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ABSTRACT
Data races occur when multiple threads are about to access the
same piece of memory, and at least one of those accesses is a write.
Such races can lead to hard-to-reproduce bugs that are time con-
suming to debug and fix. We present RELAY , a static and scalable
race detection analysis in which unsoundness is modularized to a
few sources. We describe the analysis and results from our exper-
iments using RELAY to find data races in the Linux kernel, which
includes about 4.5 million lines of code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Reliability, Verification

1. INTRODUCTION
Data races occur when multiple threads are about to access the

same piece of memory, and at least one of those accesses is a write.
Such races can lead to hard-to-reproduce bugs that are time con-
suming to debug and fix, especially if the code base is large. Thus,
to build large, reliable concurrent programs, we require a race de-
tection algorithm that is (1)static, in that it runs before the program
is executed, (2)sound, in that it should guarantee that it finds all
races, and (3)scalable, in that it should be effective on programs
comprising millions of lines of code.

The above three goals have previously never been achieved all at
once. In particular, while sound and static race detection techniques
have proven to be effective, the largest programs they have ever
been applied to are on the order of tens of thousands of lines of
C code [23] and little over a hundred thousand lines of Java code
[20]. Furthermore, while some static race detection algorithms run
on millions of lines of code [8], they are extremely unsound,and
therefore miss many errors.
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In this paper, we take a step towards achieving all three goals by
developing RELAY , a static and scalable algorithm that can perform
race detection on programs as large and complicated as the Linux
kernel (which comprises 4.5 million lines of C code). In RELAY

unsoundness ismodularizedto the following sources: (1) RELAY

ignores reads and writes that occur inside blocks of assembly code;
(2) RELAY does not handle corner cases of pointer arithmetic cor-
rectly; (3) RELAY uses a per-file alias analysis to optimistically
resolve function pointers; and (4) RELAY uses a set of simple but
unsound syntactic filters to categorize warnings into likely races
(these filters are unsound in that they can remove real races). Be-
cause unsoundness in RELAY is modularized, we can easily revisit
the above sources of unsoundness as we devise more precise analy-
ses, with the hope that one day we will make RELAY entirely sound.

The standard mechanism for preventing data races is to ensure
that for each shared lvalue, there exists a uniquelock that is held
whenever a thread accesses the lvalue. By ensuring that onlyone
thread can hold a lock at any given time, we can ensure the absence
of races. One family of algorithms for inferring whether such a
lock exists is that based on computinglocksets. These algorithms
determine either statically [7, 8, 27] or dynamically [25, 5, 30] the
set of locks held by the program at every program point. If the
intersection of the locksets at each point the lvalue is accessed is
non-empty then there are no races on the lvalue. If the intersection
is empty, the analysis conservatively reports that there may be a
race on the lvalue.

While static lockset based techniques have proven to be effective
for race analysis, there are significant hurdles that must becrossed
to scale them to millions of lines of systems code. First, it is diffi-
cult to tell which piece of memory a given operation will actually
affect. The lvalue being accessed need not be in global scope— it
may have been passed into the function as a parameter, and thus,
the actual memory accessed can only be determined by a careful,
calling-context-sensitive analysis. Second, for similarreasons, it
is difficult to tell which locks are held at each point, as it ishard
to tell exactly what locks are acquired and released by various op-
erations as the locks may be derived from structures passed in as
parameters. As a result, it becomes hard to tell if the set of locks
held at two different accesses are the same, as the locks may have
very different syntactic names. Third, in low-level systems code,
the acquisition and release of locks is not syntactically nested (as is
the case in Java). A lock may be acquired in one function, the ac-
cess may happen in a second function, and the lock may be released
in a third function. As a result, many modular type-based [10, 3]
and flow-insensitive [20, 19] approaches cannot be applied in this
setting, and instead a precise flow-sensitive approach is required.

The technical contribution of this paper is a technique for ad-
dressing the above limitations. In particular, we introduce the con-



cept of arelative lockset, which describes the changes in the locks
being held relative to the function entry point. These relative lock-
sets allow us to summarize the behavior of a function independent
of the calling context. For example, the summary of a function
whose formal isx may say that the fieldx->f is accessed inside
the function while holding all locks that were held on entry,plus
x->lock1, and minusx->lock2. The information about this
guarded access is not absolute — it is relative to the locks held at
the entry point, which allows RELAY to plug the summary in while
analyzing any callers.

This switch to relative locksets, rather than absolute locksets, is
the key to scalability: relative locksets allows us to aggressively ex-
ploit modularity. In particular, RELAY analyzes functions in isola-
tion to compute summaries that capture the behavior of a function
for any calling context, and then it composes these summaries to
determine whether races exist. This leads to a bottom-up context-
sensitive analysis over the call graph that scales to programs as
large as the Linux kernel. The modularity also enables easy par-
allelization. Because functions can be analyzed independently, we
can run our analysis of the Linux kernel using the FWGrid cluster
of machines [1] in about 5 hours, as opposed to the 72 hours it takes
without parallelization.

