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Abstract

Following terminology used in adaptive con-
trol, we distinguish between indirect learning
methods, which learn explicit models of the
dynamic structure of the system to be con-
trolled, and direct learning methods, which
do not. We compare an existing indirect
method, which uses a conventional dynamic
programming algorithm, with a closely re-
lated direct reinforcement learning method
by applying both methods to an infinite hori-
zon Markov decision problem with unknown
state-transition probabilities. The simula-
tions show that although the direct method
requires much less space and dramatically
less computation per control action, its learn-
ing ability in this task is superior to, or
compares favorably with, that of the more
complex indirect method. Although these
results do not address how the methods’
performances compare as problems become
more difficult, they suggest that given a fixed
amount of computational power available per
control action, it may be better to use a
direct reinforcement learning method aug-
mented with indirect techniques than to de-
vote all available resources to a computation-
ally costly indirect method. Comprehensive
answers to the questions raised by this study
depend on many factors making up the eco-
nomic context of the computation.

1 INTRODUCTION

In its simplest form, reinforcement learning is based
on the commonsense idea that if an action is followed
by a satisfactory state of affairs, or an improvement
in the state of affairs (as determined in some clearly
defined way), then the tendency to produce that ac-
tion is strengthened, i.e., reinforced. This idea plays
a fundamental role in theories of animal learning and
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is elaborated mathematically in the theory of learning
automata (Narendra and Thathachar, 1989). Embed-
ding this idea within a framework for associative learn-
ing includes a role for stimulus patterns in eliciting ac-
tions (Barto, Sutton, and Brouwer, 1981; Barto and
Anandan, 1985; Klopf, 1982). Extending reinforce-
ment learning further, it is possible to specify the idea
of being “followed by a satisfactory state of affairs” in
terms of the long-term consequences of an action, or
of a policy for performing actions, instead of simply
short-term consequences. By combining methods for
adjusting action-selection rules with methods for es-
timating the long-term consequences of actions, rein-
forcement learning methods can be devised that are
applicable to control problems involving temporally
extended behavior (e.g., Anderson, 1987; Barto, Sut-
ton, and Anderson, 1983; Barto, Sutton and Watkins,
1990, to appear; Hampson, 1989; Jordan and Jacobs,
1990; Sutton, 1984; Watkins, 1989; Werbos, 1987;
Witten, 1977a, b).

Although control architectures based on reinforce-
ment learning can be quite complex, including compo-
nents permitting off-line, look-ahead planning (Sutton,
1990), reinforcement learning is usually regarded as a
very simple direct method for adjusting behavior. The
utility of simple, direct learning methods as compared
to the utility of more complex methods depends upon
the particular algorithms in question, specific charac-
teristics of the ensemble of tasks of interest, as well
as a host of other factors influencing the outcome of
possible cost-benefit analyses. Are the performance
improvements expected of a “sophisticated” learning
method going to be worth its additional computational
cost? What would happen if available computational
power were used to implement many different simple
learning methods instead of a few complex methods?
Do conditions, in fact, favor learning at all as opposed
to a hand-crafted solution? Questions such as these,
which we regard as involving the computational eco-
nomics of learning, cannot be answered independently
of the relevant context, but they address factors that
play major roles in shaping biological systems and that
should play major roles in the design of artificial sys-



tems.

The simulations described in this paper were moti-
vated by a simple, but nevertheless unanswered, ques-
tion about the relative efficiency of two approaches to
learning how to solve a particular type of stochastic
control problem. Following terminology used in adap-
tive control (e.g., Goodwin and Sin, 1984), we distin-
guish between indirect learning methods, which learn
explicit models of the dynamic structure of the system
to be controlled, and direct learning methods, which
do not.! Indirect methods estimate unknown param-
eters describing the system to be controlled and de-
fine a control rule in terms of these estimates; that is,
they employ a system identification procedure to form
a model of the system together with a control design
procedure that is executed on-line to compute the cur-
rent control rule from the current system model.? The
need for the repeated execution of this design proce-
dure is what justifies the term indirect. Direct meth-
ods, on the other hand, estimate parameters that di-
rectly specify the control rule instead of the system to
be controlled. Although we knew that direct methods
based on reinforcement learning require less computa-
tion for each control action than indirect methods, we
did not know, even for small artificial control prob-
lems, how the performance of such a direct method
would compare with that of a more conventional indi-
rect method in terms of the number of control actions
required for learning.

