
Type-Safe Multithreading in Cyclone ∗

Dan Grossman
Computer Science Department

Cornell University
Ithaca, NY 14853

danieljg@cs.cornell.edu

ABSTRACT
We extend Cyclone, a type-safe polymorphic language at
the C level of abstraction, with threads and locks. Data
races can violate type safety in Cyclone. An extended type
system statically guarantees their absence by enforcing that
thread-shared data is protected via locking and that thread-
local data does not escape the thread that creates it. The
extensions interact smoothly with parametric polymorphism
and region-based memory management. We present a for-
mal abstract machine that models the need to prevent races,
a polymorphic type system for the machine that supports
thread-local data, and a corresponding type-safety result.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—concurrent programming structures, polymor-
phism; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—operational semantics

General Terms
Languages

Keywords
data races, types, Cyclone

1. INTRODUCTION
Writing safe and robust low-level code is difficult; writing

safe and robust low-level multithreaded code is more diffi-
cult. In particular, it takes great care to avoid data races
(one thread accessing data while another thread writes the
data), but a single race can leave data in an inconsistent

∗This research was supported in part by the AFOSR, un-
der grants F49620-00-1-0198 and F49620-00-1-0209. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author and do
not necessarily reflect the views of this agency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TLDI’03, January 18, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-649-8/03/0001 ...$5.00.

state. Because such races might not occur during testing,
static systems that prohibit races are valuable.

1.1 Cyclone Needs Race Detection
Cyclone [10, 22] is a type-safe polymorphic programming

language that is very close to C. To date, Cyclone has al-
lowed only single-threaded programs, but the domain where
Cyclone should prove most useful (low-level and legacy sys-
tems with C-style data representation and resource manage-
ment) has many multithreaded applications. For this reason
alone, extending Cyclone’s type system to prevent data races
would be useful for programmers.

Preventing data races can be even more important: If
the target architecture cannot update a source-level pointer
atomically, a data race can corrupt a pointer, which vio-
lates type safety. If we can translate pointers to machine
addresses (as in Cyclone), then this situation arises only
if a shared-memory multiprocessor does not ensure atomic
writes to memory words.

However, even a system with atomic access for pointers
is insufficient because safety can require writing multiple
words without an intervening access. For example, Cyclone
programmers can define struct types where one field holds
bounds information for an array that another field points to.
Updating such records (to refer to shorter or longer arrays)
is an important feature, but we must forbid access while the
bounds information does not describe the array.

In short, we have three compelling reasons to use a type
system to guarantee the absence of data races:

1. Many programs are not supposed to have races, so
static assurances increase reliability.

2. If the updating of references may not be atomic in the
implementation, races can corrupt pointers.

3. Type safety can require writes to multiple memory lo-
cations before another thread reads any of them.

From the perspective of designing a type-safe language, the
first is “optional,” but the others are “mandatory.” These
reasons are not peculiar to Cyclone; they deserve consider-
ation for any safe, low-level, multithreaded language.

1.2 Lock Types to the Rescue
Determining if a multithreaded program has data races

is trivially undecidable, but a sound type system can en-
force mutual exclusion on access to shared memory. Flana-
gan, Abadi, and Freund have designed such systems for a
small, simply typed, imperative language [14], an object

13

calculus [13], and Java [15]. An implementation of the Java
system analyzes large programs, needs only very sparse code
annotations, and has found many races. This work inspired
multithreaded Cyclone; the rest of this paper explains how
we adapt and extend the approach to our language.

Flanagan et al.’s main contribution is a collection of type
systems that enforce a discipline in which programmers as-
sign each data object a lock that a thread must hold to access
the data. The enabling typing technologies are singleton lock
types,1 quantification over lock names, and held-lock effects.

Section 2 explains these concepts in Cyclone terms. In
brief, we have compile-time lock names for run-time locks.
Each lock type and pointer type includes a lock name. Two
lock types with the same lock name describe the same run-
time lock (hence the term singleton). A pointer type’s lock
name indicates a lock that mediates access to the pointed-to
data. A syntax-directed static analysis checks that a thread
accesses data only if it holds the appropriate lock. Quanti-
fied types let functions be polymorphic over lock names and
let data structures abstract over locks that guard their data.
Function types include effects describing locks that callers
must hold for a function call.

A crucial practical addition is a notion of thread-local data.
Such memory does not need a lock, but the type system must
enforce that only one thread uses the memory. Thread-local
data is often the rule, not the exception. Such data makes
programs easier to write and more efficient. Boyapati, Lee,
and Rinard’s system [4, 5] for race prevention in Java allows
lock-name parameters to be instantiated with a special name
for thread-local data. That way, one library can let clients
pass thread-local or shared data to it.

1.3 Contributions
Our type system makes several contributions beyond ap-

plying previous work to a safe C-like language:

1. It is a second-order type system. Cyclone’s parametric
polymorphism complicates the language for held-lock
effects in ways that object types do not. Fortunately, a
solution analogous to earlier work integrating polymor-
phism with explicit memory-management effects [21] is
useful, particularly with “caller locks” idioms.

2. Callers can pass a special “nonlock” with thread-local
data to callees that use a “callee locks” idiom. This
addition allows more code reuse than Boyapati et al.’s
system while requiring only a simple unsynchronized
test in the thread-local case.

3. Cyclone threads are safe despite last-in-first-out man-
ual memory management. A combination of static and
dynamic checks prevents deallocating memory if any
thread might still use it, without always resorting to
garbage collection for thread-shared data. This issue
is independent of data races, but it is important.

4. A simple kind system (for classifying types, lock names,
and memory-region names) collects all of the above ad-
ditions into a coherent type language.

The technical contribution of this work is a low-level ab-
stract machine, type system, and type-safety proof that cap-
ture all of the features described above, except memory

1The object-oriented systems use a restricted form of de-
pendent type instead, but the idea is similar.

management. This formalism includes the first proof for
a language with thread-local data. Also, the machine has a
dynamic semantics in which type safety requires the absence
of data races because mutation takes two steps. An inter-
vening access could make another thread “go wrong.” Pre-
vious work has prevented races only for abstract machines
in which races cannot violate type safety.

The rest of this paper proceeds as follows. In the next
section, we describe our basic type system for multithreaded
Cyclone. Sections 3 and 4 extend the system by integrating
polymorphism and region-based memory management. Sec-
tion 5 sketches an implementation and necessary run-time
support. Section 6 describes our formal system for mod-
eling multithreaded Cyclone and its type safety. Section 7
describes some limitations of our system that future work
should address. Section 8 further discusses related work.
Section 9 concludes.

We are currently implementing multithreaded Cyclone. A
thorough practical evaluation remains future work.

2. RACE-FREE CYCLONE
In this section, we present our extensions for Cyclone mul-

tithreading. We assume familiarity with C, focusing on Cy-
clone’s more sophisticated type system. Throughout, we
take the liberty of using convenient symbols even though
Cyclone has ASCII syntax. Our aim is to:

• Statically enforce mutual exclusion on shared data.

• Make all synchronization explicit to the programmer.

• Allow libraries to operate on shared and local data.

• Represent data and access memory exactly as single-
threaded programs do.

• Allow accessing local data without synchronization.

• Avoid interprocedural analysis.

2.1 Multithreading Terms
To support multithreading, we add three primitives and

one statement form to Cyclone. The primitives have Cy-
clone types, so we can implement them entirely with a li-
brary written in C.

The spawn function takes a function pointer, a pointer to a
value, and the size of the value. Executing spawn(e1,e2,e3)

evaluates e1, e2, and e3 to some f, p, and sz respectively;
copies *p into fresh memory pointed to by some new p2;
and executes f(p2) in a new thread. The spawned thread
terminates when f returns; the spawning thread continues
execution. After the copy, everything *p2 points to is shared
(the copy is shallow), but *p2 is local to the new thread.

The newlock function takes no arguments and returns a
fresh lock. Locks mediate access to shared data: for each
shared object, there is a lock that a thread must hold when
accessing the object. As explained below, the type system
makes the connection between objects and locks.

The nonlock constant serves as a pseudolock. Acquiring
nonlock has no run-time effect. Its purpose is to provide
a value when a real lock is unnecessary because the corre-
sponding data is local.