This paper presents our work in two parts. We first present the
RELAY algorithm for scalable race detection. In particular, Sec-
tion 2 describes an overview of our algorithm through a simple ex-
ample, while Section 3 describes the algorithm in detail. Wethen
describe in Section 4 experimental results of running RELAY on the
Linux kernel. Currently, RELAY generates warnings for races that
can happen betweenexplicitly created kernel threads and not user
threads that have entered the kernel via system calls. Whilethe
summary generation scales to the entire kernel, a consequence of
the unsound treatment of function pointers is that only 5291out of
46872 functions of the kernel are reached from explicit thread cre-
ation sites. For these sites, RELAY produces 5022 race warnings.
By applying a set of heuristic filters on the warnings to pruneout
likely false positives, we reduced the number of warnings down to
161, of which we categorized 31, finding 25 actual races (an 80%
race detection rate).

2. OVERVIEW
This section presents an overview of the RELAY race detection

algorithm using the example code from Figure 1. The code in Fig-
ure 1 is a simplified version of two functions from the Linux kernel.
On the left of Figure 1, the functionairo_read_stats takes as
input a single parameterai that is a reference to a complex struc-
ture. On the right, the functionairo_thread takes a pointer to a
device structured. The latter function is athread entry point, i.e.,it
is the first function that a new thread begins executing from.In
the sequel, suppose that multiple threads can begin executing con-
currently from this entry point. The structure thatd refers to is a
shared structure — it may be accessed outside the thread running
airo_thread, and thus, it can possibly be accessed by multiple
concurrently running threads. Similarly, because thevals array
used on line 5 is declared to be global, it can be accessed by differ-
ent threads, and so it is shared.

Locks are acquired and released by calling appropriate functions
on the lock arguments. Thus, in the code from Figure 1, we can
deduce (assuming thatairo_read_stats is called only from
within airo_thread), that the lockd->priv->lock is held
whenever the lvalued->priv->pwr.ev is accessed. Since line
1 is the only place the lvalue is accessed, we can therefore con-
clude there are no races on the lvalue. On the other hand, when
d->priv->stats.rx_p is written to on line 5, there is no lock

that is held, and so the write may cause a race, since two or more
threads could simultaneously perform the write.

We devised a precise analysis that scales to millions of lines of
code by aggressively exploiting modularityi.e.,by analyzing func-
tions in isolation to compute summaries that capture the behavior of
the function independent of the calling context, and then compos-
ing the summaries to determine whether races exist. In particular,
our algorithm for race analysis is built using the followingingredi-
ents.

1. Relative Locksets: A relative locksetat a location is a disjoint
pair of locksets(L+, L−) (resp. called the positive and negative
locksets), which encodes thedifferencebetween the locks held at
the given location and the locks held at the function entry location.
Intuitively, the setL+ is the set of additional locks that are def-
initely acquired onall executions from the entry to the location.
The setL− is the set of all locks that may have been released on
someexecution from the entry to the location. It is important to
remember thatL+ is amustset and thatL− is amayset.

2. Guarded Accesses: A guarded accessis a triple of anlvalue, the
relative locksetat the program location where the access takes place
and thekind of access, either areador awrite. The set of guarded
accesses of a function is the set of triples corresponding toaccesses
that may occur during the execution of the function. RELAY works
by computing an overapproximation of the set of guarded accesses
of each thread entry point. Once this set is computed, RELAY com-
pares pairs of guarded accesses whose lvalues may be aliased. For
each such pair, RELAY determines if the intersection of the positive
locksets is empty, and if so, reports a race warning.

3. Function Summaries: To compute the guarded accesses for
each thread entry point, RELAY builds the call graph and traverses
it in a bottom up manner, computing the guarded accesses for each
function along the way. To this end RELAY computestwo sum-
maries for each function. The first is arelative lockset summary,
which is the relative lockset of the exit location of the function.
This summary soundly approximates the effect the function has on
the set of locks held by the thread justbeforecalling the function.
The second is aguarded access summary, which is a set of guarded
accesses that includes the guarded accesses that may occur during
the execution of the function. RELAY computes the summaries in a
bottom-up manner, plugging in the summaries of thecalleesat call-
sites to compute the guarded access summaries and relative lockset
of thecallers.

4. Symbolic Execution: In order for a summary to capture the be-
havior of a function regardless of the calling context, the summary
must be expressed in terms of the formals of the function, as well
as globals. In this way, the summary can be instantiated at a call
site by replacing formals in the summary with the actuals passed
in at the call site, thus producing information in the caller’s con-
text. As an example, for theairo_thread function, we want to
compute a summary stating thatd->priv->lock is held when
d->priv->pwr.ev is accessed, not thatai->lock is held
whenai->pwr.ev is accessed. To build such summaries, one
must re-express accesses inside a function in terms of the globals
and the formals. To this end, RELAY performs an intra-procedural
symbolic execution that maps each local lvalue to a value expressed
in terms of the incoming values of formals, and the incoming val-
ues of globals. With appropriate join operators to handle merge
nodes, we can handle loops while preserving termination. Inthe
course of the intra-procedural analysis, whenever a function call is
encountered, the guarded access summary of the callee is appended
to the guarded accesses of the caller (after replacing the formals in



ai->pwr.ev {}, {} read
ai->stats.rx_p {}, {ai->lock} write
vals [0] {},{ai->lock} read