We compared two learning methods that are as similar
as possible except that one is indirect and the other is
a direct method utilizing reinforcement learning. We
applied them to an infinite horizon Markov decision
problem with unknown state-transition probabilities.
The simulation results show that although the direct
method requires much less space and dramatically less
computation per control action, its learning ability in
this task is superior to, or compares favorably with,
that of the more complex indirect method. Because
our simulation results comparing these methods were
obtained on a single small example of a Markov de-
cision problem, they do not address how the meth-
ods’ performances compare as problems become larger
and/or more difficult. However these results demon-
strate that direct reinforcement learning methods are
not necessarily less capable than much more complex
indirect methods, and they raise questions, which we
discuss below, about the computational economics of
learning.

! This distinction parallels that between parametric and
non-parametric approaches to pattern classification (e.g.,
Duda and Hart, 1973). Watkins (1989) made a similar dis-
tinction between model-based and primitive learning meth-
ods, terminology we adopted in Barto and Singh (1990).

2A control design procedure is any method for deter-
mining a control rule based on a system model and perfor-
mance specifications.

The indirect method we implemented is that Sato,
Abe, and Takeda (1988), which performs system iden-
tification and uses dynamic programming (DP) to es-
timate optimal actions from the system model. The
direct method we implemented replaces the DP com-
ponent of the Sato et al. method with Watkins’ Q-
Learning algorithm for incrementally approximating
the results of DP (Watkins, 1989). We call the re-
sulting direct reinforcement learning algorithm the Ex-
ploratory Q-Learning, or EQ, algorithm. We selected
the method of Sato et al. for this study because its
action-selection component is readily adaptable to di-
rect methods. However, in fairness, we note that the
contribution of Sato et al. (1988) is a convergence the-
orem for their algorithm rather than a demonstration
of its efficiency, and here we do not prove a compara-
ble convergence result for the EQ algorithm (although
such a result can be proved, as we will report in a
forthcoming article).

In this paper we do not address many issues that be-
come essential in more elaborate applications of the
approaches to learning described. We assume that
the states of the Markov chain underlying the deci-
sion problem are completely and unambiguously ob-
servable, thereby eliminating from consideration the
important issues for control raised by incomplete state
information. We also assume that representation and
storage of information is accomplished in simple look-
up table form. More general representation and stor-
age schemes involve the kinds of parameterized models
and distributed representations that may make arti-
ficial neural networks useful for these types of con-
trol problems. We assume the reader can extrapolate
from what we present here to relate our observations
about the economic context of reinforcement learning
to methods implemented by artificial neural networks.

2 INDIRECT AND DIRECT
ADAPTIVE CONTROL

For some approaches to adaptive control, the distinc-
tion between indirect and direct methods amounts to
little more than the difference between expressing the
control rule in terms of the parameters of the system
model on-line during learning (the indirect case) or off-
line before the start of learning (the direct case). If the
computation required by the control design procedure
is relatively simple, as it is in many adaptive control
methods, the distinction between direct and indirect
methods has minor impact on computational cost.

Here, however, we are interested in control tasks in
which this computation can be extremely costly. This
occurs when the control objective is not to make the
controlled system closely follow a specified reference
trajectory—the kind of task which is most widely stud-
ied in adaptive control—but to control the system to
maximize a measure of long-term performance not in-



volving a prespecified trajectory. For nonlinear sys-
tems, solving these optimal control problems requires
extensive computation even if the system to be con-
trolled is completely known. In the general case, a
search has to be conducted in the space of all possible
trajectories, which grows explosively as a function of
the number of control actions, system states, and the
time-horizon of the task. For the problems in which
we are interested, here illustrated by Markov decision
problems, this complexity can be dramatically reduced
by applying DP methods, but the computational com-
plexity (both space and time complexity) still remains
a critical limitation.