Finally, the statement sync(e) s evaluates e to a lock (or
nonlock), acquires the lock, executes s, and releases the

14

void inc(int* p) {

*p = *p + 1;

}

void inc2(lock_t plk, int* p) {

sync(plk) inc(p);

}

struct LkInt { lock_t plk; int* p; };

void g(struct LkInt* s) {

inc2(s->plk, s->p);

}

void f() {

lock_t lk = newlock();

int* p1 = new 0;

int* p2 = new 0;

struct LkInt* s = new LkInt{.plk=lk, .p=p1};

spawn(g, s, sizeof(struct LkInt));

inc2(lk, p1);

inc2(nonlock, p2);

}

void inc<`:LU>(int*` p ;{`}) {

*p = *p + 1;

}

void inc2<`:LU>(lock_t<`> plk, int*` p ;{}) {

sync(plk) inc(p);

}

struct LkInt {<`:LS> lock_t<`> plk; int*` p; };

void g<`:LU>(struct LkInt*` s ;{`}) {

let LkInt{<`′> .plk=lk, .p=ptr} = *s;

inc2(lk, ptr);

}

void f(;{}) {

let lk<`> = newlock();

int*` p1 = new 0;

int*loc p2 = new 0;

struct LkInt*loc s = new LkInt{.plk=lk, .p=p1};

spawn(g, s, sizeof(struct LkInt));

inc2(lk, p1);

inc2(nonlock, p2);

}

Figure 1: Example. The left side shows a code skeleton with too little type information. It uses some features not in C: new
e produces a pointer to new memory holding the result of e. LkInt{.plk=e1,.p=e2} is a struct with fields plk and p holding
the results of e1 and e2 respectively. The right side shows a legal Cyclone program (with several optional annotations).

lock. Only one thread can hold a lock at a time, so the
acquisition may block until another thread releases the lock.
Note that nothing in Cyclone prevents deadlock.

The left side of Figure 1 uses these constructs but includes
only the type information we might expect in C; it is not
legal Cyclone. Because inc accesses *p, callers of inc should
hold the appropriate lock if *p is shared. No lock is needed
to call inc2 as long as plk is the lock for *p. The function
f spawns a thread with function g, lock lk, and pointer
p1. Both threads increment *p1, but lk mediates access.
Finally, p2 is thread-local, so it is safe to pass it to inc2

with nonlock. (We could also just call inc(p2).)

2.2 Multithreading Types
The key extension to the Cyclone type system is lock

names, which are, with one exception, type-level variables
that describe run-time locks. Lock names do not exist at
run-time. A lock has type lock_t<`> where ` is a lock name.
The key restriction is to include lock names in pointer types,
for example int*`. We allow dereferencing a pointer of this
type only where the type-checker can ensure that the thread
holds a lock with type lock_t<`>. The absence of data races
follows from only one such lock existing.

Thread-local data fits in this system by having a spe-
cial lock name loc. We give nonlock the type lock_t<loc>
and annotate pointers to thread-local data with loc. We al-
ways allow dereferencing such pointers; we never let them
be reachable from an argument to spawn.

Like type variables, lock names other than loc must be in
scope. We can introduce lock names via universal quanti-
fiers, existential quantifiers, or type constructors, all of which
capture important idioms.

Functions universally quantify over lock names so callers
can pass pointers with different lock names. For example,

we can instantiate the inc and inc2 functions in the right
side of Figure 1 using any lock name for `. (Section 2.3
explains the kind annotations LS and LU.) Instantiation is
implicit. As examples, the first use of inc2 in f instantiates
` with the ` in the type of p1 whereas the second instantiates
` with loc.

Each function type has an effect [23], which is a set of
lock names (written after the parameters) that callers must
hold. In our example, each function has the empty effect ({},
which really means {loc}), except inc and g. Effects are the
key to enforcing the locking discipline: Each program point
is assigned a “current effect” (sometimes called a capabil-
ity [28]). A function-entry point has the function’s effect.
Every other statement inherits the effect of its enclosing
statement except for sync (e) s: If e has type lock_t<`>,
then sync (e) s adds ` to the current effect for s. If e has
type τ∗`, then we allow ∗e only where ` is in the current ef-
fect. Similarly, a function call type-checks only if the current
effect (after instantiation) is a superset of the callee’s effect.
For example, the call to inc in inc2 type-checks because the
caller holds the necessary lock.

The type of newlock() is ∃`:LS.lock_t<`>; there exists a
lock name such that the lock has that name. As usual, we
must unpack (also called open) a value of existential type
before using it. In Figure 1, the declaration let lk<`> =

newlock(); in f is an unpack. It introduces variable lk

and lock name `. Their scope is the rest of the code block.
lk is bound to the new lock and has type lock_t<`>. We
could unpack a lock multiple times (e.g., with names `1 and
`2), but acquiring the lock via a term with type lock_t<`1>
would not permit dereferencing pointers with lock name `2.

Existentials are important for user-defined types too. The
type struct LkInt is an example: Pointer p has the same
lock name as lock plk. This name is existentially bound

15

in the type definition. As with newlock(), using a struct

LkInt value requires an unpack, as in g. This pattern form
binds lk to s->plk (giving lk type lock_t<`′>) and ptr to
s->p (giving ptr type int*`′). To form a struct LkInt

value, such as in f, the fields’ types must be consistent with
respect to their (implicit) instantiation of `.

Existential types are a good example of the need for mu-
tual exclusion, as noted in previous work [19]. Suppose two
threads share a location of type struct LkInt. As in C,
one thread could mutate the struct by assigning a different
struct LkInt value, which could hold a different lock. This
mutation is safe only if no thread uses the shared struct

while the mutation is in progress (at which point perhaps
plk has changed but p has not).

Finally, type definitions can have lock-name parameters.
For example, for a list of int* values, we could use:

struct Lst<`1:LU,`2:LU> {

int*`1 hd;

struct Lst<`1,`2> *`2 tl;

};

This defines a type constructor that, when applied to two
lock names, produces a type. For thread-local data, struct
Lst<loc,loc> is a good choice. With universal quantification,
functions for lists can operate over thread-local or thread-
shared data. They can also use different locking idioms.
Here are some example prototypes:

int length<`1:LU,`2:LU>(struct Lst<`1,`2> ;{`2});
int sum<`1:LU,`2:LU>(struct Lst<`1,`2> ;{`1,`2});
int sum2<`1:LU,`2:LU>(struct Lst<`1,`2>,

lock_t<`2> ;{`1});
void append<`1:LU,`2:LU,`3:LU>(struct Lst<`1,`2>,

struct Lst<`1,`3>
;{`2,`3});

For length (which we suppose computes a list’s length),
the caller acquires the lock for the list spine and length does
not access the list’s elements. We also use a caller-locks id-
iom for sum, whereas sum2 uses a hybrid idiom in which the
caller acquires the elements’ lock and sum2 (presumably) ac-
quires the spine’s lock. Finally, we suppose append mutates
its first argument by appending a copy of the second argu-
ment’s spine. The two lists can have different lock names
for their spines precisely because append copies the second
spine. Like length, the elements are not accessed.

2.3 Multithreading Kinds
We have used several well-known typing technologies to

ameliorate the restrictions that lock names impose. These
techniques apply naturally because we treat lock names as
“types” that describe locks instead of values. We use kinds
to distinguish “ordinary” types from lock names. In this
sense, lock names have kind L and other types have kind A

(for “any,” for reasons described in Section 3).
In fact, kinds also have sharabilities, either S (for sharable)

or U (for maybe unsharable). The lock name for the lock that
newlock creates has kind LS whereas the lock name loc has
kind LU. Kind LS is a subkind of LU, so every lock name
can have kind LU. We use subsumption to check the calls
inc2(lk, ptr) and inc2(lk, p1) in our example.

We use sharabilities to prevent thread-local data from be-
ing reachable from an argument passed to spawn: Memory
kinds also have sharabilities. For example, τ*` has kind AS

only if τ has kind AS and ` has kind LS. In general, a type
of kind AS cannot contain anything of kind LU. As expected,
AS is a subkind of AU.

With a bit of polymorphism, we can give spawn the type:

void spawn<α:AS,`:LU>(void f(α*loc; {}), α*`,
sizeof_t<α>; {`});

Kinding ensures that all shared data uses locking. The effect
of f is {} because new threads hold no locks. The effect of
spawn is {`} because it copies what the second argument
points to. The type sizeof_t<α> is explained in Section 3.

Ensuring thread-local data is unreachable from arguments
to spawn is necessary for safety. Making this restriction part
of the kind system is a simpler and more uniform approach
than ad hoc rules that limit the use of spawn such that the
restriction holds.

In our example, we instantiate the α in spawn’s type with
struct LkInt, which has type AS only because the exis-
tentially bound lock name in its definition has kind LS.
A term like LkInt{.plk=nonlock, .p=p2} is ill-formed be-
cause nonlock has type lock_t<loc>, but struct LkInt re-
quires a lock name of kind LS.

2.4 Default Annotations
The type system we have presented requires a lock name

for every pointer type and lock type, and an effect for every
function. In practice, simple techniques can make the vast
majority of these annotations optional.

