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Abstract

We propose a framework for including information-processing bounds in rational analyses. It is

an application of bounded optimality (Russell & Subramanian, 1995) to the challenges of develop-

ing theories of mechanism and behavior. The framework is based on the idea that behaviors are

generated by cognitive mechanisms that are adapted to the structure of not only the environment

but also the mind and brain itself. We call the framework computational rationality to emphasize

the incorporation of computational mechanism into the definition of rational action. Theories are

specified as optimal program problems, defined by an adaptation environment, a bounded

machine, and a utility function. Such theories yield different classes of explanation, depending on

the extent to which they emphasize adaptation to bounds, and adaptation to some ecology that dif-

fers from the immediate local environment. We illustrate this variation with examples from three

domains: visual attention in a linguistic task, manual response ordering, and reasoning. We

explore the relation of this framework to existing “levels” approaches to explanation, and to other

optimality-based modeling approaches.

Keywords: Cognitive modeling; Rational analysis; Bounded optimality; Utility maximization;

Bounded rationality; Cognitive architecture; Rationality

1. Introduction: Rational analyses and information-processing bounds

Top-down, rational analyses in the cognitive and biological sciences offer the potential

for deep “why” explanations of behavior by appealing to assumptions about goals, adap-

tive pressures, or functions that should be computed by brains to generate effective

behavior (e.g., Anderson, 1990; Griffiths, Chater, Norris, & Pouget, 2012; Marr, 1982;
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Stephens & Krebs, 1986). These assumptions can be understood as defining problems of

adaptive or rational behavior, and are formulated independently of the mechanisms that

might be used to solve them (“how” explanations). This view is reflected in a key prop-

erty of most meta-theoretical frameworks in cognitive science: a separation of higher

rational levels that identify goals from lower mechanism levels that approximately imple-

ment those goals (Marr, 1982; Newell, 1982). In such accounts, observed gaps between

how the agent should behave in some environment and how it actually behaves are

explained in one of two ways. One way is to appeal to mechanism limitations that pre-

clude the computation of optimal behavior (as in approaches emphasizing heuristics for

choice and problem solving; e.g., Gigerenzer & Selten, 2001; Newell & Simon, 1972;

Simon, 1956, 1990). Another way is to redefine the problem of rational behavior, by pos-

iting goals or environments of adaptation different from the immediate local environment

(as in many prominent rational analyses, and evolutionary psychology; Anderson &

Schooler, 1991; Cosmides, Barrett, & Tooby, 2010; Oaksford & Chater, 1994). We depict

this standard view schematically in Fig. 1.

Newell and Simon’s (1972) seminal work on problem solving provides a clear

exposition of the distinction between rational and mechanistic explanations. They state

that “. . . one of our main tasks will be to understand what is demanded by the task

Fig. 1. The standard view in cognitive science of how rational analysis links behavior and mechanism.

Rational analyses may be conducted via a variety of techniques, including Bayesian analysis, and can pro-

duce predictions of optimal behavior that may be compared to observed behavior. Rational analysis levels are

the locus of “what” and “why” accounts and potentially explain behavior in a way that abstracts away from

mechanism. Cognitive/neural mechanisms are assumed to provide approximate implementations of the goals/

functions posited at the rational level. The execution of these mechanisms produces behaviors that may be

compared with both observed behaviors and the behavior calculated by the rational analysis.
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environment, so that we can understand—by elimination—what aspects of behavior are

determined by the psychology of the problem solver” (p. 79). For example, the behavior

of a human making correct moves in an end-game of chess (as derived, perhaps, by an

unbounded minimax algorithm) may be explained by what is demanded by the task and

the goal of winning, that is, a rational analysis. Departures from correct moves, or sys-

tematic biases in selecting among equally good moves, might be explained by appeal to a

set of information processing mechanisms that approximate the function of winning—for

example, a bounded heuristic search process. These two kinds of explanations—rational

and mechanistic—represent the dominant ways of theorizing in cognitive science.

The purpose of this paper is to make explicit and illustrate an alternative to this stan-

dard view—one that has significant theoretical advantages, while retaining the benefits of

rational analysis. The distinctive feature of this alternative is that it allows for informa-

tion-processing capacities and bounds to be included as first-class elements of definitions

of rational behavior, formalized as problems of utility maximization. Fig. 2 illustrates this

alternative schematically. The early precedents of this alternative are signal detection the-

ory (Tanner & Swets, 1954)1 and its development as ideal observer analysis (Geisler,

2011); one of Simon’s (1955) early candidate definitions of bounded rationality2; Baron

and Kleinman’s (1969) optimal control models of visual attention and manual control3;

and Anderson’s (1990) original method of rational analysis.4

We call this alternative computational rationality to emphasize the incorporation of

computational mechanism into the definition of rational action. The framework allows a

rigorous exploration of the idea that behaviors are generated by cognitive mechanisms

that are adapted to the structure of not only the environment but also the mind itself. It

places utility maximization at the heart of psychological theory, and we think it provides

Fig. 2. Computational rationality: an alternative view of how rational analysis links mechanism and behavior,

based on bounded optimality. Unlike the standard approach in Fig. 1, the rational analysis makes direct con-

tact with information-processing mechanisms by selecting an optimal program for a bounded machine that

maximizes utility in some environment. The execution of the optimal program generates behavior that is the

optimal behavior for that machine; it cannot do better in the given environment. Although the output of the

analysis is an optimum, it is nevertheless directly constrained by the posited information-processing bounds,

and the processes of optimization used in the analysis are not ascribed to the agent (rather they are tools of

the theorist). The bounded optimal behavior may be compared to observed behavior as well as behavior cal-

culated by unbounded rational analyses.
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a useful way to unify psychology’s dual aims of generating explanations of behavior and

generating explanations of cognitive mechanism. In a nutshell, the framework extends the

question posed by standard rational approaches (what should a rational agent do in this

environment?) to include processing bounds: What should a rational (utility-maximizing)

agent, with its available information-processing mechanisms, do in this environment?

The technical innovation offered here is to apply bounded optimality—a precisely

defined concept in artificial intelligence (Russell & Subramanian, 1995)—to these explan-

atory aims. A bounded optimality analysis provides a clear answer to the question above:

A bounded agent should do whatever the best program running on its information-

processing architecture would do. We believe that this framing has value because of its

generality and the analytic rigor and clarity that it brings to the problems of stating and

testing the implications of different theoretical assumptions. We introduce the term com-
putational rationality to refer to the application of bounded optimality to psychology, to

avoid confusion with bounded rationality, which has come to be associated with a rejec-

tion of optimality analyses.

In the remainder of the paper, we first present the framework of computational ratio-

nality, and show how it yields a broad space of useful explanatory theory. Theories and

explanations in this space differ in the extent to which they emphasize adaptation to

information-processing bounds, and adaptation to some ecological environment that dif-

fers from the immediate local environment. Rich mixtures of both kinds of constraint are

possible. We introduce a minimal amount of formalism along the way, focusing on defin-

ing the key underlying concepts. Next, we illustrate the framework with three models in

the domains of response ordering, eye movements in a linguistic task, and logical reason-

ing, each of which illustrates a different kind of explanation. We conclude with a discus-

sion of the relation of computational rationality to existing approaches in cognitive

science.

2. Computational rationality as a framework for explanation and prediction

In this section, we apply computational rationality to the challenge of theorizing about

human cognitive mechanisms, behaviors, and ecologies. Computational rationality is

strongly influenced by bounded optimality (Russell & Subramanian, 1995). Russell and

Subramanian (1995) defined a bounded optimal agent as one that is executing the pro-

gram (from its space of possible programs) that maximizes some performance measure in

some environments of interest. Understanding computational rationality therefore requires

a bounded rational analysis. It requires defining and solving an optimal program prob-
lem. This analysis provides an ontology of analytic elements that precisely defines such

notions as agent bounds, goals, behaviors, and distinct ecological and evaluation environ-

ments. This ontology is summarized in Table 1, with examples of how the different ele-

ments map onto concepts from three familiar frameworks: signal detection theory,

cognitive architectures, and classic rational analysis.
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2.1. Defining and solving optimal program problems

Optimal program problems demand three inputs (Fig. 2): (a) a bounded agent; (b) an
adaptation, or ecological, environment; and (c) a utility function. The solution to an OPP

is (d) the optimal program(s) that, when executed on the bounded agent, will maximize

utility in the given adaptation environment. All four elements may carry theoretical con-

tent and be put to a variety of uses, as described next.