Lval Relative Lockset Kind

d->priv {}, {} read
d->priv->pwr.ev {d->priv->lock}, {} read
d->priv->stats.rx_p {}, {d->priv->lock} write
vals [0] {}, {d->priv->lock} read

Lval Relative Lockset Kind

Figure 1: Simplified example from Linux kernel. Below each function, in the curved box we show the relative lockset summary for the
function, and below it, the guarded access summary for the function.

the summary with the symbolic values of the actual parameters at
the callsite). Similarly, the set of locks that must be held and may
have been released is updated, using the lockset summary of the
callee.

We combine the above in the RELAY modular race analysis tool
as follows. RELAY processes functions bottom-up in the call graph,
starting with leaves, and working its way up the call graph. RELAY

repeatedly picks a function to analyze amongst all the functions
whose callees have been analyzed.

For each function being analyzed, RELAY performs three analy-
ses: first a symbolic execution, second a relative lockset analysis,
and third a guarded access analysis. The symbolic executionis used
to express the values contained in memory locations in termsof the
incoming values of the formals and the globals. This symbolic in-
formation is required by the two subsequent analyses. The relative
lockset analysis is an iterative dataflow analysis that maintains a
relative lockset at each program point. For call sites, the analysis
uses the summaries of callees to compute the lockset after the call.
Once a fixed point is reached, the relative lockset computed for the
function’s exit point becomes the relative lockset summaryof the
function. After performing the relative lockset analysis on a func-
tion, RELAY runs a guarded access analysis on that same function.
The guarded access analysis maintains a monotonically increasing
set A of guarded accesses. The analysis iterates through all the
statements in the function (in a flow-insensitive way), accumulat-
ing in A the locations being accessed, along with the locks being
held during those accesses. The information about which locks are
held at the access points is provided by the results of the relative
lockset analysis.

Consider the program comprising the two functions
shown in Figure 1. RELAY begins with the leaf function
airo_read_stats. Initially, the relative lockset at the entry
point is the pair({}, {}). The calls tounlock result in the
addition ofai->lock to the negative lockset of program points
3: and5:. Because negative locksets aremaysets, the negative
lockset of the exit point is theunion of those of its predecessor
program points3: and5:, namelyai->lock. Because positive
locksets aremust sets, the positive lockset is theintersectionof
those of the predecessors, which is the empty set. Thus, the relative
lockset summary of the function is the pair:({}, {ai->lock}).
This summary states that theairo_read_stats function does

not acquire any locks, and it may release (in fact in this case, it
definitely does release) theai->lock lock.

After having computed the relative lockset information for
airo_read_stats, RELAY iterates through the statements of
airo_read_stats to find the guarded access set of the func-
tion. There are three accesses in this function: the read of
ai->pwr.ev on line 1, with a relative lockset of({}, {}); the
read of thevals array on line 5, with a relative lockset of
({}, {ai->lock}); and the write toai->stats.rx_p with
the same lockset. This information is collected in the guarded ac-
cess summary of the function, which is shown in the left tableof
Figure 1 (the index0 in vals[0] represents all array indices).

Next, RELAY picks the function airo_thread. The
relative lockset for the entry location is the same as for
airo_read_stats, namely({}, {}). The symbolic execution
tracks that at7: the lvaluedev refers to the formald, and
that at8: the lvalueai->lock refers tod->priv->lock.
As a result, the relative lockset at8: (just before the call
to airo_read_stats) is ({d->priv->lock}, {}), indi-
cating thatd->priv->lock was added since the entry point
of the function. Now the call toairo_read_stats is ana-
lyzed. The relative lockset summary forairo_read_stats
is ({}, {ai->lock}), and since the symbolic execution tells us
that ai is in fact d->priv, the instantiated summary in the
caller’s context is({}, {d->priv->lock}). Updating the in-
formation from before the call({d->priv->lock}, {}), with
the effect of the call({}, {d->priv->lock}) gives us the in-
formation({}, {d->priv->lock}) after the call. In particular,
after the call, we have lost the information we had previously about
d->priv->lock being held, becauseairo_read_stats
releases that lock. Furthermore, we gain the information that
since the beginning of execution ofairo_thread, the lock
d->priv->lockmay end up being released because of the call
to airo_read_stats. Since the call is the last statement in
airo_thread, the information after the call becomes the rela-
tive lockset summary forairo_thread.

Next RELAY processes all the statements inairo_thread
to compute its guarded access set. There is only one access in
airo_thread itself, namely the read ofdev->priv at line
8 (the write toai is not recorded becauseai is a local stack
variable). Using the symbolic information, this read access is



recorded in the guarded access summary (shown in the right ta-
ble of Figure 1) as an access tod->priv with relative lockset
({}, {}). The other accesses in the guarded access summary of
airo_thread are added when the call toairo_read_stats
is processed. Since the relative lockset of theai->pwr.ev en-
try in the summary is({}, {}) (i.e., no locks were added or re-
moved), the relative lockset for this access in the caller isjust the
relative lockset at the callsite. For the other two access inthe
summary ofairo_read_stats, the negative lockset contains
ai->lock, which, after plugging in the actuals corresponds to
d->priv->lock as shown in the last two rows of the guarded
access set shown in the figure.