First, when a function’s effect is omitted, it is filled in with
all of the lock names appearing in the parameters’ types. In
other words, the default is a “caller locks” idiom. Second,
lock names are always optional. How they are filled in de-
pends on context:

• Within function bodies, a unification engine can infer
lock names.

• For function parameter and return types, we can gen-
erate fresh lock names (and include them in default
effects). We discuss below options for how many lock
names to generate. Top-level functions implicitly uni-
versally quantify over free lock names.

• Within type definitions, we use loc.

Third, the default sharability for kinds is U.
Note that all inference is intraprocedural. The other tech-

niques fill in defaults without reference to function bodies.
Hence we can maintain separate compilation.

Different strategies for generating omitted lock names in
function prototypes have different benefits. First, we could
generate a different lock name for each unannotated pointer
type. This strategy makes the most function calls type-
check. However, if the prototype has no explicit locking an-
notations, the function body will not type-check if it returns
a parameter, assigns one parameter to another, or might as-
sign different parameters to the same location. Second, we
could use loc for all omitted lock names. This solution has
the advantage that single-threaded programs type-check as
multithreaded programs, unless they use global variables.
(As Section 7 discusses, global variables require locks.) How-
ever, it means that programmers must use extra annotations
to write code that is safe for multithreading, even when

16

callers acquire locks. Because both strategies are useful, Cy-
clone should support convenient syntax for them. One pos-
sibility is a pragma that changes the strategy, but pragmas
that change the meaning of prototypes can make programs
more difficult for humans to understand.

In our example, the first strategy and the other techniques
allow the following abbreviated prototypes:

void inc(int* p);

void inc2(lock_t<`> plk, int*` p; {});

struct LkInt {<`:LS> lock_t<`> plk; int*` p; };

void g(struct LkInt* s);

void f();

The lock names for variables p1, p2, and s are also optional.

3. INTEGRATING POLYMORPHISM
Cyclone’s parametric polymorphism lets a function oper-

ate on values of unknown types without the implementation
duplicating code or passing types at run-time. The type sys-
tem is a bit more complicated than in typical polymorphic
languages because of nonuniform data representation. To
describe locking disciplines for polymorphic code, we need
to describe the locks necessary to access a value of unknown
type. This section explains the necessary additions.

3.1 Cyclone Polymorphism
In this section, we describe polymorphism (universal quan-

tification over types) for single-threaded Cyclone. The lan-
guage also has existential quantification over types and type
constructors taking type parameters, but polymorphism suf-
fices for explaining the interaction with locks.

This function calls its first argument with its second:

void app<α:B>(void f(α), α x) { f(x); }

As usual, callers instantiate α with an appropriate type,
so the argument to f has the type f expects. But in Cyclone,
the kind B (for “boxed”) imposes another restriction: α must
be instantiated with a pointer type, int (in Cyclone, integers
and pointers have the same size) or a type variable β of
kind B. This restriction lets us implement app without code
duplication or run-time type information, basically because
all types of kind B have the same size and calling convention.

Type variables with no such restriction have kind A (for
“any”). Kind B is a subkind of A. If we change app by writing
α:A, the type of app is not well-formed, but we can use kind
A by adding a level of indirection:

void appA<α:A>(void f(α*), α* x) { f(x); }

Because programmers control data representation like in
C, this distinction between boxed and unboxed types is as
natural as the inability to cast a struct type to void*.

A final extension lets us give types to primitive library
routines such as spawn that need the size of a value of un-
known type: sizeof_t is a unary type constructor. The
only value of sizeof_t<τ> is sizeof(τ), so callers of spawn
must pass the correct size. As in C, sizeof(τ) is ill-formed
if the size of τ is not known where it is used.

3.2 Polymorphism and Locks
We must resolve two issues to use type variables in mul-

tithreaded Cyclone:

1. How do we prevent thread-local data (data guarded by
loc) from becoming thread-shared?

2. How do we extend effects to ensure that polymorphic
code uses proper synchronization?

We hinted at our solution to the first issue in the previous
section: A type’s kind includes a sharability (S or U) in
addition to B, A, or L. Sharability S means a type cannot
describe thread-local data. The actual definition is inductive
over the type syntax: Sharability S means no part of the type
has kind BU, AU, or LU. Combining the two parts of a type’s
kind, we have richer subkinding on types: BS≤BU, AS≤AU,
BS≤AS, BU≤AU, and BS≤AU. Sharability S is necessary only
for using spawn, so almost all code uses sharability U.

To extend effects, reconsider the function app: Its effect
should be the same as the effect for its parameter f, but how
can we describe f’s effect when all we know is that it takes
an α of kind BU? If we give f and app the effect {}, then
app is unusable for thread-shared data: f cannot assume it
holds any locks and the caller passes it none to acquire.

Our solution introduces locks(τ), a new form of effect
that represents the effect consisting of all lock names and
type variables occurring in τ . We can give app this type:

void app<α:BU>(void f(α; locks(α)), α x; locks(α));

If we instantiate α with int*`1*`2, then the effect means we
can call app only if we hold locks(int*`1*`2)={`1,`2}. As
another example, if a polymorphic function calls app using
β*` for α, the current effect must include locks(β) and `.

Including locks(α) in the effect of a function type that
universally quantifies over α describes a “caller locks” idiom.
As described in Section 2.4, this idiom is what we want if
programmers omit explicit effects. Hence the default ef-
fect for a polymorphic function includes locks(α) for all
its type parameters α. In our app example, we can omit
both effects. In fact, because B and A are short-hand for BU

and AU, polymorphism poses no problem for type-checking
single-threaded code as multithreaded code.

However, we cannot yet write polymorphic code using a
“callee locks” idiom, such as in this wrong example:

void app2<α:BU,`:LU>(void f(α; locks(α)), α x,

lock_t<`> lk; {}) {

sync lk { f(x); }

}

We want to call app2 with no locks held because it acquires
lk before calling f. But nothing expresses any connection
between {`} (the current effect where app2 calls f) and
locks(α) (the effect of f).

Our solution enriches function preconditions with con-
straints of the form ε1 ⊆ ε2 where ε1 and ε2 are effects.
The constraint means, “if ε2 is in the current effect, then it
is sound to include ε1 in the current effect.”

For example, we can write:

void app2<α:BU,`:LU>(void f(α; locks(α)), α x,

lock_t<`> lk; {}

: locks(α)⊆{`}) {

sync lk { f(x); }

}

At the call to f, we use the current effect ({`}) and the
constraint to cover the effect of f (locks(α), which we can

17

omit). Callers of app2 must establish the constraint: They
must instantiate α and ` with some τ and `′ respectively such
that we know locks(τ)={} or locks(τ)={`′}. To support
instantiating α with some τ that needs more (caller-held)
locks, we can use this more sophisticated type:

void app2<α:BU,`:LU,β:AU>(void f(α), α x,

lock_t<`> lk; locks(β)
: locks(α) ⊆ {`}∪ locks(β));

Instead of locks(τ), we could add type-level effect vari-
ables, which represent an unknown set of locks much like
locks(α). As described in previous work [21], introduc-
ing effect variables in an explicitly typed language is in-
convenient for programmers, especially when using abstract
types. The last type we gave app2 shows that programmers
can simulate effect variables with locks(τ).

In summary, polymorphism compelled us to add a way to
describe the lock names of an unknown type (locks(α)) and
a way to bound such lock names (locks(α)⊆ ε). With these
features, we can express what locks a thread should hold to
use a value of unknown type. By our choice of default effect,
programmers can usually ignore these additions. They are
needed for polymorphic code using “callee locks” idioms.
Dually (though we did not show it), we need them to use
existential types with “caller locks” idioms.

4. INTEGRATING REGIONS
So far, we have described multithreaded Cyclone as if data

were never deallocated. Garbage collection can maintain
this illusion, but Cyclone’s region-based memory manage-
ment gives programmers finer control. In this section, we
give a flavor of how the region system is quite analogous to
the locking system and how combining the systems allows
threads to share reclaimable data.

4.1 Cyclone Regions
We briefly review Cyclone’s region system [21]. Each data

object is allocated into some region and all the objects in
a region are deallocated simultaneously. Regions come in
three flavors: There is one heap region, which conceptually
lives forever. (In practice, it can be garbage collected.) A
stack region corresponds to a local-declaration block in C.
Its lifetime is lexically scoped and allocation into it occurs
only when it is created. A dynamic region is created via
region r s. The region is deallocated when control leaves
the execution of s. Within s, r is bound to the region’s han-
dle. Dynamic allocation is a primitive that takes a handle.
The heap region has a predefined handle.