2.1.1. Bounded information-processing agents
By information-processing bounds or mechanisms, we mean the machinery that

computes mappings from perceptual inputs to effector outputs. This definition is broad

enough to include constraints that are associated with both cognitive and perceptual/motor

systems, such as memory limitations and perceptual or motor noise (Faisal, Selen, &

Wolpert, 2008), or the duration of primitive computations. Thus, nothing hinges on a

distinction between “cognitive” and other types of bounds. But the definition is narrow

enough to exclude machines that do not map between perception and action. One

example of a class of machines satisfying the definition are cognitive architectures in the

sense advocated by Newell (1990), Meyer and Kieras (1997), and Anderson (2007).

2.1.1.1. Definitions: We define a bounded agent as a machine M with a space of possible

observations OM, a space of possible actions AM, and a space of programs PM that can

run on the machine. The agent is thus a machine that interacts with the environment via

a set of sensors providing OM and effectors realizing AM. Depending on the kind of

model being built by the scientist, the space of observations could be low level (e.g., reti-

nal images) or high level (e.g., inputs already abstractly categorized). The space of

actions can be external motor actions (e.g., low-level muscle control signals) or high-level

abstract actions (e.g., a plan to travel to a distant city). The programs PM may include

internal cognitive-processes—“mental actions” such as rehearsal, visual imagery and rota-

tion, or memory retrievals.

Choosing a program P 2 PM specifies an agent-model 〈M, P〉. When an agent-model

interacts with some environment, it generates a history or trajectory of observations and

actions. More precisely, it generates a random history at time t, denoted ht0, which is the

sequence of alternating observations and actions from the beginning of time, that is,

ht0 ¼ o0; a0; o1; a1; . . .; ot�1; at�1; ot. We call such histories the behaviors of the agent-

model. (We assume the observation-action cycle happens in discrete time for ease of

exposition only.)

An agent-model intensionally defines a policy or a mapping G〈M, P〉 from histories to

distributions over actions, that is, for all t

GhM;Pi : ðOAÞtO� A ! ½0; 1�: ð1Þ

We will henceforth abbreviate G〈M,P〉 simply as G. Thus, the probability of action a in his-

tory ht0 is Gðht0; aÞ. Each machine-program combination induces a particular G-mapping.
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In the context of a standard experimental cognitive psychology task, a policy can be

thought of as a strategy for performing the task.

We can now precisely state the distinction between bounded and unbounded machines.

We denote the space of all computable mappings from histories to distributions over

actions as �G. This represents the unbounded space of all agent-models that have observa-

tion set OM and action set AM. �G is defined only in terms of OM and AM, and makes no

reference to—and thus is not constrained by—the mechanisms in M. But any bounded
machine M will implicitly select out a strict subset of �G, which we denote as the (implic-

itly bounded) subset G.
At first glance, the notion that an agent-model is a fixed mapping (Eq. 1) seems rather

limiting, but, in fact, this is the most general definition possible. It admits of any agent

whatsoever (within the constraints of discrete time interaction that can also be relaxed).

In particular, it allows the agent-model’s behavior to be arbitrarily influenced by history,

thus allowing for all manner of learning.5

2.1.1.2. Theoretical uses: The machine M may play a number of theoretical roles. It may

define a comprehensive cognitive architecture, in the sense of ACT-R (Anderson, 2007),

EPIC (Meyer & Kieras, 1997), or Soar (Laird, 2012; Newell, 1990) and thus entail a

huge space PM corresponding to the set of possible production rule programs. It may

define a comprehensive architecture, but one whose program space is more narrowly lim-

ited to a range of policies or strategies of interest to the scientist. It may describe a

machine architecture with bounds that represent assumptions about knowledge gained

from previous experience. It may describe a particular instantiation or subset of a broader

architecture, specifying just those bounds thought to be relevant to the analysis at hand. It

may represent processing bounds at an extremely low level—perhaps resource constraints

on neurotransmitters—combined with strategic adaptation parameters at a very high level.

2.1.2. Ecological environment
Any assertion of optimality is relative to the definition of some environment to which

the agent has adapted, an insight extensively leveraged in work on rational analyses (e.g.,

Anderson & Schooler, 1991; Oaksford & Chater, 1994). The key insight here is that the

optimality, or otherwise, of an adaptive system should be partly determined by the statis-

tics of the ecological environment to which the agent has adapted. For example, Ander-

son and Schooler argued that forgetting is optimal, given the probability of needing the

information in the ecological environment, which decays as a power-law function of time.

In such analyses, behavior can be understood as optimal relative to that ecology, but it

may appear to be suboptimal when observed in a local evaluation environment with dif-

fering statistical properties.

2.1.2.1. Definitions: In the computational rationality framework, distributions over histo-

ries or behaviors are determined jointly by environments and agent models. We denote

histories h sampled from an agent-model 〈M,P〉 interacting with an environment E as

h � (〈M,P〉,E). We denote the environment in which the agent behavior is to be
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explained as Eeval, and we denote as E the distribution of environments to which the agent

is assumed to have been adapted, that is, which serves to select the set of optimal pro-

grams.

2.1.2.2. Theoretical uses: The evaluation environment Eeval and adaptation environments

E may play a number of theoretical roles. In the usual setting of an experimental cognitive

psychology task, E may be some mix of the immediate local environment—for example,

the “training” or “practice” phase, and prior experience with the stimuli. In a classic

rational analysis (e.g., the seminal analysis of conditional reasoning by Oaksford & Chater,

1994, taken up in detail below), E may specify ecological distributions of objects and

events thought to be encountered in the agent’s lifetime. In an evolutionary biology set-

ting, E may specify assumptions about “the environment of evolutionary adaptation”—a

theoretical construct that need not be narrowly identified with a particular place or time

(Tooby & Cosmides, 2005).

2.1.3. Utility functions
2.1.3.1. Definitions: We use a utility function U to determine the goodness of programs

that control behavior. U maps histories h from the set of possible histories H to some

scalar:

U : H ! R ð2Þ

Note that U is predicated on behaviors—interactions with the environment—not mecha-

nisms. The implication for mechanism is through the selection of the optimal program

that maximizes expected utility, made precise below in Eq. 3.

The approach thus follows many formal approaches to modeling behavior that require

utility and reward functions (e.g., optimal control theory (e.g. Stengel, 1994); dynamic

programming (Bellman, 1957); decision theory (Von Neumann & Morgenstern, 1947);

reinforcement learning (Sutton & Barto, 1998)).

2.1.3.2. Theoretical uses: The utility function may play a number of theoretical roles. In a

standard experimental psychology setting, it may specify the agent’s task goals, which
might be given an objective grounding in the instructions. In may also specify a theory of

internal subjective utility, including factors such as novelty traditionally ascribed to “intrin-

sic motivation” (Singh, Lewis, Barto, & Sorg, 2010), temporal discounting, or sensitivity to

risk. It may specify desired speed–accuracy trade-offs, which may have subjective or objec-

tive grounding (or both). In evolutionary biology settings, the utility function may specify

assumptions about what determines organism fitness. In a cultural evolution settings, the

utility function may also specify assumptions about what determines organism fitness.