Race Warnings. Once RELAY has computed the guarded access
summaries for all functions that are thread entry points, itreports
warnings for all pairs of accesses, where the lvalues may be aliases,
and whose positive locksets have an empty intersection, andwhere
at least one of the accesses is a write. Suppose that a sound alias
analysis shows that the lvalues corresponding to the accesses shown
on the right table of Figure 1 have no other aliases. In this case,
RELAY reports that:

1. There are no races due to concurrent accesses tovals or
d->priv as both accesses would be reads.

2. There are no races due to concurrent accesses to
d->priv->pwr.ev as (the intersection of) the posi-
tive lockset(s) is non-empty.

3. There may be a race involving concurrent accesses to
d->priv->stats.rx_p in different threads, as (the in-
tersection of) the positive lockset(s) is empty. The accesses
involved in this race are the access on line 5, but from two dif-
ferent threads.

3. ALGORITHM
This section describes our race detection algorithm in detail. As

outlined in Section 2, our algorithm performs a bottom-up analysis
that has three interacting components: a symbolic execution (Sec-
tion 3.1), an analysis that computes lockset changes (Section 3.2),
and an analysis that computes guarded accesses (Section 3.3). Af-
ter the bottom-up analysis has finished running, the resultsare used
to generate warnings (Section 3.4).

3.1 Symbolic Execution
Before starting the symbolic execution, we perform Steensgard’s

flow-insensitive points-to analysis [26], computing conservative
representative nodes for all lvalues. These representative nodes
are used in our symbolic execution to ensure termination. Our
symbolic execution analysis keeps track of the values contained in
memory locations in terms of the incoming values of the formals
and the globals. Our analysis is fairly standard, and the details of
the symbolic execution are orthogonal to the contribution of our
work, so we only present an overview of our analysis here. The
domains of the symbolic execution are shown Figure 2. We use
metavariablex ∈ X to denote formals and globals, and metavari-
able p ∈ P to denote representative nodes from the Steensgard
flow-insensitive points-to-analysis. The setO of symbolic lvalues
denotes the locations that our symbolic execution analysiskeeps
track of, and these include formals, globals and field/pointer ac-
cesses through these. We useos ∈ 2O to represent a set of lvalues.
The setV of symbolic values denotes the values that our symbolic
analysis computes, and these include:⊥, which means “not as-
signed yet”;⊤, which means “any possible value”;i, which repre-
sents a constant integer;init(o), which denotes the incoming value

formals, globals x ∈ X

PTA reps p ∈ P

symbolic lvalues o ∈ O ::= x | x.f | p.f | (∗o).f
symbolic values v ∈ V ::= ⊤ |⊥| i | init(o) |

must(o) | may(os)
symbolic map σ ∈ Σ = O → V

Figure 2: Symbolic analysis domain

of lvalueo; must(o), which represents a value that must point to
lvalueo; andmay(os), which represents a value that may point to
any of the lvalues inos. Finally, a symbolic execution mapσ ∈ Σ
is a function from symbolic lvalues to symbolic values.

The symbolic execution keeps track of a symbolic map at each
program point, and this symbolic map is updated using flow func-
tions. The flow function for a simple assignmentx := e evaluates
e in the current map to a symbolic value, and then updatesx in the
map. For assignments through pointers, namely∗x := e, the flow
function evaluatesx to a symbolic valuev1 and e to a symbolic
valuev2. Which lvalues are updated in the store depends on the
valuev1. For example, ifv1 is must(o), then onlyo is updated to
the valuev2. As another example, ifv1 is may(os), then all the
lvalues inos are updated to the valuev2. The remaining cases, not
shown here, are very similar in nature.

When performing symbolic execution on a given function, we
must account for the effect that other threads may have on thestate
of variables. To do this, we use our Steensgard’s points-to analysis
to compute the set of locations that may escape the current thread,
which means that they could be accessed by another thread. We
then map these locations to⊤ (meaning “any possible value”) after
each invocation of the symbolic flow function. This approachto
handling thread interaction is very conservative. However, it retains
full precision on non-escaping local variables, which are the most
important locations to keep track of when re-expressing accesses in
a function in terms of its formal parameters. For example, online
8 of Figure 1, our symbolic execution is able to conclude thatthe
lock being acquired isd->priv->lock because the variables
involved, namelydev on line 6 andai on line 7, are non-escaping
local variables.

3.2 Lockset Analysis
After the symbolic execution has finished, RELAY runs a relative

lockset analysis. A relative locksetL is a pair(L+, L−), where the
setL+ ⊆ O represents the locks that have definitely been acquired
since the beginning of the function, and the setL− ⊆ O represents
the locks that may have been released since the beginning of the
function. We denote byL = 2O ×2O the set of all relative locksets.