If the system to be controlled is not completely known
and the control design procedure is costly for all mem-
bers of the class of system models under considera-
tion, then the computational requirements become es-
pecially severe. One strategy for such problems is to
abandon the goal of performing learning on-line while
the system is being controlled. A separate system iden-
tification phase can be completed to a satisfactory de-
gree of accuracy, and then the control design procedure
can be executed once based on the resulting system
model. This is essentially the traditional non-adaptive
approach in which system modeling and control are
considered as separate tasks.

For learning on-line during control, an indirect method
requires the repeated application of the costly design
procedure (such as DP) during learning as the sys-
tem model is updated. In such cases, therefore, direct
methods can have significant advantages by eliminat-
ing the need for the repeated application of the de-
sign procedure. Unfortunately, for the optimal control
problems in which we are interested, in the absence of
restrictive assumptions, there is no known way to pre-
compute an optimal control rule in terms of a system
model to form an easy-to-evaluate function of param-
eter estimates. Stated differently, except in special
cases, there is no known analytical way to circumvent
the required search in the space of trajectories.

It is possible, however, to reorganize this search by dis-
tributing it differently over system states, control ac-
tions, and time. This is the basis of direct approaches
to adaptive optimal control, such as the EQ algorithm
described below, which use incremental DP methods.
The intuition underlying these approaches is that it
is not worth the computational effort to perform ex-
tensive long-term planning based on highly uncertain
information.

3 MARKOV DECISION PROBLEMS

A Markov decision problem is defined in terms of a
discrete-time stochastic dynamical system with finite
state set {1,..., N}. At each time step a controller ob-
serves the system’s state and selects an action from the
action set A = {1,..., K} (where we simplify slightly

by not letting this set depend on the observed state).
If 7 is the observed state and action k is selected, the
state at the next time step will be j with probability
pf]-. We further assume that under action k, a tran-
L
where |r§“j| < oo for each 4, j, and k.3 The controller
can implement a state feedback control law, called a
policy, to provide a control action at each time step as
a function of the observed state. A stationary policy,
denoted U = (uy,...,un) € AV, specifies that the
controller performs action u; when state 7 is observed.
The stochastic system together with a stationary pol-
icy U define a stationary finite state Markov chain with
probability p}‘j" of making a transition from state 7 to
state j.

sition from state 7 to state j produces a payoff r

For any stationary policy U and state i, let v denote
the expected infinite-horizon discounted return, which
we simply call the return, for state i given policy U.
Letting r(¢) denote the payoff at time ¢, this is defined
as follows:

v = By [0 r(1)[i(0) = 1], (1)

where 4(0) is the system’s initial state, v, 0 <y < 11is
a factor used to discount future payoffs, and Ey is the
expectation assuming the controller always uses policy
U. Tt is usual to call v7 the value of i under policy
U. The function assigning values to states is called the
value function corresponding to the given policy. The
objective of the type of Markov decision problem con-
sidered here is to find a policy that maximizes the value
of each state 7 defined by (1). A policy that achieves
this objective is an optimal policy which, although not
always unique, is denoted U* = (uj,...,u}). It can
be shown that for the formulation given here, all opti-
mal policies are stationary (e.g., Bertsekas, 1987).

Given a complete and accurate model of a Markov de-
cision problem in the form of knowledge of the transi-
tion probabilities, pi-“]-, and the payoff array, rll“]-, for
all states 7 and j and actions k, it is possible to
solve the decision problem by applying one of vari-
ous DP methods as described, for example, by Bert-
sekas (1987). Indeed, in the absence of assumptions
other than those described above about the structure
of the decision problem, DP methods are the only ex-
act methods applicable short of exhaustive searches
through the space of all policies. The method of Sato
et al. makes use of the DP algorithm called policy it-
eration, which computes a sequence of improving poli-
cies. At each iteration, the value function for the cur-
rent policy must be computed either by a successive
approximation method or by inverting an N X N ma-
trix. The process converges to an optimal policy after
a finite number of iterations.

3In more general formulations, each payoff r,l“]- is gener-
ated by a random process that depends on ¢, 7, and k, but
we follow Sato et al. (1988) and restrict attention to the
case in which the payoff process is deterministic.



