
September 1993.