2.1.4. Bounded optimal programs and behaviors
Together, an ecological environment distribution E, information-processing machine M,

and a utility function U fully specify an optimal program problem.
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2.1.4.1. Definitions: Solving this problem requires identifying the set of optimal pro-

grams PM� ¼ fP�g, defined by the following bounded optimality equation, adapted from

Russell and Subramanian (1995):

hM;PM�i ¼ fhM;P�ig ¼ arg max
P2PM

EE�PðEÞEh�ðhM;Pi;EÞ
n
UðhÞ

o
: ð3Þ

where the inner expectation is over histories (behaviors) in some environment and the

outer expectation is over a distribution of environments. Each 〈M,P*〉 defines an optimal

policy G* and so the set of optimal policies G� ¼ fG�g ¼ fhM;P�ig.
Again, the identification of optimal program problems may play a number of theo-

retical roles that depend on the nature of the theories of the bounds, environments,

and utility function. The optimization step may be taken as an abstraction over a
variety of possible natural adaptation mechanisms, including biological and cultural

evolution, and individual agent learning. In particular, it identifies the limits of those

adaptive processes, given the posited bounds. For example, in the typical setting of a

cognitive psychology experiment, where the utility function U encodes assumptions

about immediate local task goals, and the adaptation environment E may include

training trials or indeed the entire evaluation environment, solving Eq. 3 is a way of

abstracting over any number of adaptive mechanisms, including procedural reinforce-

ment learning, instruction taking, local look-ahead planning, and cultural transmission.

An optimal program problem is thus a way to specify a problem that has some stabil-

ity over a region of time and space such that some adaptive mechanism(s) of interest

may operate.

The output of the optimization ({〈M,P*〉}) itself may be put to a variety of uses. If the

cognitive mechanisms themselves are of interest, then what is important is that

({〈M, P*〉}) constitutes a derivation of mechanism, and its structure may be analyzed. If

strategies (policies) are of interest, then what is important is that {〈M,P*〉} computes the

set of optimal strategies (policies) G� given the bounds, and the structure of these strate-

gies may be analyzed. If behavior (histories) are of interest, then what is important is that

{〈M, P*〉} derives a distribution of behaviors h� (〈M,P〉,E) in environments, and proper-

ties of this behavior can be analyzed, including correspondence to observed biological

behaviors in some evaluation environment.

2.1.5. Important properties of bounded rational analysis
There are three crucial points that must be understood to avoid misinterpreting what a

bounded raitional analysis does:

1. It is important to distinguish two kinds of computational costs: the cost of find-
ing the optimal program, and the cost of executing the optimal program. In
general, the individual agent need not be assumed to have arrived at the optimal

program through an internal process of “optimization” over the posited program

space PM, and the method of solving Eq. 3 itself carries no theoretical content. Put
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another way, the computational cost (or time- and space-complexity) of the algo-

rithm used by the scientist to solve the OPP is not borne by the agent. The compu-

tational complexity of the selected optimal program is ascribed to the

agent—because the optimal program executing on the agent’s processing architec-

ture constitutes the cognitive mechanisms asserted to produce the agent’s behavior.

The former computational cost is by definition associated with “optimization”; the

latter need not be.

2. It is important to distinguish between the optimality of programs and the opti-
mality of choices or behaviors. What is selected by Eq. 3 is a program (or set of

programs), and not behavior—although of course the program has implications for

behavior. Optimal programs can be given a precise definition that takes into

account the constraints of the information-processing machine; optimal behavior

cannot (without implicitly adopting the optimal program perspective). This distinc-

tion is the foundational insight of Russell and Subramanian (1995): An agent is

bounded optimal if its program is a solution to the constrained optimization prob-

lem presented by its architecture and the task environment.

3. The data to be explained play no role in the optimal program derivation. Thus,
it is not an analytic error to simply set E ¼ fEevalg, because only U, and not fit to

data, is used to select P*. All of the explanatory power of the bounded optimality

analyses rests on this distinction. Nevertheless, bounded optimality analyses may be

used in concert with methods for estimating parameters of the bounded machine

from data. We illustrate two such methods in the examples that follow.

2.2. Varieties of explanations

Different choices of information-processing machine and environments of adaptation

will lead to different kinds of optimality-based explanation. We focus here on four natu-

ral subtypes that arise by varying the optimal program problem inputs in discrete ways.

In practice models and explanations may be some mix of these types, but it is useful to

lay out the simplest cases. Note that classes III and IV, but not classes I and II, define

classes of theory in which it is assumed that an organism is computationally rational.

2.2.1. Optimality explanations
Consider first the case where the machine M is unbounded (that is, the program space

PM does not restrict the set of possible computable mappings, and so G ¼ �G) and the

adaptation environment is the evaluation environment (E ¼ fEevalg). Then solving Eq. 3

derives the best possible policy that an agent with observations OM and actions AM could

in principle execute in Eeval. To the extent that the predicted behaviors or policy structure

resulting from this analysis corresponds to observed behavior, then the behavior has been

explained. Indeed, it has been given the most powerful explanation possible because no

appeal to machine bounds or prior environments of adaptation is required; equivalently,

the behavior of the observed agent provides no evidence for such bounds (Newell &

Simon, 1972).
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Type I Optimality explanations can be thought of as rational analyses in which only

the local evaluation environment plays a role in determining behavior.

2.2.2. Ecological-optimality explanations
The second class of explanation appeals to an ecology of adaptation represented by a

distribution of environments PðEÞ—but not to information-processing bounds. In the for-

mal notation, E 6¼ fEevalg but G ¼ �G. To the extent that the predicted behaviors or pol-

icy structure correspond to what is observed, then the observed behavior has been

explained. A natural explanatory requirement to impose simultaneously is that Type I

Optimality explanations fail to produce correspondence—otherwise it can be argued that

no evidence has been gained for the assumptions about E. Of course, it is possible that a

different distribution of environments or even a different bounded machine might have

also yielded correspondence.

Type II Ecological Optimality explanations can be thought of as rational analyses in

which ecological environments of adaptation have shaped behavior (Anderson, 1990;

Oaksford & Chater, 1994, 2007), but processing bounds play no role.

2.2.3. Bounded-optimality explanations
The third class of explanation appeals to information-processing bounds: The machine

M with its program space PM implies a set of policies G( �G, that is, a strict subset of the

set of all computable mappings. But the adaptation environment is the evaluation environ-

ment (E ¼ fEevalg). Then solving Eq. 3 derives the best possible policy (and thus behav-

ior) that the bounded agent M could in principle execute in Eeval. To the extent that the

predicted behaviors, policy structure, or mechanisms correspond to what is observed, then

the observations have been explained. Again, a natural explanatory requirement to impose

simultaneously is that Type I Optimality explanations fail to produce correspondence—
otherwise it can be argued that no evidence has been gained for the assumptions about

the bounds of M. Of course, it is possible that a different bounded machine or even a dif-

ferent distribution of environments might have also yielded correspondence.

Examples of Type III explanations in the literature include classic signal detection and

ideal observer analyses (Geisler, 2011; Tanner & Swets, 1954), and the perceptual-motor

control models of Trommershaeuser, Maloney, and Landy (2008) and Wolpert (2007). In

Section 3.1 we provide an example of a Type III analysis with a fairly rich program

space over both cognitive and motor processes.

2.2.4. Ecological-bounded-optimality explanations
The fourth class of explanation appeals to both information-processing bounds and an

ecology of adaptation distinct from the evaluation environment. In notation, G( �G, and
E 6¼ fEevalg. To the extent that the predicted behaviors, policy structure, or mechanisms

correspond to what is observed, then the observations have been explained. A strong

explanatory requirement to impose simultaneously is that changing the OPP by dropping

either the bounds (yielding Type II), the ecology (yielding Type III), or both (yielding

Type I) fails to produce correspondence—otherwise it can be argued that no evidence has
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been gained for the assumptions about combined effects of the bounds and the environ-

ment M. Again, it is possible that a different bounded machine or even a different distri-

bution of environments might have also yielded correspondence.

Ecological-bounded-optimality explanations offer perhaps the richest classes of psycho-

logical theory, although there are fewer clear examples in the literature in this type (how-

ever, see Geisler, 2011, for examples of optimal visual feature selection for performing

object identification tasks, given the statistical properties of natural scenes). In Section

3.2 we illustrate this type of explanation with a model of eye movements in a linguistic

task, where program (strategic) parameters of the model are adapted to the local task

structure, an ecology of experience prior to the task, and the dynamics of the bounded

processing architecture.