The lockset analysis is a dataflow analysis whose domain is the
lattice(L,⊥,⊤,⊑,⊔,⊓), where the ordering is defined as:

• ⊥ = (O, ∅), ⊤ = (∅, O)

• (L+, L−) ⊑ (L′

+, L′

−) iff L′

+ ⊆ L+ ∧ L− ⊆ L′

−

• (L+, L−) ⊔ (L′

+, L′

−) = (L+ ∩ L′

+, L− ∪ L′

−).

• (L+, L−) ⊓ (L′

+, L′

−) = (L+ ∪ L′

+, L− ∩ L′

−)

The analysis runs bottom-up on the call graph. After a function
f has been analyzed, its effect on locksets is stored as a summary
LockSummary(f ) ∈ L that represents the relative lockset at the
end of the function. For simplicity of exposition, we assumethat
functions take only one parameter.

The flow function for the lockset analysis is shown in Figure 4.
Because we model lock and unlock operations as function calls, the



lockUpdate : L × L → L

lockUpdate ((L+,L−), (L′

+,L′

−)) =
((L+ ∪ L′

+) − L′

−, (L− ∪ L′

−) − L′

+)

Figure 3: Relative lockset update

F : Stmt × L → L

F (call(e,a),L) =⊔

f∈targets(e)

let Lf = LockSummary(f ) in
lockUpdate(L, rebind(Lf , f , a))

F (s,L) = L

Figure 4: Lockset flow function

only statements that modify locksets are function callse(a). In par-
ticular, thelock(l) function is modeled as having a relative lock-
set summary of({l}, {}) and theunlock(l) function is mod-
eled as having a relative lockset summary({}, {l}). Given a func-
tion call e(a), for each possible functionf that e may represent,
the flow function first retrieves the summaryLockSummary(f ),
and then, using therebind function shown in Figure 5, it replaces
all occurrences off ’s formal in the summary with the actual being
passed in. The resulting rebound summary represents the changes
in the lockset that occur from the momentf starts executing un-
til it reaches a return. To find the relative lockset after thecall to
f (relative to the caller’s entry point), we apply the changesin-
dicated by the summary to the incoming relative lockset. This is
done using thelockUpdate function shown in Figure 3. In par-
ticular, the positive differences are added together and soare the
negative differences, with the following post-processing: the locks
that may have been released inf are removed from the final must-
have-acquired lockset, and the locks that must have been acquired
in f are removed from the final may-have-been-released lockset.

3.3 Guarded Access Analysis
Once the lockset analysis from Section 3.2 has finished comput-

ing the relative locksets for all program points of a given function,
the guarded access analysis uses this information to compute the
guarded accesses performed by the function.

A guarded access is a triplea = (o, L, k), whereo ∈ O is the
lvalue being accessed,L ∈ L is the relative lockset at the point
where the access is made, andk ∈ K = {Read , Write} is the
kind of access being made (either a read or a write). The set ofall
guarded accesses is denoted byA = O × L × K.

For each function, our guarded access analysis maintains a
guarded access setA ⊆ A for the entire function. After the lockset
analysis has reached a fixed point for a given function, the guarded
access analysis starts out by initializing the function’s guarded set
to the empty set. Then, for each statements in the function, the ac-
cess set is updated by callingUpdateAccessSet (s, L), whereL is
the relative lockset computed by the lockset analysis at theprogram
point right befores. As statements are being processed, the guarded
access set increases monotonically, and when all statements in the
function have been processed, the final guarded access set becomes
the access summary of the function. For a functionf , we denote
the access summary off by AccessSummary(f ).

The most important cases of theUpdateAccessSet function are
shown in Figure 6. For a function calle(a), UpdateAccessSet

rebind : T × Function × Expr → T

rebind(q , f , e) = q [formal(f ) 7→ eval(e)]

Figure 5: Rebinding formals to actuals. The functioneval(e) eval-
uatese to a symbolic value using the store computed by the sym-
bolic execution at the program right beforee is used.

UpdateAccessSet : Stmt × L → void

UpdateAccessSet (x := e, L) =
A := A ∪ {(eval(e),L, Read)}
A := A ∪ {(x, L,Write)}

UpdateAccessSet (call(e, a), L) =
A := A ∪ {(e, L, Read), (a, L,Read)}
foreach f in targets(e) do

foreach (o, Lf , k) in AccessSummary(f ) do
let L′ = lockUpdate(L, rebind(Lf , f , a)) in
let o′ = rebind(o, f , a) in
if isAccessible(o′) then

A := A ∪ {(o′, L′, k)}

Figure 6: Guarded access update. We only show the case for as-
signment to a global, and a function call.

copies all guarded accesses from the callee, re-expressingthem in
the caller’s context. In particular, for each possible function f that
e may represent, we look up the access summary off , and for
each guarded access(o, Lf , k) in the summary, we userebind to
re-expresso and L in terms of the caller’s actuals. We also use
lockUpdate to plug the reboundL into the caller’s context.