Handles have types of the form region_t<ρ> where ρ is a
region name, i.e., a type variable of kind R (for region). The
heap’s handle has type region_t<ρH>. A region created
via region r s has type region_t<ρr>. Stack regions do
not have handles, but they do have region names, usually
generated automatically by the type-checker. Handles exist
at run-time whereas region names do not.

Pointer types include the region name of the region into
which they point. The type system prevents dereferencing a
pointer if its region name indicates the corresponding region
may have been deallocated. A function’s effect indicates
regions that must be live when calling the function.

To describe the regions necessary to access an abstract
α, we use the type constructor regions(α) much as we do

locks(α). For example, using (unnecessary) explicit effects,
the app function from the previous section can have the type:

void app(void f(α; regions(α), locks(α)), α
; regions(α), locks(α));

Like lock names, explicit region names are often unnecessary.
The last-in-first-out nature of regions induces subtyping

and region bounds: Given region r1 {...region r2 s...},
it is sound to cast from int*ρr1 to int*ρr2 because r1 out-
lives r2. We write regions(τ):>ρ to mean every region
reachable from a value of type τ outlives ρ. If this bound is
true, ρ being live suffices to establish the effect regions(τ).
Function types can have region-bound preconditions that
must hold at call sites.

The correspondence between the static systems for regions
and locking is striking. We use singleton types for locks
and handles, type variables of different kinds for decorating
pointer types, locks(α) and regions(α) for describing re-
quirements for abstract types, sync and region for gaining
access rights, loc and ρH for always available resources, and
so on. Regions have subtyping unlike locks because region
lifetimes are fixed, but the order of lock acquisitions is not.

4.2 Regions and Locks
The basic constructs for regions and locking compose well:

Pointer types carry region names and lock names. Access-
ing memory requires its region is live and its lock is held.
Although the issues are orthogonal (two objects can have
the same region and different locks, or different regions and
the same lock), introducing type-level variables that stand
for a region name and a lock name can reduce the burden of
explicit annotations when this orthogonality is not needed.

The interesting interaction is ensuring that one thread
does not access a region after another thread deallocates it.

First, we impose a stricter type for spawn. To prevent
the spawned thread from accessing memory the spawning
thread deallocates, we use a region bound to ensure that
the shared data can reach only the heap: For spawn (which
we recall uses α to quantify over the type its second ar-
gument points to), we add the region-bound precondition
regions(α):>ρH . This solution is sound, but it relegates
all thread-shared data to the heap.

To add expressiveness, we introduce rspawn. We type-
check rspawn(e1,e2,e3,e4) like spawn(e1,e2,e3) except
e4 has type region_t<ρ> where the function quantifies over
region name ρ and the precondition is regions(α):>ρ. In
other words, the new argument is a handle indicating the
shared value’s region bound. There is still no way to share
a stack pointer between threads. Doing so safely would im-
pose overhead on using local variables, which C and Cyclone
programmers expect to be very fast.

If a handle is used in a call to rspawn, then the corre-
sponding region will live until the spawning thread would
have deallocated it and the spawned thread terminates. The
next section explains how the run-time system maintains
this invariant. The remaining complication is subtyping:
As described above, Cyclone allows casting τ ∗ ρ1 to τ ∗ ρ2

so long as ρ1 outlives ρ2. But that means we also cannot
deallocate the region named ρ1 until all threads spawned
with the handle for ρ2 have terminated. If ρ1 is a dynamic
region, the run-time system can support this added compli-
cation efficiently, but ρ1 should not be a stack region.

To prevent casting stack pointers to dynamic-region point-

18

ers used in calls to rspawn, we enrich region kinds with
sharabilities S and U (as with other kinds), as well as a new
sharability D for “definitely not sharable.” Both RS and RD

are subkinds of RU. A stack-region name always has kind
RD. The programmer chooses RS or RU for a dynamic-region
name. If region name ρ1 describes a live region at the point
the region named ρ2 is created, we introduce “ρ1 outlives
ρ2,” but only if ρ2 has kind RD or ρ1 has kind RS. The han-
dle passed to rspawn must be for a region of kind RS. Single-
threaded Cyclone programs type-check by choosing RD for
all dynamic-region names.

5. RUN-TIME SYSTEM
The run-time support for Cyclone’s basic thread oper-

ations is simple. We use the gcc C compiler as a back-
end. If garbage collection is used for the heap region, then
the collector must, of course, support multithreading. The
newlock, sync, and spawn operations are easy to translate
into operations common in thread packages such as POSIX
Threads [6]. We translate nonlock to a distinguished value
that sync checks for before trying to acquire a lock. The
cost of this check is small, less than the check required for
reentrant locks. (We could add a kind LD that does not de-
scribe loc and use this kind to omit checks for nonlock, but
the complication seems unnecessary.)

Nonlocal control (jumps, returns, and exceptions) are a
minor complication because a thread should release the lock
that a sync acquired when control transfers outside the
scope of the sync. For jumps and returns, the compiler can
insert the correct lock releases (with checks for nonlock).
For exceptions, we must maintain a per-thread run-time list
of locks acquired after installing an exception handler.

The interesting run-time support is the implementation of
rspawn because we must not deallocate a region until every
thread is done with it. To have the necessary information,
every dynamic-region handle contains a list of live threads
using it (including the thread that created it). Also, each
thread has a list of the live dynamic-region handles it has
created. The list is sorted by lifetime. These lists are (inter-
nally) thread-shared, so the run-time system uses locks for
mediating access to them. We maintain the lists as follows:

1. rspawn: Before starting the spawned thread, add it
to the handle’s thread list. After the spawned thread
terminates, remove it from the handle’s thread list. If
the handle’s thread list is now empty and the handle is
last (youngest) in its handle list, deallocate the region,
remove the handle from its handle list, and recur on
the next (older) handle in the handle list.

2. region r s: Before executing s, create a region, add
its handle to the (young) end of the thread’s han-
dle list, and add the executing thread to the handle’s
thread list. When control leaves s, remove the ex-
ecuting thread from the handle’s thread list. If the
handle’s thread list is now empty and the handle is
last (youngest) in its handle list, deallocate the region
and remove the handle from its handle list.

The dynamic regions that a thread creates continue to have
last-in-first-out lifetimes. However, stack regions might be
deallocated before some dynamic regions created after them,
which is why we use sharabilities to restrict region subtyp-
ing. Note that if the lists are doubly linked, we add only
O(1) amortized cost to rspawn and region.

6. FORMALISM
We present a formal abstract machine and corresponding

type-safety result that models most of the interesting issues
regarding Cyclone data-race detection. Omitted details ap-
pear in the author’s dissertation [20].

The formal machine makes several simplifications in order
to focus on safe multithreading. Most importantly:

• All memory is part of a single heap that lives forever.
There are no regions or local variables; executing a
variable binding allocates a new heap location.

• We do not have types of the form sizeof_t<τ>. In-
stead, spawn is a statement that can copy a value of
any type even though this version of spawn would be
difficult to implement. For other polymorphism, we
are more restrictive than actual Cyclone: We forbid
using type variables of kind AU or AS.

• We use anonymous types, such as product types, in-
stead of named types, such as those defined via struct.

• We do not have type constructors.

• We assign and take the address of only whole objects
(e.g., x=e), not individual fields (e.g., x.i=e). Earlier
Cyclone formalisms include this orthogonal and cum-
bersome feature [19, 21].

What remains is still quite powerful. It includes quanti-
fied types, effects, constraints, and subkinding as in multi-
threaded Cyclone. The semantics for assignment requires
two rewriting steps for the assigning thread. Between the
steps, the assigned-to location holds a “junk” expression, so
data races could let threads read junk.

6.1 Syntax
Figure 2 presents the language’s syntax. A kind κ includes

a sharability σ and whether a type is a lock name (L), a
boxed type (B), or any type except a lock name (A). We use
τ and ` to range over types. Using ` is just a convention for
types that we know have kind LU or LS.

Type variables, int, and pair types are conventional. A
function type includes an effect ε describing the locks that
callers must hold. Source programs do not have effects con-
taining an integer i. As explained below, we represent locks
at run-time with integers and type substitution can produce
such effects. If α is not a lock name, then the effect α is
like locks(α) in Cyclone. The pointer type τ∗` describes a
pointer to an expression of type τ in a location that the lock
named ` guards. Quantified types (which are α-convertible)
can introduce constraints γ, which must hold to instantiate
a universal type or introduce an existential type.

A type of the form lock(τ) is like lock_t<`> in Cyclone. In
source programs, we allow only lock(α) or lock(loc). During
execution, the lock i has type lock(S(i)) and pointers to
locations guarded by lock i have types of the form τ∗S(i).