4 INDIRECT AND DIRECT
LEARNING FOR MARKOV
DECISION PROBLEMS

When a complete model of the decision problem is un-
available, it is necessary to learn about the problem
while interacting with the system defining it. Indirect
learning methods are the most widely studied. They
rely on state-transition models formed by estimating
the state-transition probabilities for each control ac-
tion. These estimates can be formed while the con-
troller is interacting with the system by keeping track
of the frequencies with which the various state tran-
sitions occur for the various control actions. Indirect
methods also require estimating the payoffs r¥., for
each combination of current state, Z, next state, 7, and
action, k.* Indirect methods are based on the certainty
equivalence principle of computing and using policies
that would be optimal if the current transition proba-
bility estimates were correct (Bertsekas, 1987). Most
of the methods for the adaptive control of Markov pro-
cesses described in the engineering literature are indi-
rect (e.g., Borkar and Varaiya, 1979; Kumar and Lin,
1982; Mandl, 1974; Riordon, 1969; Sato-Abe-Takeda,
1982, 1985, 1988).

Although reinforcement learning methods can utilize
models in a variety of ways, most such methods are
classified as direct because they do not use state-
transition models. In a direct learning method, there
is no possibility for performing any computation that
explicitly requires “thinking about” state transitions
without actually causing the controlled system to ex-
ecute them. Ruled out, therefore, are any methods
using conventional DP or heuristic search algorithms.
Most examples of direct methods for learning how to
solve Markov decision problems make use of stochas-
tic learning automata (e.g., Lakshmivarahan, 1981;
Narendra and Thathachar, 1989; Wheeler and Naren-
dra ,1986; Witten, 1977a, b).

Although direct reinforcement learning methods do
not use state-transition models, they can use value
function models, which we call value models in what
follows. The simplest methods use the value model’s
output to evaluate and reinforce control actions as they
are performed. The pole-balancing system of Barto,
Sutton, and Anderson (1983) illustrates this approach.
After each control action, the value model is updated
based on the immediate payoff and the value estimate
of the next state using an “adaptive critic method.”
This class of value-estimation methods, developed by
Sutton (1984, 1988), who also calls them “temporal
difference methods,” are related to methods proposed
earlier by Klopf (1972), Witten (1977a, b), and Wer-
bos (1977). Werbos has discussed these methods in
terms of DP and calls them “heuristic dynamic pro-

*More generally, if the payoff process is stochastic, the
expected payoff values must be estimated.

gramming” methods. Similar connections to DP were
recently described by Watkins (1989), who uses the
term “incremental dynamic programming.” This gen-
eral class of methods is discussed in terms of DP by
Barto, Sutton, and Watkins (1990, to appear) and
Werbos (1987, 1988, 1989), who also provide references
to related research by others.

Another way of using a value model is illustrated by
Watkins’ (1989) Q-Learning method, described below,
which forms a different kind of value model to pro-
vide a return estimate for each state/action pair. The
output of this value model for a state/action pair is
an estimate of the expected return assuming that the
given action is performed for the given state, and that
an optimal policy is used thereafter. Control deci-
sions can be made according to how control actions
are ranked by this value model given the current state.
This method is related to the “action-dependent adap-
tive critic” mentioned by Werbos (1989) and to the
classifier systems described by Holland (1986).

When payoff values and control actions are continu-
ous quantities, a value model can be constructed in
a form that permits the computation of the gradient
of the estimated value with respect to control vari-
ables. The policy can then be adjusted via gradient
ascent. Using an artificial neural network to repre-
sent the value model makes this approach attractive
because the value model’s gradient can be computed
efficiently by error back-propagation. This approach
was discussed by Werbos (1977) in relation to the dif-
ferential dynamic programming method of Jacobson
and Mayne (1970), and Jordan and Jacobs (1990) il-
lustrated it using a version of the pole-balancing task
with continuous control actions.

Reinforcement learning methods have also been stud-
ied that use both state-transition and value models
(e.g., El-Fattah, 1981; Sutton, 1990). Werbos (1987,
1988, 1989) discusses gradient methods that make use
of system models.

5 AN INDIRECT ALGORITHM

We describe the algorithm proposed by Sato, Abe, and
Takeda (1988) as an example of an indirect method
for learning to solve Markov decision problems with
unknown transition probabilities. This algorithm is
an extension of previous research by the same authors
(Sato, Abe, and Takeda, 1982, 1985). In Section 6,
we combine a component of this algorithm with Q-
Learning to produce a comparable direct method.