3. Three exemplar models

Table 2 gives an overview of the three exemplar models, summarizing the different

elements of the optimal program problem specifications. The first example (Section 3.1),

a model of response ordering in a dual task (Howes, Lewis, & Vera, 2009), illustrates a

bounded optimal (Type III) explanation in which the implications of bounds are explored

by deriving optimal strategies given different architectures for the cognitive component

of response selection. The program space is a combinatoric space of possible production

rule programs that may run on the different machines. Utility is fixed by the quantitative

payoff used in the experiment. The second example (Section 3.2), a model of sequential

eye movements in a linguistic task (Lewis, Shvartsman, & Singh, 2013), illustrates eco-

logical bounded optimality (Type IV) explanation, in which the implications of varying

both bounds and utility are explored, and in which utility is experimentally manipulated

in the human experiments. The ecological adaptation is in the form of priors adapted to

previous experience with English words (approximated by corpus frequencies). The third

example (Section 3.3), a model of the Wason Selection task (Wason, 1966), a simple

conditional reasoning task, illustrates an ecological optimality (Type II) explanation, in

which the implications of both different utility functions and ecologies are explored. This

is a redescription and extension of the rational analysis of this task first advanced by

Oaksford and Chater (1994).

3.1. Bounded optimal response ordering (bounded optimality explanation)

In this section, we illustrate the bounded optimality explanation type by redescribing

Howes et al.’s (2009) analysis of response ordering. The analysis shows that response

ordering in elementary dual tasks can be predicted by defining an OPP that includes inter-

nal information-processing assumptions in the bounded machine. These processes require

computational resources (that are limited), they require time to compute, and they must

be scheduled. The nature of the available resources, whether serial or parallel, has been a

matter of scientific debate, and we describe how a comparison of optimality-based
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analyses each with a different set of resource bounds as inputs to the OPP can inform this

debate.

3.1.1. The psychological refractory period task
Consider a situation in which a verbal response is given to the pitch of a tone and a

manual response is given to a visual pattern. An experimental points regime is imposed

that favors trials on which the two responses are ordered such that the verbal response is

issued before the manual response, and it also favors faster responses over slower

responses. Thus, smaller positive inter-response intervals have the highest reward, but

because of intrinsic noise in the cognitive machine, these small intervals carry a higher

risk of response reversal. Monetary awards are assigned by the experimenter in accor-

dance with the points regime.

This task, known as a Psychological Refractory Period (PRP) task, has been used

extensively in an effort to understand the bounds imposed by cognition on response selec-

tion. Performance is often thought to reveal the presence of a serial bottleneck in

response selection (Pashler, 1998). However, some researchers have argued that the

results reflect strategic choices that participants make in response to the task demands

(Meyer & Kieras, 1997). The debate can be characterized as one in which some believe

that the evidence suggests bounds and others believe that it suggests choices of program

that people make in response to the utility function that people adopt, given the experi-

mental instructions. Here, we define an OPP that captures a specific set of PRP experi-

ments reported in Schumacher, Lauber, Glass, Zurbriggen, Gmeindl, and Kieras (1999).

3.1.2. Step 1: Defining the elements of the optimal program problem
3.1.2.1. Information-processing machine and its bounds: Here, the bounded machine is a

theory of the invariant cognitive-neural architecture in which there are multiple proces-

sors, each of which is capable of executing one or more processes at any one time

(Fig. 3). The duration of each process is a random variable with a Gamma distribution.

Fig. 3(a) represents the constraints imposed by one theory of the bounds, ACT-R (Ander-

son et al., 2004), and Fig. 3(b) represents those imposed by another, EPIC (Meyer &

Kieras, 1997). Each bounded machine in the figure consists of an identical set of processors

and processes, but it differs in whether the cognitive processor has the capacity to select

only one response at any one time (ACT-R) or multiple responses (EPIC). We denote the

machines as MACTR and MEPIC. The set of actions AM for both machines consists of the

manual (button presses) and vocal task responses, and the set of observations OM for both

machines consists of high-level categorized visual and auditory percepts (see Howes

et al., 2009 for details). Thus, the only difference between the two machines is in the

computational architecture that computes the mappings between observations and actions

—so PMACTR 6¼ PMEPIC . Consistent with the production-rule architecture of ACT-R and

EPIC, Howes et al. (2009) formalize both spaces as sets of condition-action pairs, where

conditions may include both the percepts OM, internal memory codes and the internal

states of motor processors, and actions include both the external actions in AM and cogni-

tive actions to set internal memory codes and internal clocks.
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The bounds imposed by the machines include the following: (a) Response to a signal

requires, minimally, a sequence of one perceptual, one cognitive, and one motor process,

each of which has a duration sampled from a particular distribution. (b) In MACTR, but

not MEPIC, the process that selects the manual response cannot start until after the com-

pletion of the process that selects the verbal response. (c) The availability of control sig-

nals between processes imposes bounds on how tightly the manual and verbal responses

can be synchronized. (d) A wait process can be used to slow the response to the visual-

manual task, but its intended duration must be selected prior to the completion of the

auditory task. Other bounds are also possible but not pursued here. Furthermore, a theory

of the bounds for each individual participant can be defined by calibrating process dura-

tion distributions to individual participant task data (Howes et al., 2009).

3.1.2.2. Adaptation environment as ecological environment: Howes et al. (2009)

assumed that, through thousands of trials, participants adapted to the evaluation environ-

ment. Crucially, the evaluation environment provided participants with an explicit feed-

back signal with which it was possible to ascertain the contribution of programs to

utility. To emphasize the equivalence of the adaptation environment to the specific local

evaluation environment in Schumacher et al. (1999), we say Eeval ¼ E ¼ ESchu.

3.1.2.3. Utility function: The utility function U ¼ USchu was set to the monetary points

regime given to the participants (Schumacher et al., 1999). The assumption was that the

subjective utility function adopted by participants corresponded precisely to the objective

utility set by the experimenter. More points were awarded for going fast, but points were

deducted if the two responses were given in the wrong order. Money was awarded to

each participant in proportion to his or her points total at the end of the experiment. Only

(a) (b)

Fig. 3. The multiple dimensions of choice (duration of wait and control signals) for two trials using two

bounded machines. In each panel, there is an auditory task and a visual task. Each requires multiple stages of

processing, including perceptual, cognitive, and motor processing. Each stage duration is stochastic, which is

represented in the figure with cumulative probability of completion in the y-axis. In both panels, the visual

task finishes after the auditory task, indicating that, on this trial, a response reversal was avoided.
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this utility function was considered for the analyses presented here, and it is used for both

bounded machines.

3.1.3. Step 2: Select the optimal programs
The optimal programs can be derived for each machine according to Eq. 3, instantiated

here for each machine:

hMEPIC;P�MEPICi ¼ fhMEPIC;P
�ig ¼ arg max

P2PMEPIC

Eh�ðhMEPIC;Pi;ESchuÞ
n
USchuðhÞ

o
ð4Þ

hMACTR;P�MACTRi ¼ fhMACTR;P
�ig ¼ arg max

P2PMACTR

Eh�ðhMACTR;Pi;ESchuÞ
n
USchuðhÞ

o
ð5Þ

Given the OPP, the set of optimal programs must order and select processes that result in

an optimal inter-response interval (IRI). Optimal programs are those that select schedul-

ing signals and a wait process duration that maximizes the utility by balancing the

weighted cost of response reversals with the weighted cost of delayed responses—both of

which are stochastic. A key emergent property of a given program is the inter-response
interval (IRI). Fig. 4 plots utility against IRIs of a space of programs, exposing the funda-

mental trade-off of speed and accuracy for these machines and this task.

3.1.4. Step 3: Derive the predictions of the optimal programs
Predictions of the optimal programs were derived by conducting Monte-Carlo simula-

tion of the optimal programs (i.e., sampling histories) on ESchu.

3.1.5. Step 4: Compare predictions with observed behavior
We examined the correspondence between the predictions derived from each theory of

the bounds and observed human data reported by Schumacher et al. (1999). An analysis

of correspondence between models and data from four experiments was reported by

Howes et al. (2009). The results of one of these analyses are illustrated in Fig. 4.