At the term level, we distinguish statements and expres-
sions, as in C. Most statement forms are like in C with
less verbose syntax. These include expressions executed for
their effect, return statements, sequential composition, while
loops, and conditionals. The variable declaration let x`=e; s
allocates memory. This α-convertible form binds x in s. It
allocates fresh memory called x and initialized with the re-
sult of e. We can infer the type of x from e. The explicit

19

kinds σ ::= S | U
θ ::= B | A | L
κ ::= θσ

types ε ::= ∅ | i | α | ε ∪ ε
γ ::= · | γ, ε ⊆ ε

τ, ` ::= α | int | τ × τ | τ
ε→ τ | τ∗` | ∀α:κ[γ].τ | ∃α:κ[γ].τ | lock(`) | loc | S(i)

terms s ::= e | return e | s; s | while e s | if e s s | let x`=e; s | open e as α, x`; s
| spawn e(e) | sync e s | s; release i

e ::= x | i | f | &e | ∗e | (e, e) | e.i | e=e | e(e) | e[τ] | pack τ, e as τ | nonlock | newlock() | lock i | junkv | call s

f ::= (τ x`)
ε→ τ s | Λα:κ[γ].f

values v ::= i | &x | f | (v, v) | pack τ, v as τ | nonlock | lock i

heaps H ::= · | H, x 7→ v | H, x 7→ junkv

lock sets L ::= · | L, i
threads T ::= L; s

program states P ::= L; L; H; T1 . . . Tn

static contexts ∆ ::= · | ∆, α:κ
Γ ::= · | Γ, x:(τ, `)
C ::= ∆; Γ; γ; ε

Figure 2: Syntax of Core Multithreaded Cyclone

lock name ` indicates which lock guards the new location.
As we explain with the static semantics, it means &x has
some type τ∗`. The form open e as α, x`; s opens (i.e., un-
packs) an existential package. Like the let form, it allocates
memory called x and guarded by the lock named `, but the
memory holds the contents of the existential package. The
scope of the type variable α is s.

The other statement forms provide multithreading and
mutual exclusion. spawn e1(e2) executes v1(v2) in a new
thread after evaluating e1 to v1 and e2 to v2 in the current
thread. sync e s acquires the lock (or pseudolock) to which
e evaluates before executing s. Finally, s; release i does not
appear in source programs. It is a place-holder so that the
abstract machine releases the lock i after executing s.

Expression forms similar to C include constants (i), vari-
ables (x), pointer creation (&e), pointer dereference (∗e),
pair creation ((e, e)), pair projection (e.i), assignment (e=e),
and function call (e(e)). Type application (e[τ]) and existen-
tial creation (pack τ, e as τ) are conventional in polymorphic
languages. Functions (f) take a single parameter (which can
be a pair) and execute a statement, which must return an
expression. Unlike in actual Cyclone, the memory holding
the parameter can become thread-shared, so we annotate
the formal variable with an `. A function’s type abstrac-
tions, effect, and assumed constraints are all explicit.

The only remaining source-program forms are nonlock and
newlock(), which are a pseudolock for thread-local data and
an expression that generates a new lock, respectively. The
form lock i is an actual lock. The form junkv appears when
a thread is currently writing v. We use call s to maintain
a call stack in the term syntax: A function call is rewritten
with this form and the function’s return eliminates it.

At run-time, a full machine state L; L0; H; T1 . . . Tn con-
sists of all the locks that have been created (L); the locks
currently held by no thread (L0); a single shared heap (H);
and threads (Ti), each of which consists of the locks it holds
and a statement, which captures its entire control state.
Heaps map variables to expressions. In other words, we
reuse variables to serve also as addresses. Most nonvalues
are disallowed in the heap, but we need to allow junkv be-
cause mutating a heap location takes two transitions.

We identify heaps and lock sets up to reordering (i.e., they
are finite maps and sets respectively), and we write H1H2

for combining maps that we implicitly assume have disjoint
domains. (Similarly, L1L2 is disjoint union).

6.2 Dynamic Semantics
The author’s dissertation [20] uses a small-step opera-

tional semantics, but here we conserve space by presenting
an equivalent contextual semantics. As Figure 3 shows, re-
duction rules come in three flavors, one each for statement
contexts, “left-expression” contexts, and “right-expression”
contexts. As in C, a variable is a “left-value” whereas it
causes a memory dereference as a right-expression.

A thread can create a new lock, acquire or release a lock,
change the (shared) heap, and create a new thread. Hence
the single-thread reduction rules have the form

H; (L; L0; Lh); s → H ′; (L′; L′
0; L

′
h); sopt; s

′

meaning the thread Lh; s becomes L′
h; s′ while changing the

heap from H to H ′, the set of created locks from L to L′,
and the set of available locks from L0 to L′

0. If sopt is ·,
then no thread is spawned, else sopt is some s′′ and the new
thread is ·; s′′. (It starts with no locks held.) When the form
of (L, L0, Lh) is unimportant, we abbreviate it as L.

The most interesting rules are for assignment. Given x=v,
we first change the heap to map x to junkv and rewrite
the expression to x=junkv. The requirement that there is
not already junk in x means write-write races can lead to
a stuck thread. The subscripted v is necessary so that the
next transition remembers what value to finish writing. The
semantics allows reading junkv from the heap, but doing
so will likely lead to a stuck thread because there are no
destructors for this form. The type system is strong enough
that no thread will read junk.

Given the semantics for a single thread, the machine se-
mantics (defined in Figure 4) is straightforward. It is non-
deterministic with respect to thread-scheduling. The three
rules are for a thread that takes a step and spawns no thread,
a thread that takes a step and spawns a thread, and a “clean-
up” rule to remove a terminated thread that is holding no
locks.

The notation is largely conventional with an important
exception. We write s[τ/α] for the capture-avoiding substi-
tution of τ for α in s (and similarly for expressions, types,
and so on). However, the definition for ε[τ/α] is nonstan-

20

S ::= [·]S | R | return R | S; s | if R s1 s2 | let x`=R; s | open R as α, x`; s
| spawn R(e) | spawn v(R) | sync R s | S; release i

R ::= [·]R | &L | ∗R | (R, e) | (v, R) | R.i | L = e | x = R | R(e) | v(R) | R[τ] | pack τ, R as τ ′ | call S
L ::= [·]L | ∗R

H; L; (v; s)
s→ H; L; ·; s

H; L; (return v; s)
s→ H; L; ·; s

H; L;while e s
s→ H; L; ·; if e (s;while e s) 0

H; L; if 0 s1 s2
s→ H; L; ·; s2

H; L; if i s1 s2
s→ H; L; ·; s1 (i 6= 0)

H; L; (let x`=v; s)
s→ H, x 7→ v; L; ·; s (x fresh)

H; L; spawn v1(v2)
s→ H; L; return v1(v2); 0

H; L; sync nonlock s
s→ H; L; ·; s

H; (L; L0, i; Lh); sync lock i s
s→ H; (L; L0; Lh, i); ·; (s; release i)

H; L; ∗&x
l→ H; L; ·; x

H; L; ∗&x
r→ H; L; ·; x

H, x 7→ e; L; x
r→ H; L; ·; e

H; L; (v0, v1).i
r→ H; L; ·; vi

H, x 7→ v′; L; x=v
r→ H, x 7→ junkv; L; ·; x=junkv

H, x 7→ junkv; L; x=junkv
r→ H, x 7→ v; L; ·; v

H; L; ((τ1 x`)
ε→ τ2 s)(v)

r→ H; L; ·; call (let x`=v; s)

H; L; (Λα:κ[γ].f)[τ]
r→ H; L; ·; H, f [τ/α]

H; L; call return v
r→ H; L; ·; v

H; (L; L0; Lh, i); (v; release i)
s→ H; (L; L0, i; Lh); ·; v

H; (L; L0; Lh, i); (return v; release i)
s→ H; (L; L0, i; Lh); ·; return v

H; L; (open (pack τ, v as ∃α:κ[γ].τ ′) as α, x`; s)
s→ H; L; ·; (let x`=v; s[τ/α])

H; (L; L0; Lh); newlock()
r→ H; (L, i; L0, i; Lh); ·; pack S(i), lock i as ∃α:LS[·].lock(α) (i fresh)

H; L; s
s→ H ′; L

′
; sopt; s

′

H; L; S[s]S → H ′; L
′
; sopt; S[s′]S

H; L; e
r→ H ′; L

′
; sopt; e

′

H; L; S[e]R → H ′; L
′
; sopt; S[e′]R

H; L; e
l→ H ′; L

′
; sopt; e

′

H; L; S[e]L → H ′; L
′
; sopt; S[e′]L

Figure 3: Dynamic Semantics: Single-Thread Transitions

H; (L; L0; Li); si → H ′; (L′; L′
0; L

′
i); ·; s′i

L; L0; H; T1. . .(Li; si). . .Tn → L′; L′
0; H

′; T1. . .(L′
i; s

′
i). . .Tn

H; (L; L0; Li); si → H ′; (L′; L′
0; L

′
i); s; s

′
i

L; L0; H; T1. . .(Li; si). . .Tn → L′; L′
0; H

′; T1. . .(L′
i; s

′
i). . .Tn(·; s)

L; L0; H; T1. . .Tj(·; return v)Tk. . .Tn → L; L0; H; T1. . .TjTk. . .Tn

Figure 4: Dynamic Semantics: Machine Transitions

dard: It means we substitute locks(τ) (defined inductively
on the structure of τ [20]) for α. Note that types, and there-
fore type substitution, have no essential run-time effect.