The method of Sato et al. explicitly estimates the un-
known state-transition probabilities by keeping counts
of state transitions observed while controlling the sys-
tem. Let nfj(t) be the number of times action k was
taken on a transition from state i to state j before

time t. Then n¥(t) = > nk(t) is the number of times



action k was taken in state i, and n;(t) = 3., n¥(2) is
the number of times state ¢ occurred. The estimates at
time ¢ of the unknown transition probabilities, which
constitute the state-transition model at time ¢, are
ﬁfj(t) = nf](t)/nf(t) Sato et al. (1988) show that
if all state-transition probabilities are positive, then in
the limit these estimates converge, almost surely, to
the actual transition probabilities. They assume that
the payoff array is known.

At each time ¢, an estimated optimal policy, U* (t),
is computed using the policy iteration method of DP
based on the current state-transition model and the
payoff array. The control action specified by this policy
for the current state 7, 4}, is used to bias the control
decision in favor of the estimated optimal action in a
manner described below. Because the state-transition
model only changes by a small amount at each time
step, the policy iteration method converges after few
iterations if it starts with the estimated optimal policy
computed on the previous time step.

An explicit mechanism is used to cause sufficient ex-
ploratory behavior for the system identification pro-
cess to converge to the correct state-transition model.
This mechanism works by sometimes forcing the con-
troller to take an action that has not been taken for
a long time instead of the action currently estimated
to be optimal. This explicit tradeoff between estima-
tion and control is implemented in the following way.
At each time step t, a quantity, c¥(¢), is maintained
for each state ¢ and action k to reflect the number of
times action k has not been performed in state 7 since
t = 0. These quantities are computed iteratively by
letting c¥(0) = 0 for all 5 and k and using the follow-
ing update rule at each time step:

ck(t) + O(ni(t + 1) — nf(t + 1))
ct+1)= if k # u(t)

ck(t) otherwise,

where u(t) is the action performed at time ¢. © is a
positive function that is constant or satisfies the con-
ditions

lim ©(n) =0,

n—r oo

and Z O(n) = oo. (2)

The values cl-‘ (t) are used to determine the controller’s

action at time ¢ as follows. If 7 is the state at time ¢ and
4¥ is the action estimated (via policy iteration) to be
optimal for state 7, then the action actually performed

by the controller is the action ¥ which maximizes

ck(t)/nk(t) +a ifk=4a} (3)
ck(t)/nk(2) otherwise,

where a is a positive constant. The fractions in (3)
cause the controller to sometimes prefer over 4; an
action that has not been been performed for a long
time.

Sato et al. (1988) show that if © satisfies the condi-
tions given by (2), then in the limit all actions are
performed infinitely often for each state, as needed
for convergence of the state-transition model, and that
the policy converges to an optimal policy. Specifically,
they define the relative frequency coefficient to be

o) o= oY), @)

which gives the average number of optimal decisions
made before time ¢. Sato et al. (1988) prove that if
all transition probabilities are positive and ©(n) = Oq
for all n, then

lim lLim f*(¢) =1,

®y—0t—o00
whereas if ©(n) satisfies (2), then
lim f*(t) =1,

t—o00

almost surely,

almost surely.

6 Q-LEARNING

Q-Learning is a method proposed by Watkins (1989)
that can form the basis of a variety of direct reinforce-
ment learning methods. It is an asynchronous Monte
Carlo form of DP that does not require knowledge of
the state-transition probabilities or the payoff array.
Q-Learning estimates what Watkins calls state-action
values: the state-action value of state i and action
k, denoted Q;x, is the expected infinite-horizon dis-
counted return if action k is performed in initial state
1 and an optimal policy is followed thereafter. An op-
timal action for state 7 is therefore any action k that
maximizes Q;.

Each time the controller takes an action, say action k
from state 7 at time %, the current state-action value
estimate for 7z and k, denoted Qik(t), is updated as
follows:

Qux(t+1) = (1= £)Quk(t) + Bulrly + ymaxQu(®)], (5)

where j is the actual next state, v is the discount
factor, and {G:} is a sequence of step-size parame-
ters. The state-action value estimates for states other
than ¢ and actions other than k remain unchanged.
Watkins (1989) shows that these estimates converge
to the true state-action values if each action is even-
tually performed infinitely often from each state and
the sequence {8;} converges to zero in an appropriate
manner.