The resulting lvalueo′ and locksetL′ are added to the guarded
access setA only if o′ is accessible from globals or from the for-
mals of the function being analyzed. TheisAccessible(o′) call
performs this pruning by running a reachability query in theflow-
insensitive points-to graph from the globals and formals tothe node
representingo′.

3.4 Warning Generation
Once the bottom-up guarded access analysis from Section 3.3

has finished running on all functions, theGenerateWarning func-
tion from Figure 7 uses the resulting guarded access summaries to
generate warnings. TheGenerateWarning function takes as a pa-
rameter the thread entry points, which are all the functionspassed
to thread creation sites, in addition to the original threadthat starts
executing when the kernel boots up.

For each pair of thread entry points,GenerateWarning re-

GenerateWarnings : 2Func → void

GenerateWarnings (ThreadEntryPoints)
foreach (f, f ′) in ThreadEntryPoints2 do

foreach (o, L, k) in AccessSummary(f ) do
foreach (o′, L′, k′) in AccessSummary(f ′) do

let (L+, L−) = L in
let (L′

+, L′

−) = L′ in
if mayEqual(o, o′) ∧ (L+ ∩ L′

+ = ∅) ∧
(k = Write ∨ k′ = Write) then
GenerateWarning(o, o′)

Figure 7: Producing warnings



trieves the guarded access sets for the two entry points, andthen
it searches for two guarded accesses such that the lvalues may be
equal, the must-hold locksets do not overlap, and one of the ac-
cesses is a write. If two such accesses are found, a warning is
generated.

ThemayEqual function determines if two lvalues could be the
same (that is to say, could alias). Nominally,mayEqual looks up
the representative node of the two lvalues in the flow-insensitive
points-to graph, and returns true if the two representativenodes are
the same. To improve precision, some sound syntactic checksare
added to avoid going to the points-to graph when it is not needed.
For example, if the two lvalues are the exact same variable, then
mayEqual immediately returns true without consulting the points-
to graph.

4. EXPERIMENTS
We now describe our experiences running RELAY on a large soft-

ware base, the Linux Kernel v. 2.6.15, which is about 4.5 million
lines of code, spanning 46872 functions, scattered across 18042
files. The kernel was first pre-processed using themakeallyes
option and with loadable module support turned off so as to maxi-
mize the code included in the build. This choice serves to demon-
strate the scalability of our techniques as well as to obtaina close
understanding of the variety of idioms used in systems code for
synchronizing and avoiding data races.

We begin in Section 4.1 with some details about the implementa-
tion of RELAY . We then describe the results of running RELAY on
the Linux kernel. In particular, RELAY ’s sound, context- and flow-
sensitivity resulted in the generation of 5022 warnings (over a 4.5
million line code base). We performed a close analysis of a ran-
domly chosen subset of the warnings, and found that most of these
warnings were in fact false positives. We categorized the false pos-
itives based on the coding idioms used to prevent races, and present
the result in Section 4.2. Our categorization reveals that to soundly
remove the false positives would require sophisticated analyses that
are concurrency- , path- and shape- sensitive, and also scale to mil-
lions of lines, a challenging task that we leave to future work.

Instead, we used our categorization of the sample warnings to de-
vise post-processingwarning filterscapable of automatically plac-
ing every warning into one of the categories (Section 4.3). After
applying the filters we were left with 161 warnings, 31 of which
we again carefully categorized. 25 of this subset (80%) were real
data races.

4.1 Implementation
RELAY is implemented in OCAML and uses CIL[22] as a front-

end. To build the call graph, RELAY processes the kernel one file
at a time. It traverses each function’s body, adding call edges to
each function called within the body. The bottom-up analysis can
process a function as soon as summaries of the callees have been
computed. Thus, it is possible to analyze multiple functions con-
currently, as long as the summaries for their callees has been com-
puted. RELAY exploits this by distributing the summary computa-
tions across a grid of 32 nodes each equipped with 2.8Ghz Xeons
and 4Gb of RAM. Each SCC of the call graph is analyzed by a
fresh process. This process, which starts at any free node inthe
grid, downloads the summaries of the callees to the local filesys-
tem, computes the new summaries for the SCC functions and then
informs a server of the whereabouts of the new summaries. RELAY

took 72 hours to perform the whole analysis on a single machine.
By distributing the computation, we were able reduce the analysis
time to 5 hours.

4.2 Warnings
RELAY uses the guarded access sets to generate 5022 warnings

using the method described in Section 3.4. Rather than undertake
the herculean task of sifting through all these warnings, wechose to
randomly sample and classify 90 of the warnings. This samplecon-
tained some races, but the vast majority of the warnings werefalse
positives. However, it turns out that most of the false positives in
the sample fell into one of a handful of categories describedbelow.
Each of these patterns appears to require a somewhat specialized
analysis as they require careful reasoning about path-sensitivity,
concurrency and the shape of the heap neither of which is easyto
scale.