6.3 Source Static Semantics
We present a sound system for source programs, which

are closed statements that do not have terms of the form
junkv, lock i, s; release i, or call s. The next section describes
how we extend this system to machine states in order to
prove soundness. In the rules and discussion, we omit well-
formedness hypotheses and judgments (for example, that
an effect must not mention type variables not in scope) that
appear in the full definition [20]. Such hypotheses consume
space and distract us from the type system’s essence. Fig-
ure 5 summarizes the judgments used in type-checking.

Figure 6 presents the rules for subkinding (s̀ubk κ1 ≤ κ2)
and ascribing kinds to types (∆ k̀ind τ : κ). Subkinding is
quite simple: “boxed” types are “any” types, sharable types
are unsharable types, and kinding has a subsumption rule.

The kinding rules are unsurprising. Integers and functions
are sharable whereas loc is not. Other types have their com-
ponents’ sharability (e.g., a pair is sharable if both compo-

nents are). Because s̀ubk θS ≤ θU, we can require the com-
ponents to have the same sharability. Only loc and α have
kinds of the form Lσ. Integers and pointers are “boxed.”

Figure 7 presents the type system, which includes the
three interdependent judgments s̀tmt (for statements), r̀typ

(for “right-expressions”) and l̀typ (for “left-expressions”). In
all cases, the context includes the type variables in scope and
their kinds (∆); the term variables in scope, their types, and
the lock names that guard them (Γ); a collection of assumed
constraints (γ); and the current effect (ε). When convenient,
we abbreviate ∆; Γ; γ; ε as C and write C∆, CΓ, Cγ , and Cε

for the corresponding components of C.
For statements, τ is the return type of the enclosing func-

tion; all return statements must have expressions of this
type. Statements have only side-effects, so there is no type
on the right of the judgment. Right-expressions have a re-
sult type as expected. For left-expressions, τ describes the
contents of the location and ` describes the lock that guards
the location. We always describe locations with τ, ` whereas
we describe right-expressions with just τ .

The type system ensures that the correct lock is held when
reading or writing shared data. We write γ; ε àcc ` to mean,
“if the locks described by ε are held and the constraints in γ
are satisfied, then the lock named ` is held.” As examples,
` ∈ ε suffices, as does ε = α and γ = ` ⊆ α. Furthermore,
γ; ε àcc loc for all γ and ε. Formal rules for this and other
omitted judgments are in the author’s dissertation [20].

We use γ; ε àcc ` to derive C r̀typ x : τ , C r̀typ ∗e : τ ,
and C r̀typ e1=e2 : τ because these are the basic expression
forms that could access shared memory. We do not use
the judgment for C l̀typ e : τ, ` because there are no left-
expression reduction rules that access memory.

We use judgments γ èff ε1 ⊆ ε2 and γ1 èff γ2 for “ε2
must describe a superset of the locks that ε1 describes,”
and “every constraint in γ2 is provable from γ1,” respec-

21

s̀ubk Bσ ≤ Aσ s̀ubk θS ≤ θU
s̀ubk κ1 ≤ κ3 s̀ubk κ3 ≤ κ2

s̀ubk κ1 ≤ κ2

∆ k̀ind τ : κ s̀ubk κ ≤ κ′

∆ k̀ind τ : κ′

∆ k̀ind int : BS ∆ k̀ind loc : LU

∆(α) 6= AS ∆(α) 6= AU

∆ k̀ind α : ∆(α)

∆, α:κ k̀ind τ : κ′ κ′ ≤ AU α 6∈ Dom(∆)

∆ k̀ind ∀α:κ[γ].τ : κ′

∆ k̀ind ∃α:κ[γ].τ : κ′

∆ k̀ind ` : Lσ

∆ k̀ind lock(`) : Aσ

∆ k̀ind τ1 : AU ∆ k̀ind τ2 : AU

∆ k̀ind τ1
ε→ τ2 : AS

∆ k̀ind τ : Aσ ∆ k̀ind ` : Lσ

∆ k̀ind τ∗` : Bσ

∆ k̀ind τ1 : Aσ ∆ k̀ind τ2 : Aσ

∆ k̀ind τ1 × τ2 : Aσ

Figure 6: Source Static Semantics: Subkinding and Kinding

s̀ubk κ1 ≤ κ2 κ1 is a subkind of κ2

∆ k̀ind τ : κ τ has kind κ
γ; ε àcc ` Given γ and ε, the lock named ` is held
γ èff ε1 ⊆ ε2 Given γ, ε2 provides more access then ε1
γ èff γ′ All constraints in γ′ are implied by γ
C l̀typ e : τ, ` e is a location of type τ and lock-name `
C r̀typ e : τ e has type τ
C; τ s̀typ s s type-checks with return type τ

r̀et s s diverges or becomes some return v (not v)

Figure 5: Source Static Semantics: Judgments

tively. Checking function calls uses the former judgment:
the caller must have a current effect that satisfies the ef-
fect in the callee’s type. Checking existential-package cre-
ation and polymorphic-function instantiation uses the latter
judgment: the constraints in the quantified types must be
satisfied. Dually, to check an open statement or a polymor-
phic function, we add the constraints to the context.

The only remaining judgment is r̀et s. It just describes a
conservative analysis to ensure that function bodies do not
terminate without executing a return statement.

A few rules merit further discussion. We forbid function
bodies from referring to free variables. If allowed, a free
reference to a location guarded by loc in a function passed
to spawn could violate safety. However, we have actually
proven type safety for a more relaxed system in which we
allow a function body to refer to locations guarded by some
lock of kind LS. Note that we type-check function bodies
under their explicit effect, not the effect of the context.

The rule for spawn e1(e2) requires that the shared value
has a sharable kind and that the function is safe for execu-
tion in a thread that holds no locks. Finally, the rule for
sync e s type-checks s under a stronger current effect, as
expected. (Note that locks(loc) = ∅ whereas locks(α) = α.)

6.4 Type Safety
A desirable property would be, “if ·; ·; ·; ∅; τ s̀typ s and

·; ·; ·; (·; s) →∗ L; L0; H; T1 . . . Tn (where →∗ is the reflex-
ive, transitive closure of →), then for 1 ≤ i ≤ n, either
Ti = (·, return v) for some v (the thread terminated and
holds no locks), or Ti = (Li; si) and H; (L; L0; Li); si →
H ′; L

′
; sopt; s

′
i for some H, L

′
, sopt, and s′i. Informally, no

thread becomes stuck.
This property does not hold: A thread might be waiting

for an unavailable lock, i.e., si = sync lock j s and j 6∈ L0. In

fact, nothing prevents deadlocked threads. So we relax our
statement of soundness to say every thread has terminated
or could take a step if some additional lock were available.
(A thread may not actually need any additional lock.)

Definition 6.1 (Badly Stuck).
A program P = (H; L; L0; T1 . . . Tn) is badly stuck if it has

a badly stuck thread. A badly stuck thread is a thread (L′; s)
in P for which there is no v such that s = return v and
L′ = ·; and there is no i such that H; (L; L0, i; L

′); s →
H ′; L

′
; sopt; s

′ for some H ′, L
′
, sopt, and s′.

Theorem 6.2 (Type Soundness). If ·; ·; ·; ·; ∅; τ s̀typ s,

r̀et s, and ·; (·; ·; ·); (·; s) →∗ P , then P is not badly stuck.

We use a syntactic proof technique in the style of Wright
and Felleisen [29]: We define a typing judgment for machine
states p̀rog P , prove the following lemmas, and conclude
Type Soundness as a simple corollary:

• If ·; ·; ·; ·; ∅; τ s̀typ s, then p̀rog ·; (·; ·; ·); (·; s).

• If p̀rog P and P → P ′, then p̀rog P ′ (or P ′ has no
threads).

• If p̀rog P , then P is not badly stuck.

The key is getting the right definition for p̀rog P . We must
confront the terms and types not in source programs, the
run-time lock sets, and the heap. The rest of this section
describes the definition, which is summarized in Figure 8
along with the additional rules and judgments it uses.