Given estimated state-action values Qix (t), the policy
that is optimal with respect to these estimates (i.e., a
kind of certainty equivalence policy) is the policy that
selects for each state i the action

4} = argmax Qix(t), (6)

where ties among actions are resolved in some arbi-
trary way.



If the estimation error of the state-action values is zero,
then the policy specifying 4} for each state 7 as defined
by (6) is an optimal policy, but Q-Learning does not
require this policy to be followed during learning. For
performing Q-Learning, the policy actually followed
by the controller is not important except that it must
allow sufficient exploration to permit convergence of Table 1: Transition Probabilities
the state-action value estimates. However, for the con-

troller‘ to improve it§ pe‘rforme‘mce while perforn}ing Q- =01 p,=02|p,=02p,=02]|p,=03
Learning, it must bias its policy toward the estimated PP = 0.2 | ply =02 | ps =02 | p?, =0.2 | p?, = 0.2
optimal actions. Because this must be accomplished Pl =01 | pS=0.1 | pds =01 | pdy =03 | p3s = 0.4
while permitting sufficient exploration, the issues that o, =01 |pl, =01 pls=02 | pt, =03 | ply = 0.3

arise are ide‘nt‘ical to‘ those considered by Saf,o et ‘al. P2, =0.1 | p2, = 0.1 | p23 = 0.6 | p2, =0.1 | p2, = 0.1
(19§8), and it is possible ‘t(? combine Q—Le‘arnmg with p3, =01 | p2, =05 | p23 =02 | p3, =0.1 | 35 = 0.1
their method‘ for de?ermlnmg control‘ choices to pro- pl, =01 | py =04 | pty =0.2 | pl, =0.2 | pi = 0.1
duce a new direct reinforcement learning algorithm. p3 =03 | p2, =0.2 | p2s = 0.2 | p3s = 0.2 | pds = 0.1

p%l =0.3 p%z =0.2 p%g =0.1 p%; =0.1 p%E =0.3
pél =0.2 pgz =0.5 p33 =0.1 p34 =0.1 pgs =0.1
pgl =0.3 pgz =0.1 pg_g =0.1 p§4 =0.4 p§5 =0.1
plil =0.2 p%Z =0.3 p%3 =0.3 p# =0.1 p%E =0.1
pgl =0.2 pgz =0.2 pg_g =0.2 pg4 =0.2 pgs =0.2
pgl =0.2 pgz =0.3 pg3 =0.2 pg4 =0.1 pgs =0.2
ps1 = 0.1 | pyo =04 | pg3 = 0.2 | pgy =0.1 | pgs = 0.2.

This algorithm, which we call the Exploratory Q-
Learning, or EQ, algorithm, combines the exploration
strategy of Sato et al. with Q-Learning. Instead of
using policy interation at each step to estimate the
current optimal action, the EQ algorithm uses the ac-
tion, 4, computed from the current state-action value

estimates according to (6). This action is then used in

(3) to determine the control decision, where c¥(t) and
n%(t) are computed exactly as in the method of Sato et
al. Using Q-Learning instead of policy interation leads
to great savings in both the space and time complexity
of each control step (detailed below). Although it is
possible to reduce the space complexity further by re-
placing the exploration method of Sato et al. with one
having less demanding space requirements, we retain
their method to facilitate comparison of the indirect

and direct aspects of the algorithms.