The results showed that the average prediction of the response duration for the second

task across four experiments had mean R2 values of 89%, 84%, 77%, and 85% (Howes

et al., 2009). The results also show that the serial bounded machine generated signifi-

cantly lower differences between observed and predicted response times than the parallel

bounded machine. However, optimal programs for both machines qualitatively reproduced

the classic PRP dual-task interference effect.

3.1.6. Discussion
Two theories of the resource limits on how people process responses to simple stimuli,

one with serial response selection and one parallel, were expressed as OPPs. The optimal

programs derived as solutions to these OPPs predict inter-response-intervals and their cor-

respondence to human data were measured. Differences in the level of correspondence

achieved by the two theories suggested that the serial model offers better predictions than

295 R. L. Lewis, A. Howes, S. Singh / Topics in Cognitive Science 6 (2014)



the parallel model (Howes et al., 2009). But because both machines produce the qualita-

tive dual-task slowing, the analysis suggests that this slowing itself cannot be taken as

the empirical signature of a serial response bottleneck.

Furthermore, in the one experiment with sufficient individual variation, defining OPPs

at the level of varying individual participant architectures (by calibrating process duration

distributions on data other than that to be explained) yielded individual models that

accounted for a significant proportion of between-participant variation. This provides fur-

ther evidence that the human behavior represents an adaptation to the bounds of the pro-

cessing architecture.

3.2. Adaptive eye-movement control (ecological bounded optimality explanation)

We turn to a model of visual attention, which provides direct evidence for adaptation

to variation in utility, and also illustrates an explanation grounded in ecological
bounded optimality. This is a re-description of a model of sequential eye movements in

an elementary word reading task, and an associated set of experiments with human par-

ticipants performing the task while their eye movements were monitored (Lewis et al.,

2013).

Because the model integrates control of saccades and control of task-level responses, it

provides a way to explore how low-level eye-movement decisions are influenced by

higher level task goals. Optimization of task utility provides the analytic means to trans-

late variation in goals into millisecond-level variation in eye-movements. More specifi-

cally, the theoretical claim explored here is that eye-movement strategies in reading are

(a) (b)

Fig. 4. The utility of programs plotted against the inter-response interval (IRI). (a) is for a bounded machine

with a serial response selection bottleneck (ACT-R); (b) is for a bounded machine without such a bottleneck

(EPIC). The utility of programs in each program space is plotted. The human data in both panels are from

Schumacher et al. (1999) Experiment 2, with 95% confidence intervals. The shortest IRI is achieved by a

model that executes the two tasks entirely in parallel with no interference, but neither architecture can

achieve this and, regardless, utility is low because of reversals. The bounded optimal programs for each

machine are the programs that achieve the highest utility and their mean utility is plotted with 95% C.I.s.

The bounded optimal programs for the serial bounded machine are a better predictor of the human data than

the bounded optimal program for the parallel bounded machine—although optimal programs for both
machines reproduce the classic PRP dual-task interference effect.
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precisely adapted to the joint constraints of (a) local task structure, including differential

pressures on speed and accuracy; (b) the natural ecology of words, approximated by lexi-

cal frequencies in linguistic corpora; and (c) oculo-motor processing architecture, includ-

ing temporal dynamics and perceptual/representational noise.

3.2.1. The List Lexical Decision Task
The List Lexical Decision Task (LLDT) is a simple extension of a paradigm introduced

by Meyer and Schvaneveldt (1971). On each trial, participants are presented with a list of

alphabetic character strings and must make a single decision: Does the list contain only

words, or is there a nonword in the list? In the human and modeling experiments summa-

rized below, there are six strings in a horizontal array; each string is four letters long.

There is at most one nonword per list and no words are repeated in the same list. Fig. 5

shows the stimulus for a typical “all-words” trial.

3.2.2. Step 1: Defining the elements of the optimal control problem
3.2.2.1. Information-processing machine and its bounds: The machine bounds consist of

a small set of independently motivated assumptions about the architecture of saccadic

control, decision-making, and motor control: (a) saccadic control is a “rise-to-threshold”

system (Brodersen et al., 2008) conditioned on task-specific decision variables that

Fig. 5. Simulated model trace for a correct word trial (adapted from Lewis et al., 2013). The filled rectangles

show the timing and duration of fixation durations, saccade programming (prog), eye-brain-lag (EBL), per-

ceptual sampling, and motor response preparation and execution. At the bottom is the random walk of the

belief probabilities, with the bottom representing 0 and the top 1. The black line is the trial-level belief (and

so starts at 0.5), and the red lines are the string-level beliefs (and so start at 0.82, the prior probability that a

given string is a word).
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reflect the integration of noisy evidence over time; (b) there are separate decision vari-

ables for the control of saccades and task decisions indicated by motor presses; and (c)

the perceptual, oculomotor, and manual motor system has specific dynamics that place

limits on information-processing rates. These properties include saccade programming

duration, eye-brain-lag, saccade execution duration, manual motor programming duration,

and representational noise. Lewis et al. (2013) describe how they are motivated by prior

empirical and theoretical work on eye movements in reading (Engbert, Nuthmann, Rich-

ter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009) and immediate response tasks

(Meyer & Kieras, 1997). Only the representational noise parameter is not fixed in

advance; we describe below how this parameter is set.

The machine properties can be understood by tracing the dynamics of processing in a

single trial, as shown in Fig. 5. The first fixation starts on the leftmost string. During each

fixation, noisy information about the fixated string is acquired at every timestep, with

some delay (the eye-brain-lag, VanRullen & Thorpe, 2001). This information is used for

a Bayesian update of beliefs about the status of the current string and the whole trial.

The sampling continues until either the string-level or the trial-level belief reaches some

threshold, at which point either a saccade is initiated (if the string-level saccade threshold
is reached), or a manual response is initiated (if the trial-level decision threshold is

reached). Information acquisition continues while the saccade or manual response is being

programmed and until the saccade begins execution. Once saccade programming and exe-

cution is complete, the model fixates on the following string (if there are strings remain-

ing) or initiates a response otherwise.

How the machine is bounded may be appreciated by considering the nature of the

unbounded program space �G and the bounded subset G. The action set AM consists of

three actions: {move-eyes-to-next-string, push-button-yes, push-button-no}. The observa-

tions OM may be defined in one of two ways: as noiseless, thereby ascribing noise to the

agent as a bound, or noisy, thereby ascribing noise to the environment. We adopt the lat-

ter formulation for the analytic purpose of understanding the effects of the machine

dynamics as bounds. Thus, the unbounded program space consists of all possible map-

pings from history of observations and actions to probabilities of selecting the three

actions: (OA)tO9A?[0,1]. The program space for the bounded machine defined above

consists of all possible threshold pairs 〈[0,1],[0,1]〉, which intensionally defines a subset
G of all possible mappings �G. Crucially, this subset is determined by the temporal dynam-

ics of the perceptual and motor architecture described above. It must be a strict subset

(G( �G) because the optimal program for the unbounded machine may condition its sac-

cade and motor actions on all information obtained up to the time step immediately

before the action, while the bounded machine imposes noisy delays that do not permit

this optimal conditioning on history. Rather than attempt to analytically derive properties

of this subset, we simulate performance of the optimal programs for the bounded and

unbounded machines.

3.2.2.2. Adaptation environment as ecological environment: Lists of six unrelated four-

letter strings do not have a natural ecology, but individual words do. The model assumes
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that the adaptation environment has the structure of the local task (lists of six string

strings; half of lists contain a nonword in a position chosen uniformly randomly), but that

the distribution of the four letter words in the lists mirrors their frequency in the broader

linguistic experience of the participants. We approximate this frequency via corpus fre-

quency counts and this information is encoded in the priors in the model’s lexicon; in this

way, the optimal programs are adapted to this ecological word distribution.

3.2.2.3. Utility functions: As in the Response Ordering model, the utility function is

derived directly from the payoff scheme used in the experiments. In the experiments and

models reported in Lewis et al. (2013), there were three distinct payoffs that imposed dif-

ferent speed–accuracy trade-offs. We refer to the utility functions based on these three

schemes as Uspeed (weighted toward speed), Uacc (weighted toward accuracy), and an

intermediate function Umedium. All three utility functions depend only on the manual but-

ton press, not the history of eye movements.