First, run-time terms and types can refer to actual locks.
These locks should be in L, the set of all created locks. To
enforce this restriction, we augment the kinding and typing
contexts to include L explicitly. (All rules in Figures 6 and
7 change accordingly.) The resulting rules for the kind of
S(i) and the type of lock i are unsurprising. We also need
the various lock sets to partition L; i.e., L = L0L1 . . . Ln.

Second, we type-check parts of the heap with the judg-
ment L; Γ h̀typ H : Γ′, which means, “assuming the bind-
ings Γ, heap H provides bindings Γ′.” The machine has one
shared heap H, but to prove that threads do not badly inter-
fere with each other, we must partition H = HSH1U . . . HnU .
The shared part is HS : we require L; ΓS h̀typ HS : ΓS (ex-
pressions in HS cannot refer to other heap locations) and
if x ∈ Dom(HS), then the type of &x has kind AS (it is
sharable, i.e., L s̀hr ΓS). For HiU , we require the ad-
dresses of its elements do not have kind AS (they are not
sharable, i.e., L l̀oc ΓiU) and the only references to them are

22

CΓ(x) = τ, `

C l̀typ x : τ, `

C r̀typ e : τ∗`
C l̀typ ∗e : τ, `

C l̀typ e : τ, `

C r̀typ &e : τ∗`
CΓ(x) = τ, ` Cγ ; Cε àcc `

C r̀typ x : τ

C r̀typ e : τ∗` Cγ ; Cε àcc `

C r̀typ ∗e : τ

C r̀typ nonlock : lock(loc) C r̀typ newlock() : ∃α:LS[·].lock(α) C r̀typ i : int

C r̀typ e : τ [τ1/α] C∆ k̀ind τ1 : κ Cγ èff γ′[τ1/α] C∆ k̀ind ∃α:κ[γ′].τ : AU

C r̀typ pack τ1, e as ∃α:κ[γ′].τ : ∃α:κ[γ′].τ

∆; x:(τ1, `); γ; ε′; τ2 s̀typ s r̀et s

∆; Γ; γ; ε r̀typ (τ1 x`)
ε′→ τ2 s : τ1

ε′→ τ2

∆, α:κ; Γ; γ, γ′; ε r̀typ f : τ

∆;Γ; γ; ε r̀typ Λα:κ[γ′].f : ∀α:κ[γ′].τ

C r̀typ e : ∀α:κ[γ′].τ ′ C∆ k̀ind τ : κ Cγ èff γ′[τ/α]

C r̀typ e[τ] : τ ′[τ/α]

C r̀typ e1 : τ1 C r̀typ e2 : τ2

C r̀typ (e1, e2) : τ1 × τ2

C l̀typ e1 : τ, ` C r̀typ e2 : τ Cγ ; Cε àcc `

C r̀typ e1=e2 : τ

C r̀typ e1 : τ1
ε′→ τ2 C r̀typ e2 : τ1 Cγ èff ε′ ⊆ ε

C r̀typ e1(e2) : τ2

C r̀typ e : τ0 × τ1 i∈{0, 1}
C r̀typ e.i : τi

C r̀typ e : τ ′

C; τ s̀typ e

C r̀typ e : τ

C; τ s̀typ return e

C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ s1; s2

C r̀typ e : int C; τ s̀typ s1 C; τ s̀typ s2

C; τ s̀typ if e s1 s2

C r̀typ e : int C; τ s̀typ s

C; τ s̀typ while e s

x 6∈ Dom(Γ) ∆; Γ; γ; ε r̀typ e : τ ′ ∆;Γ, x:(τ ′, `); γ; ε; τ s̀typ s

∆;Γ; γ; ε; τ s̀typ let x`=e; s

α 6∈ Dom(∆) x 6∈ Dom(Γ) ∆ k̀ind ` : LU ∆ k̀ind τ : AU ∆; Γ; γ; ε r̀typ e : ∃α:κ[γ′].τ ′ ∆, α:κ; Γ, x:(τ ′, `); γ, γ′; ε; τ s̀typ s

∆;Γ; γ; ε; τ s̀typ open e as α, x`; s

C r̀typ e1 : τ1
∅→ τ2 C r̀typ e2 : τ1 C∆ k̀ind τ1 : AS

C; τ s̀typ spawn e1(e2)

∆; Γ; γ; ε r̀typ e : lock(`) ∆; Γ; γ; ε ∪ locks(`); τ s̀typ s

∆;Γ; γ; ε; τ s̀typ sync e s

Figure 7: Source Static Semantics: Typing

from si and HiU . But they can refer to HS , so we require
L; ΓSΓiU h̀typ HiU : ΓiU . This partition provides a strong
enough induction hypothesis to establish that there is never
a race on a location guarded by loc.

Third, if Li = i1, . . . , in, it is too weak to type-check si

in a context with ε = i1 ∪ · · · ∪ in: If si releases lock ij and
becomes s′i, we must know s′i does not need ij to type-check.
The solution is to use ε = ∅ (so L; ·; ΓSΓiU ; ·; ∅; τ s̀typ si) and
have the typing rule for s; release ij add ij to ε for checking
s. But we still do not enforce that (terminating) threads
release exactly the locks they hold and return values. For
the latter, r̀et si suffices. For the former, we introduce the
judgment L s̀rel s. Informally, L s̀rel s holds when the release
statements in s mention exactly the locks in L exactly once
each and all release statements are “between” the active
redex and the root of s (viewed as an abstract-syntax tree).
(The formal definition is simple and syntax-directed [20].)

Finally, the typing rule for junkv does not restrict where
such terms appear. Instead, we use the j̀ H; s judgment to
impose a strong invariant about junk: We forbid junkv ev-
erywhere except si can be S[x=junkv] (for some x and evalu-
ation context S), in which case we require H(x) = junkv. So
there is at most one junk location for each thread. Further-
more, x must be in HiU (the thread’s local heap) or HiS , the
part of HS guarded by a lock the thread holds (as enforced
with ΓS ; Li h̀lk HiS). In either case (x ∈ Dom(HiU) or
x ∈ Dom(HiS)), no other thread will access x before thread
i takes another step. Similarly, if si has the form S[x=v],
then thread i and only thread i can access x, so x cannot
contain junk.

i ∈ L

L; ∆ k̀ind S(i) : LS

i ∈ CL

C r̀typ lock i : lock(S(i))

C r̀typ v : τ

C r̀typ junkv : τ

C; τ s̀typ s r̀et s

C r̀typ call s : τ

i ∈ L L; ∆; Γ; γ; ε ∪ i; τ s̀typ s

L; ∆; Γ; γ; ε; τ s̀typ s; release i

L; Γ h̀typ H : Γ′ Heap H has type Γ′

Γ; L h̀lk H All x ∈ Dom(H) are locked by an i ∈ L
L s̀hr Γ All x ∈ Dom(Γ) are sharable
L l̀oc Γ No x ∈ Dom(Γ) are sharable
L s̀rel s s releases exactly L (or diverges)

j̀ H; s
H and s are junk-free or
H = H ′, x 7→ junkv and s = S[x=junkv]
where H ′ and S are junk-free

H = HSH1U . . . HnU L = L0L1 . . . Ln

HS = H0SH1S . . . HnS

L; ΓS h̀typ HS : ΓS L s̀hr ΓS ΓS ; L0 h̀lk H0S j̀ H0S ; 0
for all 1 ≤ i ≤ n
L; ΓSΓiU h̀typ HiU : ΓiU L l̀oc ΓiU ΓS ; Li h̀lk HiS

L; ·; ΓSΓiU ; ·; ∅; τi s̀typ si r̀et si Li s̀rel si j̀ HiSHiU ; si

p̀rog L; L0; H; (L1; s1) . . . (Ln; sn)

Figure 8: Program-State Typing (C ::= L;∆; Γ; γ; ε)

23

7. LIMITATIONS
As a sound, decidable type system, Cyclone’s data-race

prevention is necessarily conservative, forbidding some race-
free programs. Here we describe a few of the more egregious
limitations and how we might address them.

Thread-shared data that is never mutated does not need
locking. Expressing this read-only invariant is straightfor-
ward if we “take const seriously” (i.e., prevent mutation
of const data, unlike C), but qualifier polymorphism [18]
becomes important for code reuse. Similarly, reader/writer
locks allow mutation and concurrent read access. Annotat-
ing pointer types with read and write locks should pose no
technical problems.

Global variables are thread-shared, so they require lock-
name annotations. But that means we need locks and lock
names with global scope. Worse, single-threaded programs
with global variables do not type-check as multithreaded
programs because they need lock names. Note that thread-
local variables with thread-wide scope are no problem.