7 SIMULATION RESULTS Table 2: Payoffs

Sato et al. (1988) present simulation results for their

method applied to a simple five state, three action, Til =1 7’22 =-2 7’23 =4 7’24 =-1 7’25 =3
Markov decision problem. The arrays of transition = -2 "2 = -7 s = 2 14 = 8 s = -1
probabilities and payoffs are reproduced here in Ta- rip=—3 | rip==6 riz=—1|rig=-2|rs=4
bles 1 and 2. Recognizing that this problem is too ro =17 rap=—4 | r33=1 r3g = —2 | r35 = —8
small to allow strong conclusions to be drawn, and e =5 | ra,=-2|r=1 raa=-2|r=5
that it was used by Sato et al. merely to illustrate their ra = ray=—1|ray=-3|r=-7]|r=0
convergence result, we compared the performances of ri, = ri, =1 rig =2 ri, =4 rig = —4
the Sato et al. and EQ methods on this problem to ob- rZ, =3 rZ, =0 P2, =—1 |72 =-3|r =7
tain a preliminary indication of the relative efficiency =6 |rh=1 Py=—2 | 3, =4 3 =0
of directly comparable indirect and direct and learning rl =5 rl—_4|rl, =3 rl, =1 rl, = —6
methods. Til =3 Tiz =2 Tis =-1 7'§4 =-3 Tis =-5
Figure 1 shows the evolution of the relative frequency 7‘%1 = 7‘%2 = 7‘%3 =6 7‘%4 =6 7‘%5 =2
coefficient, f*(t), defined by (4), as a function of the 51 = 2 52 = 53 = 2 Te4 = -1 "5 = 3
number control actions for both learning methods and 51 = -5 Ts2 = Tss = —3 Tse = Tss = —4
for the four choices of the function © (indicated in rsy = —3 | r53 =5 Ts3 = 2 T5e = —1 | 755 = —5,

the figure caption) used by Sato et al. (1988). Each
graph is the average of five simulation experiments
made with different random number seeds. In all cases,
the action-selection strategies of the two methods were
parameterized identically, so that the only difference
between the methods was the manner in which the es-



Figure 1: Graphs of the relative frequency coeflicient,
f*(t), as a function of the number of control actions
performed for the algorithm of Sato et al. (dashed line)
and the EQ algorithm (solid line) for four choices for
©(n). Each graph is the average of five simulation ex-
periments made with different random number seeds.
For all graphs, @ = 1.0, § = 0.05, and v = 0.8.
Panel A: ©(n) = 0.1, Panel B: ©(n) = 0.05, Panel
C: ©(n) = 1/n, Panel D: O(n) = 1/+4/n.

timated optimal action, 4, was computed at each time
step. The sequence {8;} for the Q-Learning algorithm
was held constant at 0.05 throughout the simulations,
a value not explicitly optimized for this problem.

With the exception of the graphs in Panel D, the
graphs in Fig. 1 show that, in this learning task with
the indicated parameter values, the EQ algorithm
achieves a higher level of performance after any given
number of control actions than does the algorithm of
Sato et al. Panel D shows somewhat better perfor-
mance for the method of Sato et al. Note that the EQ
algorithm achieves this performance level using only
the actual payoff at each time step instead of knowl-
edge of the entire payoff array required by the algo-
rithm of Sato et al.

Not shown in the figure is the relative amount of com-
putation per control action for the two learning meth-
ods. Because the method of Sato et al. performs pol-
icy iteration after taking each action, whereas the EQ
method performs single a Q-Learning step, the EQ
method requires much less computation per step. Al-
though policy interation can be approximated without
explicit matrix inversion at each iteration (e.g., Rior-

don, 1969), we assume that each application of policy
iteration requires at least one matrix inversion. As-
suming that any practical matrix inversion algorithm
requires O(N?3) operations for an N x N matrix, the
time taken by policy iteration is O(N3+ N2K), where
N is the number of states and K is the number of ac-
tions. The time required for a Q-Learning step (i.e.,
to apply (5))is just O(K). Hence, the savings for each
control action using the EQ method is dramatic. For
example, for each action performed in the test prob-
lem, the Sato et al. method requires a minimum of
about 200 basic computational steps, whereas the EQ
method requires essentially 3, the number of actions
(not counting the few computations required by each
method to implement their common action-selection
process).

Additionally, the EQ method is more space efficient
than the method of Sato et al.: The latter method
requires O(K N?) storage locations because it has to
store the state-transition model and the payoff array,
whereas Q-Learning requires O(K N) storage locations
for the state-action value estimates. In fact, most of
the space used by the EQ method is used to imple-
ment the action-selection process it shares with the
method of Sato et al. Preliminary simulations using Q-
Learning with less complex action-selection processes
have produced performance better than that of the EQ
method on this problem.