1. Initialization: A common idiom is to allocate a structure within
a thread, and perform some initializationwithoutany synchroniza-
tion while the structure is still local to the thread, and then to make
the structure accessible to other threads, by adding it to a global
data structure. Even though subsequent accesses happen while
holding a lock, RELAY will report a warning due to the first un-
protected access. Figure 8 shows a simple code fragment fromthe
kernel that illustrates this pattern. The lower function calls a helper
to allocate a structure. The structureconn is allocated on line1:
and passed back to the caller. At this point, the structure isnot
shared and so on line4: some fields of the structure get initialized,
and then on line5: the structure gets added to a global queue after
which it can be accessed by multiple threads. RELAY would warn
about subsequent accesses being a race with the access on line4:.

2. Unlikely aliasing: Many of the warnings reported are false pos-
itives because of the flow-, field- and arithmetic- insensitivity of the
alias analysis. For example, our alias analysis reports that there is
a single “blob" representative node that represents over 10000 ob-
jects, and race conditions reported on objects within this blob are
most likely false positives.

3. Unsharing: RELAY reported many warnings on objects that
are indeed shared, but which are not sharedduring the time they
were accessed. A common situation where this happens is thatthe
object belongs in a shared list, and therefore can be accessed by
multiple threads. However, justbeforea thread performs the access,
it removesthe object from the shared list, and then safely accesses
the object without any lock. Figure 9 illustrates this pattern. pam
is a reference to the first element of thepage_addr_pool, and
this element is removed from the list in line1: (after acquiring the
appropriate locks for the list). Then, the list lock is released and on
line 2: the previously shared object referred to bypam is written
to without any synchronization.

4. Re-entrant locks: A significant fraction of the false warnings
we analyzed were because some data structures were protected with
the kernel semaphore, which is a re-entrant lock. For such locks,
acquires and releases can be nested, and afterk nested acquires,
the lock is actually released only afterk successive releases. RE-
LAY conservatively models these locks, by treating them as released
after the very first release call, and thus, finds several unsynchro-
nized shared accesses, even though they are protected by previous
acquires.

5. Non-parallel threads: Many false warnings arose due to unsyn-
chronized accesses that take place at instances when the kernel has
ensured, using one of several mechanisms, that there is onlya sin-
gle active thread that can access the shared object. The most com-
mon case is when an object is accessed from multiple threads,but
the threads use program logic, including signals and other mecha-
nisms, to order operations in such a way that the threads in essence



never run in parallel. One such example is shown in Figure 10.On
line 1: the functionstart_sync_thread checks the shared
variablestate to see if the thread already exists. If not, on line
2: it attempts to create the thread by looping until the thread gets
created. After the creation succeeds, the parent thread waits for the
child to set thestate variable on line4: and then signal comple-
tion 6:, at which point, on line3: the parent returns. This code
essentially ensures that only one copy of thesync_thread ever
runs, and so the access on line4: is safe, even through RELAY

will warn that two copies ofsync_thread may write tostate
at the same time. There are other mechanisms that, like the above,
require a very precise thread interleaving analysis, such as the use
of blocking primitives likewait_for_completion (illustrated
in the example).

6. Conditional Locking: Several false warnings generated by RE-
LAY were because the program checks some condition to determine
whether to acquire locks, and later, checks a correlated condition to
determine whether the access should occur. Unfortunately,the ac-
quisition of the lock and the actual access occur in different blocks
or functions thereby introducing a path-sensitivity problem. The
example in Figure 11 exhibits this pattern. The upper function ei-
ther returnsNULL without holding the lock if the condition on line
1: holds, or acquires the lock on line2: and returns a non-null
value. This return value is checked on line4: before performing
the access on line5:.

4.3 Filters
We have devised simple syntactic filters based on the above cat-

egorization to automatically categorize the warnings thereby yield-
ing a subset of the warnings that are very likely genuine races.
The design of these filters was guided by finding common patterns
among the warnings in a given category.

These filters are very aggressive, and they are unsound, in the
sense that they can remove real races too. However, since this
source of unsoundness is confined to a post-processing pass,it can
easily be removed as our analysis becomes more precise.

We now describe the filters — in each case, in parentheses we
list the categories the filter corresponds to.

1. Thread-local Allocation (Initialization): To handle the initial-
ization false-positives, we filter out warnings on objects that are
allocated inside the thread within which the conflicting access oc-
curs.

2. Large Points-To Reps. (Unlikely aliasing, Unsharing): For
unlikely aliasing we can filter warnings where the flow-insensitive
alias analysis is asked to compare lvalues whose representative
nodes represent more thank lvalues for a parameterk (k = 1
for our results). Typically, these are nodes where different data-
structures are mixed at a common function (e.g. , two different
lists merging at a node removal function). As this filter captures
warnings involving data-structures, it also applies to the“unshar-
ing” pattern.

3. Bootup thread (Re-entrant locks): The most heavily used re-
entrant lock iskernel_sem. This lock is mainly used by the
boot-up thread which holds it for most of its execution. Thus, to
filter warnings about re-entrant locks, it sufficed to filter warnings
where one of the accesses was in the boot-up thread.

4. Same entry (Non-parallel threads): We noticed that many false
positives involving threads that cannot execute concurrently were
warnings where the two accesses originated from the same thread.
We therefore designed a filter that removes such warnings.