Oftentimes, thread-shared data has an initialization phase
before it becomes thread-shared. During this phase, locking
is unnecessary. A simple dataflow analysis will probably
suffice to allow access without locking so long as an object
could not yet have become shared.

Data objects sometimes migrate among threads without
needing locking. An example is a producer/consumer pat-
tern: a producer thread puts objects in a shared queue and a
consumer thread removes them. If the producer does not use
objects after enqueuing them, the objects do not need locks.
Cyclone’s designers are exploring ways to allow some safe
uses of memory deallocation (free). The issues are so sim-
ilar (deallocation must not precede access) that techniques
for safe deallocation should also support object migration.

Finally, we do not prevent deadlock (although the type
system is compatible with reentrant locks, which help a bit).
Deadlock is undesirable, but it does not violate type safety.

8. RELATED WORK
As discussed in Section 1, this work is closely related to

the static race-prevention systems developed by Flanagan et
al. [14, 13, 15] and Boyapati et al. [5, 4]. On the surface,
the main difference is that these systems have targeted Java,
so they need not interact with parametric polymorphism or
memory management. Also, Java programmers enjoy the
convenience of every object being a lock. The tricky issue
for Java is run-time downcasts: A sound system must check
that a cast from Object to a subclass Foo with a field f

guarded by a lock ` is correct even though Foo is parameter-
ized by the lock for f. Recent systems [4] have resorted to
run-time type passing whereas Cyclone enjoys type erasure.
Boyapati et al.’s system supports read-only data and object
migration much as described in the previous section. These
advanced systems have been implemented and evaluated on
real applications, but they lack type-safety proofs.

Guava [2] is another Java dialect with static data-race
prevention. The class hierarchy makes a rigid distinction
between thread-local and sharable objects. The latter allows
only synchronized access to methods and fields. A “move
operator” soundly allows object migration.

Sacrificing soundness (potentially missing data races) can
reduce false positives and explicit annotations. The results
can be very useful for nonmalicious code. Examples include

ESC/Java [17], which usually acts as though loops iterate
only once, and Warlock [26], a static race-detector for C
that makes optimistic aliasing assumptions and assumes lo-
cations holding locks are not mutated to hold different locks.

There are many other race-detection systems, some of
which are dynamic [7, 9, 25, 27]. As usual, dynamic and
static approaches are complementary with different expres-
siveness, performance, and convenience trade-offs. Because
Cyclone’s type safety needs data-race prevention, a static
approach feels more appropriate. It is also easier to imple-
ment because there is no change to code generation.

There are race-free disciplines other than what Cyclone’s
type system enforces, of course. A more flexible system
could let programs specify one via a verification condition.
Flanagan, Freund, and Qadeer [16] explain how to verify
specifications in a thread-modular fashion. Adding such
flexibility to Cyclone would require preventing specifications
that permit data races.

Static analyses that find thread-local data can eliminate
unnecessary locking in Java [1, 3, 8]. Adapting such inter-
procedural escape analyses to Cyclone would reduce anno-
tations but complicate the language definition.

Other work on safe languages for low-level applications
has not allowed threads. In Vault [11, 12], a type system
that restricts aliases can track stateful properties about data
at compile time. Mechanisms termed adoption and focus
allow tracking state within a lexical scope without knowing
all aliases of the data. This scoping technique relies crucially
on the absence of concurrent access.

In CCured [24], unmodified legacy C applications are com-
piled unconventionally (with extra data fields and run-time
checks) to detect memory-safety violations. The key to per-
formance is a whole-program static analysis to eliminate
many unnecessary fields and run-time checks. The analy-
sis assumes the program is single-threaded. With arbitrary
thread interleavings, we would expect much more conserva-
tive results. Moreover, the run-time checks themselves are
not thread-safe. Making them so would require expensive
synchronization or precise control of thread scheduling.

9. CONCLUSION
We have presented a type system that prevents data races

in a multithreaded extension of Cyclone that includes para-
metric polymorphism and region-based memory manage-
ment. The programmer must use locks for thread-shared
data, but not for thread-local data. A formal abstract ma-
chine models the system’s key features, including thread-
local data. We have a rigorous proof of type safety, which
for our abstract machine implies that there are no data races.

Acknowledgments
Kevin O’Neill, Yanling Wang, Stephanie Weirich, and the
anonymous reviewers provided valuable feedback that im-
proved this work.

10. REFERENCES
[1] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers.

Eliminating unnecessary synchronization from Java
programs. In 6th International Static Analysis
Symposium, volume 1694 of Lecture Notes in
Computer Science, pages 19–38, Venice, Italy, Sept.
1999. Springer-Verlag.

24

[2] D. Bacon, R. Strom, and A. Tarafdar. Guava: A
dialect of Java without data races. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 382–400,
Minneapolis, MN, Oct. 2000.

[3] B. Blanchet. Escape analysis for object oriented
languages. Application to Java. In ACM Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 20–34, Denver,
CO, Nov. 1999.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 211–230, Seattle, WA, Nov. 2002.

[5] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 56–69,
Tampa Bay, FL, Oct. 2001.

[6] D. Butenhof. Programming with POSIX r© Threads.
Addison-Wesley, 1997.

[7] G.-I. Cheng, M. Feng, C. Leiserson, K. Randall, and
A. Stark. Detecting data races in Cilk programs that
use locks. In 10th ACM Symposium on Parallel
Algorithms and Architectures, pages 298–309, Puerto
Vallarta, Mexico, June 1998.

[8] J.-D. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 1–19,
Denver, CO, Nov. 1999.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In ACM Conference on Programming
Language Design and Implementation, pages 258–269,
Berlin, Germany, June 2002.

[10] Cyclone User’s Manual, 2002.
http://www.cs.cornell.edu/projects/cyclone/.

[11] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In ACM Conference on
Programming Language Design and Implementation,
pages 59–69, Snowbird, UT, June 2001.

[12] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In
ACM Conference on Programming Language Design
and Implementation, pages 13–24, Berlin, Germany,
June 2002.

[13] C. Flanagan and M. Abadi. Object types against
races. In CONCUR’99—Concurrency Theory, volume
1664 of Lecture Notes in Computer Science, pages
288–303, Eindhoven, The Netherlands, Aug. 1999.
Springer-Verlag.

[14] C. Flanagan and M. Abadi. Types for safe locking. In
8th European Symposium on Programming, volume
1576 of Lecture Notes in Computer Science, pages
91–108, Amsterdam, The Netherlands, Mar. 1999.
Springer-Verlag.

[15] C. Flanagan and S. Freund. Type-based race detection
for Java. In ACM Conference on Programming
Language Design and Implementation, pages 219–232,

Vancouver, Canada, June 2000.

[16] C. Flanagan, S. Freund, and S. Qadeer.
Thread-modular verification for shared-memory
programs. In 11th European Symposium on
Programming, volume 2305 of Lecture Notes in
Computer Science, pages 262–277, Grenoble, France,
Apr. 2002. Springer-Verlag.

[17] C. Flanagan, K. R. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for
Java. In ACM Conference on Programming Language
Design and Implementation, pages 234–245, Berlin,
Germany, June 2002.

[18] J. Foster, M. Fähndrich, and A. Aiken. A theory of
type qualifiers. In ACM Conference on Programming
Language Design and Implementation, pages 192–203,
Atlanta, GA, May 1999.

[19] D. Grossman. Existential types for imperative
languages. In 11th European Symposium on
Programming, volume 2305 of Lecture Notes in
Computer Science, pages 21–35, Grenoble, France,
Apr. 2002. Springer-Verlag.

[20] D. Grossman. Safe Programming at the C Level of
Abstraction. PhD thesis, Cornell University, 2003.
Forthcoming.

[21] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In ACM Conference on
Programming Language Design and Implementation,
pages 282–293, Berlin, Germany, June 2002.

[22] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, pages
275–288, Monterey, CA, June 2002.

[23] J. Lucassen and D. Gifford. Polymorphic effect
systems. In 15th ACM Symposium on Principles of
Programming Languages, pages 47–57, San Diego, CA,
Jan. 1988.

[24] G. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In 29th ACM
Symposium on Principles of Programming Languages,
pages 128–139, Portland, OR, Jan. 2002.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[26] N. Sterling. A static date race analysis tool. In
USENIX Winter Technical Conference, pages 97–106,
1993.

[27] C. von Praun and T. Gross. Object race detection. In
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 70–82,
Tampa Bay, FL, Oct. 2001.

[28] D. Walker, K. Crary, and G. Morrisett. Typed
memory management in a calculus of capabilities.
ACM Transactions on Programming Languages and
Systems, 24(4):701–771, July 2000.

[29] A. Wright and M. Felleisen. A syntactic approach to
type soundness. Information and Computation,
115(1):38–94, 1994.

25