3.2.3. Step 2: Select the optimal programs
We are interested in deriving optimal programs for each of the three utilities Uspeed

(weighted toward speed), Uacc (weighted toward accuracy), and the intermediate func-

tion Umedium. We derive optimal ecological bounded programs, varying the bounds con-

cerning dynamics constraints to explore their implications (this variation is described

below).

The optimal programs were found through an exhaustive grid search over the two

thresholds values, using Monte-Carlo simulation to determine expected utility. Optimal

saccade and button-press thresholds were both higher under utility Uaccuracy, because rais-

ing thresholds trades speed for accuracy. Fig. 6, upper left panel, shows a portion of the

payoff surface over the two dimensional threshold space, for Uaccuracy, with optimal points

identified. The horizontal axis is saccade threshold, and each separate line corresponds to

a different manual response threshold.

3.2.4. Step 3: Derive the predictions of the optimal programs
Once the optimal programs (thresholds) are determined, the behavioral predictions

follow. Because the model both performs the task and controls the eyes, it yields a

wide range of predictions, including overall RTs for correct and incorrect trials, single-

fixation durations, frequency effects, accuracy effects, lexical-status effects, list position

effects, and their modulation by task payoff. One parameter is not fixed in advance: the

variance of the mean-zero Guassian noise added to the perceptual samples. We

explored a range of such noise settings and computed optimal policies across this

range, and then compared the resulting behavioral predictions to the human data as

described next.

3.2.5. Step 4: Compare predictions with observed behavior
We focus here on those comparisons that illustrate how evidence was obtained bearing

on the three key theoretical assumptions (a)–(c) above.
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3.2.5.1. Adaptation to local task payoff: Fig. 6 (bottom row, left panel) provides a view

of the payoff surface for all three utilities, expressed over one of the behavioral outcomes:

single fixation durations (SFDs). This view exposes a key prediction of the model: adapta-

tion to changes at the highest level of task definition—task-level utility—should express

itself as changes at the lowest levels of saccadic control, manifest in SFDs. Fig. 6 (bottom

row, middle panel) replots the predicted SFDs for the optimal and near-optimal programs

in the three payoffs; the top row, middle panel, shows the empirical SFDs recorded in the

human eye-tracking experiments; the reliable difference between the speed and accuracy

conditions confirms the key prediction.

3.2.5.2. Adaptation to the natural ecology of words: Evidence for ecological adaptation

is obtained by assessing the correspondence of lexical frequency effects predicted by the

model to those observed in the human participants. Fig. 6 (bottom row, right panel)

shows the predicted SFDs for high- and low-frequency words: Because higher frequency

words have a higher prior belief, they need fewer samples to reach the saccade decision

Fig. 6. A subset of modeling outcomes and human participant performance on the List Lexical Decision

Task; see text under Steps 2, 3, and 4 for details.
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threshold. This effect is borne out in the human data (Fig. 6, top row, right panel). The

success of this prediction and the nature of the explanation are inherited from Bayesian

Reader (Norris, 2009), an unbounded sequential-sampling model. However, the precise

quantitative predictions are sensitive to the bounds of the oculomotor machine, as we

describe below. Indeed, with sufficient pressure on speed, the model predicts no fre-

quency effect because a saccade program is initiated as soon as possible—before any

samples are obtained.

3.2.5.3. Adaptation to oculo-motor processing architecture: Evidence for adaptation to

the oculo-motor constraints is obtained by varying these processing constraints in the

model and then re-deriving the optimal programs. Most crucial is the comparison of pre-

dictions of the optimal ecological program without the dynamics constraints. Recall the

assertion that G( �G. We now wish to determine whether this strict subset relation mani-

fests in differences in the predictions of the optimal programs, and which of the predic-

tions corresponds best to the human data. Fig. 7 plots deviation from human data (SFDs

for the three payoffs; however, other measures and aggregations of measures produce

similar results) for the machine without dynamics bounds and three kinds of machine

incorporating successively more constraints on dynamics. This deviation is plotted against

variation in the free noise parameter. The key result is that the predictions of the fully

bounded machine corresponds best to the human data, and the machine without dynamics

constraints is worst, even allowing for the noise parameter to be chosen for each machine

to provide the best fit.

Fig. 7. Root mean squared error of model predictions (against mean single fixation duration [SFD] for the

three payoff conditions) for four architectural variants. Optimal control policies are derived separately for

each architecture. In red is the bounded machine architecture and includes saccade programming, eye-brain-

lag, and saccade execution. The machine without dynamics bounds has none of these delays but does retain

noise in perceptual samples. The other two models explore the effect of including and excluding the saccade

programming delay but retaining delays imposed by saccade execution and eye-brain-lag.
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3.2.6. Discussion
The List Lexical Decision model is an example of an ecologically bounded optimal

explanation. It provided a rigorous way to derive and test the implications of the theoreti-

cal assumption that eye-movement control is jointly shaped by local task payoff, the

bounds imposed by the oculomotor processor, and the ecology of words in linguistic

experience. The necessity of the bounds was demonstrated by removing them and analy-

zing the consequences for correspondence with human data. The adaptation to task payoff

was demonstrated empirically by showing that human participants changed their saccadic

control at the level of fixation durations. The adaptation to the ecology of prior experi-

ence with words was demonstrated by the qualitative and quantitative correspondence of

human data with the model’s predicted frequency effects.

The model brings together three threads of research: (a) mathematical models of eye

movement control in reading, which typically define an architecture, which is parameter-

ized and then fitted to account for data (Engbert et al., 2005; Reichle, Rayner, &

Pollatsek, 2003); (b) work on how higher level task goals shape eye movement strategies

(Ballard & Hayhoe, 2009; Rothkopf, Ballard, Hayhoe, & Regan, 2007; Salverda, Brown,

& Tanenhaus, 2011); and (c) Bayesian sequential sampling models of lexical processing

and perception (Norris, 2006 2009; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).

Finally, although this was a machine designed for the LLDT task, note that it is simply

an instantiation of a more general architecture for the control of active perception and

motor output in service of task goals, one that decomposes the problem into optimal state
estimation and optimal control.

3.3. Reasoning with conditionals (ecological optimality explanation)

Here, we illustrate an explanation grounded in ecological optimality with a new

description of Oaksford and Chater’s (1994) seminal account of how people reason with

conditional rules in the Wason selection task (Wason, 1966). The poor performance on

this task exhibited by most people was thought to reveal systematic shortcomings in

deductive reasoning capacities. Oaksford and Chater’s contribution was to provide an

alternative explanation based on assumptions about the ecology and utilities that would

shape such reasoning capacities. Under these assumptions, Oaksford and Chater argued,

the responses most people give to the task can be seen as rational. We now redescribe

their analysis by developing it as an OPP, making explicit in a compact form the key

assertions and nature of the prediction.

3.3.1. The Wason selection task
Participants were presented with four cards, each with a digit on one side and a letter on

the other. They were then asked to verify that a rule holds, e.g., if there is a letter A on one
side, then there is a 7 on the other. They were instructed that they should pick only the cards
that they must turn over to verify the rule. Participants were asked to report which cards they
would turn over, but not to actually turn cards. There was only one trial and participants did

not see the results of turning cards; there was therefore no opportunity for sequential
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decision making or learning from feedback. Given that the four cards show an A (p card), a

K (¬p card), a 7 (q card), and a 2 (¬q card), the correct response, to verify the rule, is to

select only the p and the ¬q card. However, only a very small number of the participants

made this response; many more selected the p and q cards.

3.3.2. Step 1: Defining the elements of the OPP
3.3.2.1. Unbounded machine: We define the available actions AM as seven of the possi-

ble responses (card selection sets): {none, p, q, p and q, p and ¬q, ¬p and ¬q, ¬p and q}.
The initial observation is always four cards with visible properties p, q, ¬p and ¬q. There
are no further observations and so the unbounded program space �G is simply the set of

all policies G : AM ! ½0; 1�.