8 DISCUSSION

We were initially surprised by the results shown in Fig-
ure 1. Even for the small test problem, we expected the
simplicity of the EQ algorithm on a per-control-action
basis to extract a higher price in terms of the number
of control actions required for achieving a given level
of performance. Ignoring the per-control-action cost,
how can any method perform better than one that per-
forms complete DP at each control step? The answer
lies in the consequences that each learning method has
for the exploratory behavior of the controller. Both
algorithms use the same mechanism for selecting ac-
tions on the basis of the current estimate for the op-
timal action (&}), but differences in these estimates
imply the selection of different actions. Because each
Q-Learning step depends on a very small sample from
a random process, the behavior produced by the EQ
algorithm is more variable than that produced by the
algorithm of Sato et al. in the initial stages of learning.
This variability seems to produce more effective explo-
ration for the test problem in question, consistent with
Witten’s (1977b) observations on exploration in dis-
crete deterministic environments. Under conditions of
high uncertainty, therefore, it might be better to avoid
complex long-term planning not only to save fruitless
computational effort, but also to foster more effective
exploratory behavior.



Clearly, as control problems become more difficult due
to increases in the number of states and control ac-
tions, and increases in “depth” (i.e., increases in the
degree to which the long-term consequences of control
decisions influence performance), one would expect in-
creases in the utility of performing conventional DP
based on a state-transition model. But because the
computational cost of this approach increases rapidly
as problems become larger and/or deeper, the straight-
forward extension of such an indirect method to more
difficult problems is not necessarily the best approach.
As problems become more difficult, the effectiveness
of various methods, and combinations of methods, will
depend on details of the problems and the conditions
under which they must be solved, i.e, on a wide set
of issues making up the economic context of the com-
putation. For example, in applying the EQ algorithm
and the algorithm of Sato et al. to several problems
larger than the test problem described here (problems
with 7 and 8 states), sometimes one algorithm and
then the other would perform better. We could dis-
cern no clear relationship between the task and which
algorithm would reach a higher level of performance
after a given number of control actions, except that in
all cases the EQ algorithm required much less overall
computation due to its efficiency per control action.

Experience does indicate, however, that neither the in-
direct nor the direct methods described in this paper
efficiently scale up to large nonlinear problems with-
out additional mechanisms. It seems clear that many
types of models must be employed in a variety of differ-
ent ways to achieve effective learning performance on
complex tasks. Hence, we emphatically do not inter-
pret the results reported here as suggesting that state-
transition models should be replaced by value mod-
els. These results do raise questions about the most
commonly studied methods for using state-transition
models in learning to solve Markov decision problems,
but when scaling issues are considered, they suggest
that combinations of direct and indirect methods may
be most useful. Given a fixed amount of computa-
tional power available per control action, it may be
better to use a direct reinforcement learning method
augmented with indirect techniques than to devote all
available resources to a computationally costly indirect
method. One way of combining direct and indirect
methods that retains many of the advantages of each
approach is illustrated by Sutton’s DYNA architecture
(Sutton, 1990).

9 CONCLUSION

The simulation results described in this paper show
that although the direct EQ algorithm requires less
space and much less computation per control action
than the indirect method of Sato et al., its learn-
ing ability when applied to a test problem is supe-
rior to, or compares favorably with, that of the more

complex indirect method. Using a certainty equiva-
lence approach, indirect methods for learning to solve
Markov decision problems perform costly “pseudo-
optimization” on the basis of uncertain information.
Direct reinforcement learning methods, on the other
hand, keep closer touch to reality by directly using ex-
perience with the system itself instead of with a system
model.

However, because the comparative study presented in
this paper involves only a single very small Markov de-
cision problem and a single pair of learning algorithms,
the results merely provide one data point in the study
of the relative advantages of direct and indirect learn-
ing methods. Although we know how the relative num-
ber of computations per control action increases with
increasing problem size, we do not know what hap-
pens to the relative performance of these methods as
the task size increases. The utility of performing con-
ventional DP based on a state-transition model surely
increases with increasing problem size and difficulty,
but is it worth the greatly increasing computational
cost?

A comprehensive answer to this question depends on
many factors making up the economic context of the
computation, but our results suggest that it can be
advantageous to distribute the required learning and
planning processes over system states, control actions,
and time in ways differing from that of conventional
indirect learning methods. The theory of reinforce-
ment learning using incremental dynamic program-
ming methods needs to be extended with these issues
in mind.
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