3.3.2.2. Adaptation environment as ecological environment: The assumption that Oaks-

ford and Chater (1994) made about the ecological environment was that the properties that

figure in causal relationships are rare in the environment (for example, when reasoning

about the relationship of diseases and symptoms, both the diseases and symptoms are rare).

We explore the consequences of this assumption by creating two adaptation environments:

one in which the properties p and q are relatively rare (setting the unconditional probability

that an object has either property as Pr(p) = Pr(q) = 0.1), and one in which the properties

are relatively more common (Pr(p) = Pr(q) = 0.6). We denote the two adaptation environ-

ments as Erare and Ecommon. More precisely, Erare and Ecommon consist of a distribution of

four-tuples of objects o with visible properties 〈p, q, ¬p,¬q〉, and “hidden” properties deter-

mined by Pr(q), Pr(p), Pr(¬q) and Pr(¬p), respectively.

3.3.2.3. Utility functions: We consider two utility functions. U info awards utility in pro-

portion to the information gained by turning each card (using the measure of Oaksford

and Chater (1994); see Supporting Information). Uverify reflects the standard construal of

the Wason task as rule verification: A person should select only those cards that allow

the rule to be falsified for the current set of cards. Uverify awards 100 points for a correct

declaration (i.e, p and ¬q) and 0 otherwise. U info is meant to capture what is useful (and

therefore what drives adaptation) in the ecological environment, and Uverify is meant to

capture what is useful in the particular setting of the Wason task. By evaluating the four

combinations of utility and environment, we can determine their sufficiency (and, in part,

necessity) for accounting for behavior.

3.3.3. Step 2: Select the optimal programs
Because there is only one action and an invariant initial observation, we determine the

optimal program by calculating the expected utility of each of the seven actions; the

optimal program chooses with probability 1 the action a* with the highest expected utility:

a� ¼ arg max
a2AM

Eo�E
n
UðoaÞ

o
: ð6Þ
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G�ða�Þ ¼ 1;G�ðaiÞ ¼ 0;8ai 6¼ a� ð7Þ

where UðoaÞ is the utility obtained when taking action a upon observing the four-tuple o.
We do this separately for each combination of the two utility functions (U info;Uverify)

and the two ecological environments (Erare; Ecommon). Table 3 provides the expected utility

(calculated analytically; see Supporting Information) of the two actions corresponding to

choosing p and q, and p and ¬q for all four combinations (the other five actions, not

shown, always yielded lower utility).

3.3.4. Step 3: Derive the predictions of the optimal programs
What is immediately evident in Table 3 is that choosing p and q is optimal when the

utility function is information gain and the ecological environment has rare properties;

this is Oaksford and Chater’s main result. This model predicts that all participants will

select p and q because it is the optimal solution to the specified control problem. In every

other combination of utility and environment, p and ¬q is the optimal, and thus predicted,

choice.

3.3.5. Step 4: Compare predictions with observed behavior
How well do the models predict the proportion of each subset of cards selected by par-

ticipants? In a study reported by Johnson-Laird and Wason (1970), the responses were as

follows: p and ¬q, accounted for 4% of responses; p and q, 46%; p only, 33%; the indi-

vidual cards p, q, and ¬q, collectively 7%. The primary concern of Oaksford and Chater

was to explain why the largest proportion of participants selected the p and q cards. The

model assuming rarity of properties (Erare) and information gain utility (U info) provides

better correspondence than either of the three alternative models; it is the only model that

yields p and q as the optimal.

But not all participants choose p and q; there is considerable individual variation.

While we do not present details here, this analysis can be extended to capture such varia-

tion. Some individual variation may be due to adoption of different utility functions.

Table 3

Exploring the implications of variation in utility and ecology in the Wason Selection Task. Table entries are

the expected utility of two different card selections for two utility functions (information gain and verifica-

tion) and two ecological environments (rare properties and common properties; see text for definitions). The

other five actions (possible card choices) all have lower utilities in each of the four cases. Assuming informa-

tion gain utility and rare properties, the highest utility action is to turn over cards p and q, which corresponds

to 46% of the human data (Oaksford & Chater, 1994)

Information Gain Utility (U info) Verification Utility (Uverify)

Action Erare Ecommon Erare Ecommon

p and q 36.43 46.34 99 76

p and ¬q 30.29 86.31 100 100
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While the modal function appears to be information gain, it is also possible that some

participants, perhaps the 4% observed by Johnson-Laird and Wason (1970), do adopt the

verification function. Second, some individuals will be more sensitive to the time costs of

thinking and responding than others. Differences in the utility of time costs can explain

why some participants select only the p card and no other card.

3.3.6. Discussion
Oaksford and Chater’s claim (and ours) is not that people perform optimization to

work out the best possible program. This can be seen in the form of Eq. 6: the “arg max”

implicates work done by the analyst, not the human or organism being modeled. Rather,

the claim is simply that the program that determines the response to the evaluation envi-

ronment is optimal for the ecological environment. The computation may have been

accomplished by some combination of biological evolution, cultural transmission and

evolution, and individual learning.

Note that the model is not an ideal observer/actor in a local environment. Rather, the

contention is that data selection (choice of cards) can be predicted by defining the optimal

program problem faced in ecological environments and that this manifests behavior that

is apparently suboptimal in particular evaluation environments.

4. Discussion and conclusion

In summary, we have presented computational rationality as a framework for formulat-

ing and working with optimality-based theories of human behavior that yields a type of

explanation in which top-down rational approaches and bottom-up mechanism approaches

are unified. It is an application of bounded optimality (Russell & Subramanian, 1995) to

the challenges of developing psychological theory. The framework provides a way of pur-

suing the idea that behaviors are generated by cognitive mechanisms that are rationally

adapted to the structure of both the mind and the environment. Theories are specified as

Optimal Program Problems (OPPs). Such a specification demands three inputs: (a) an

adaptation environment, (b) a bounded machine, and (c) a utility function. Given these

inputs, a set of optimal programs are derived and provide the solution to the OPP, which

determines a set of behavioral predictions. The solutions to OPPs provide a rational

answer to the question: What should an agent with some specific information-processing
mechanisms do in some particular environment? Correspondence with human data can be

ascertained and comparisons made with alternative OPP-specified theories that vary the

three components of the OPP.

We illustrated the framework with three examples, each of which illustrated theory com-

parison. The first example was an analysis of response ordering (Howes et al., 2009), which

made explicit a comparison between alternative theories of mechanisms underlying

response selection (serial vs. parallel). The second example, an analysis of eye movements

in a simple reading task, made explicit a comparison between alternative theories of mecha-

nisms of saccadic control, and provided evidence for adaptation of this control to variation
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in utility (Lewis et al., 2013). The third example was a redescription of Oaksford and Cha-

ter’s (1994) analysis of the Wason selection task that made explicit the comparison between

alternative theories of the adaptation environment (rare vs. common) and, in addition, alter-

native theories of the utility function (information gain vs. verification).

The first and second examples illustrate how theories of the internal structure of the

organism, that is, theories of the information-processing mechanism, can be informed by

a bounded rational analysis. This was achieved in two ways: first, through the explicit

derivation of the implications of different theories of the cognitive machine, thereby

informing the choice of machine; and second, through the derivation of the optimal pro-

grams themselves, thereby informing the choice of the task-specific mechanisms underly-

ing behavior. They also illustrate how bounded optimal and ecologically bounded optimal

explanations differ from other rational explanation types. Unlike ecologically optimal

explanations (e.g., Anderson, 1990), these explanations do not emphasize the role of the

environment over the role of mechanisms. Neither do they involve determining rational

functions as a guide to thinking about what mechanisms might be good approximations

to these functions (Griffiths et al., 2012). In addition, the examples also illustrate the dif-

ferences between bounded optimal and ecologically bounded optimal explanations and

many mechanism approaches to explaining behavior. The fact that implied behavior is

determined through optimization rather than through informal inference, or fitting,

increases the rigor with which theories of the mechanisms can be tested. Utility maximi-

zation reduces the likelihood that behaviors which are the consequence of discretionary

strategies are taken as evidence revealing of invariant mechanisms. This was made very

clear in the analysis of the PRP task, where both the bounded optimal serial and parallel

models produced qualitative patterns thought to indicate the presence of a serial

bottleneck.

The unification of rational and mechanism approaches to psychological theory that we

have illustrated turns on showing that the two can be joined with optimal programs. Here,
we briefly highlight two key theoretical insights associated with optimal programs:

1. Behaviors are generate by organism-internal constructs: programs. Programs run-

ning on machines compute behavioral policies. Behaviors are not directly shaped

by adaptive pressures; programs (mechanisms) are shaped. This last insight is also

the basis of the emerging field of “evo-mecho” (McNamara & Houston, 2009),

which focuses on understanding how evolution shapes mechanisms for generating

behavior, rather than behavior itself.

2. Programs (and so only indirectly behaviors) are shaped by both information-pro-

cessing mechanisms and environment structure. Deriving the consequences of these

joint constraints is accomplished with the analytic tool of optimization. When

policies are intensionally represented by programs running on specific information-

processing machines, they are then assertions about “how” those policies are com-

puted, hence “how” behavior is generated.

The framework is thus not theory agnostic; it carries these assertions. Like any

framework (vs. a specific model), it cannot be falsified; it can only be more or less
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useful. In fact, the framework can be seen as a sequential control generalization of sig-

nal detection theory (Tanner & Swets, 1954) (see Table 1), which has in fact been use-

ful for 50 years. Where signal detection theory specified an optimal program as a scalar

parameter, the proposed approach admits optimal programs that are any arbitrary algo-

rithm executable, given the specified information-processing mechanism. This is a view

that places the (utility-maximizing) control of behavior as the central problem faced by

the organism.

We conclude with a brief comparison of computational rationality to existing theoreti-

cal “levels” frameworks in cognitive science and with Bayesian approaches to modeling.

Chomsky (1965), Marr (1982), and Newell (1982) all advocate for an approach to cogni-

tive science theory that distinguish useful levels of abstraction, but they differ in impor-

tant ways. Marr (1982) advocates that the cognitive scientist start with a characterization

at the computational level of what function is to be computed (the function from input to

output, e.g. from 2 D percepts to 2 and 1/2 D sketch) and only once this is stated start to

think about how these functions are implemented. Starting with a specification of func-

tions is a standard top-down approach that is used in cognitive science as discussed ear-

lier (e.g. Anderson, 1990; Griffiths et al., 2012; Oaksford & Chater, 2007). The

framework advanced here is also a top-down approach, but rather than starting with a

specification of function, it starts with a specification of utility. In this approach, the func-

tion—here the mapping from observations to actions—is not fixed at the start of the

analysis; rather, it is derived (see the derivation of functions G� in Eqs. 3 and others in

Section 2.2). The “what” is the derived mapping from observations to actions; the “how”

is the (derived) program running on the machine.

Chomsky (1965) advocates that the scientist respect a distinction between competence
and performance, where the former represents an abstract characterization of the organ-

ism’s internal capacities to generate behavior (but does not represent the behavior itself),

while the latter is concerned with the expression of those capacities as behavior in partic-

ular settings. In the computational rationality framework, this distinction is respected:

Derived programs are precisely abstract characterizations of competence, and perfor-

mance is what those programs do in particular environments, given the constraints of the

machine. For example, errors or slips might arise during execution of the program

because of process noise in the machine or stochasticity in the environment. But these

errors and slips need not be intrinsic properties of the programs themselves. Furthermore,

it is possible to inquire about how such programs might express their capacities on

machines with different bounds—just as Chomsky (1965) famously argued that our inter-

nal grammatical competence can generate unbounded self-recursive structures, even

though the expression of this capacity behaviorally is prevented by our bounded

memories. But unlike earlier competence theories in linguistics, in the computational

rationality approach the competence-as-program is derived—not posited—as an adaptation

to the joint constraints of machine and environment.6 Again, the starting point is utility.

Newell (1982) advances a systems-level analysis of organisms in which each level

approximately implements the one above, with the highest level (for humans) being the

knowledge level, where the principle of action selection is rationality (take the best action
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to achieve current goals given the current knowledge). It differs from Marr’s and

Chomsky’s approach in emphasizing rational choice at the highest level, and in this

respect, it is more closely aligned with the utility-maximization view of computational

rationality. But in Newell’s approach, what is rational at the knowledge level does not

take into account the mechanism bounds at lower levels (and so in this respect like clas-

sic rational analysis; Anderson, 1990; Oaksford & Chater, 2007). The framework

advanced here can be understood as a way to allow rationality to do work at any arbitrary

level of mechanism abstraction.

Finally, we note that nothing in the computational rationality framework is at odds

with Bayesian inference as a way of computing the solutions to unbounded (Type I and

Type II in Section 2.2 above) problems that receive a natural Bayesian formulation, or as

a way of abstractly specifying subcomponents of an information-processing machine.

Indeed, we adopted Bayesian inference as one component of the eye-movement model

presented in Section 3.2. But computational rationality does differ from the top-down

rational analysis approach associated with the Bayesian approach to cognition, for the

reasons outlined above: The starting point is utility, not function; both mechanisms and

functions are derived; and rationality does not abstract away from mechanism, but rather

is defined in terms of it.

In summary, we have described and illustrated a framework, computational rationality,

for formulating theories that explore the idea that behaviors are generated by cognitive

mechanisms that are rationally adapted to the structure of both the mind and the environ-

ment. In this framework, utility maximization is used to derive optimal programs that

execute on bounded information-processing architectures, which then determine the

behavioral predictions of those architectures, and which are themselves derivations of

cognitive mechanisms. The approach builds especially on the insights of signal detection

theory (Tanner & Swets, 1954) and bounded optimality as advanced in AI (Russell &

Subramanian, 1995), offering utility maximization as an analytic link between mechanism

and behavior. It yields a class of explanation—Ecologically Bounded Optimality—that

maintains the rigor and explanatory power of rational analysis in understanding behavior,

but that reformulates the problem of rationality by taking into account information-

processing bounds.
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Notes

1. As we make clear in Table 1, signal detection theory had forms of many of the

key elements of the analyses we advocate here.

2. Bounded rationality is usually associated with a rejection of optimality-based analy-

ses, but Simon (1955) lays out a characterization of bounded rationality very close to

the one we present here: “. . . we must be prepared to accept the possibility that what

we call ‘the environment’ may lie, in part, within the skin of the biological organism.

That is, some of the constraints that must be taken as given in an optimization prob-

lem may be physiological and psychological limitations of the organism (biologically

defined) itself. . . . Limits on computational capacity may be important constraints

entering into the definition of rational choice under particular circumstances.”

3. Baron and Kleinman (1969) derived joint optimal attention strategies and manual

control strategies for a tracking task, given constraints on parafoveal vision and

noisy motor control.

4. Although Anderson’s rational analysis as it has been usefully pursued (and summa-

rized in Anderson’s own later work; Anderson, 2007) abstracts away from cogni-

tive mechanism, the original informal method of rational analysis includes a step

for including the computational constraints of the agent.

5. Whether any predicted behavior is described as learning, or whether the machine M
has mechanisms that may be described as learning (or even optimization) mecha-

nisms, are not distinctions explicitly recognized by the framework, although they may

be of interest to the scientist. The definition of G is general enough to admit of arbi-

trary knowledge, Bayesian or otherwise, that determines the mapping. For example,

the mapping could be the result of a specific Bayesian decision-making algorithm

with some specific prior knowledge about the world. There are no constraints on the

algorithm used and the prior knowledge available in determining G.
6. Chomsky’s own recent theoretical syntax work (e.g., Chomsky, 2005) explores the

possibility that grammatical competence is shaped by properties of extra-linguistic

cognitive architecture. In fact, he advances the conjecture that syntax may be a

near perfect solution to these constraints. The approach advocated here may pro-

vide a rigorous analytic tool to explore this conjecture; see Bratman, Shvartsman,

Lewis, and Singh (2010) for related work.
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