__rxrpc_create_connection(**_conn){
1: conn = kmalloc(sizeof(...), ...);
2: timer_init(&conn->timeout, ...);
3: *_conn = conn;
}

rxrpc_create_connection(*trans){
__rxrpc_create_connection(&conn);
/* fill in the specific bits */

4: conn->addr.sin_family = AF_INET;
write_lock(&peer->conn_idlock);

5: list_add(&conn->id_link, _p);
//...

}

Figure 8: Initialization

set_page_address(*virtual){
spin_lock_irq(&pool_lock);
pam = list_entry(page_addr_pool);

1: list_del(&pam->list);
spin_unlock_irq(&pool_lock);

2: pam->virtual = virtual;
spin_lock_irq(&pas->lock);

3: list_add(&pam->list, &pas->lh);
spin_unlock_irq(&pas->lock);

}

Figure 9: Unsharing

static sync_thread(*startup){
4: state = IP_VS_STATE_MASTER;
5: set_sync_mesg_maxlen(state);
6: complete(startup);

//...
}

start_sync_thread(state, ...){
1: if (state == IP_VS_STATE_MASTER)

return -EEXIST;
repeat:
2: if (kernel_thread(sync_thread,&startup) < 0)

goto repeat;
3: wait_for_completion(&startup);

return 0;
}

Figure 10: Non-parallel threads

static * swap_info_get(entry){
1: if (!entry.val)

goto 3;
p = &swap_info[type];

2: spin_lock(&swap_lock);
return p;

3: return NULL;
}

swap_free(entry){
p = swap_info_get(entry);

4: if (p) {
5: swap_entry_free(p, ...);

spin_unlock(&swap_lock);
}

}

Figure 11: Conditional locking
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Figure 12: The effect of filters on warnings.

4.4 Results
We evaluate the result of applying the filters using two criteria.

First, they should remove false positives,i.e., after applying the
filters, thefraction of real races left in the warning should increase
(Figure 12(a)). Second, they should not remove too many races,
i.e., after applying the filters we should still be left with a pool of
warnings large enough to contain many real races (Figure 12(b)).

We applied the filters to the warnings as follows. First, we drew
a random sample of 90 warnings from the 5022 warnings generated
by RELAY . We manually placed each of the warnings into one of
the six categories described in Section 4.2. When a warning fell in
multiple categories, as was often the case, we placed the warning
into the first (according to the order shown) category.

Next, we applied the filters in the order described in Section4.3.
Figure 12(b) shows how after each filter is applied, the totalnum-
ber of warnings as well as the number of warnings in the manually
categorized sample set decreases. Figure 12(a) shows how the dis-
tribution of the categories changes in the remaining set of samples,
as we apply more filters. The important thing to note here is that the
dark solid bar, which represents the percentage of real races in the
sample set increases monotonically as we apply filters, and reaches
80 % after having applied 4 filters.

We now describe the four steps in applying each one of the four
filters:

1. After applying the first filter (which is meant to remove initial-
ization false positives), the total number of warnings drops to
2812 and the manually categorized sample set drops to 55 (bar
1). Moreover, the fraction of remaining sampled warnings that
are initialization false positives drops from about43% to 20%,
indicating that the filter did in fact remove a larger proportion
of initialization false positives than other warnings.

2. After applying the representative node filter (which was meant
to remove false positives due to unlikely aliasing or unsharing),
the total number of warnings drops to 639 and the sample set
drops to 10 (bar 2). Of the remaining samples, there are no
more unlikely aliasing or unsharing false positives, indicating
that the filter was a good heuristic for removing these false pos-
itives. This filter also had the unintended effect of removing all
the non-parallel-threads false positives. Unfortunately, it also

removed all the races that we had identified in our first sample
set.

3. After applying the third filter, the manually categorizedsam-
ple set went down to zero (bar 3), and so were-sampledthe
set of 355 remaining warnings to obtain a new sample set of
59 warnings which we again manually categorized. After re-
sampling, we applied the third filter (bar labeled “resample”),
namely the bootup-thread filter, which was meant to remove
the re-entrant locks false positives. At this point, the percent-
age of false positives categorized as re-entrant locks decreases
significantly, indicating that the filter is effective at removing
these false positives.

4. After applying the same-entry filter (which is meant to remove
non-parallel threads false positives), all the non-parallel threads
false positives have been removed (bar 4). At this point, the
number of remaining warnings is 161, and the size of the man-
ually categorized sample set is 31, of which 25 (80 %) are real
races. Note that we have not been able to devise a filter targeted
at conditional locks, and therefore the majority of remaining
false positives fall in this category.

We conclude from the above that the filters effectively refinethe
set of warnings and increase the fraction of races from11% to
80 %, without eliminating an unacceptably large number of races.
Counted another way, we manually analyzed 149 warnings in all,
and found 53 races.

Races. After the application of the filters, the vast majority of warn-
ings are real races. Figure 13 shows one such race that survives all
filters. By the time we obtained our results, this race had already
been reported and fixed.

The race involves the read on line2: of p->size and the write,
on line5: of t->size, sincet andp can point to the same object
and there are no common locks held. This race is serious because
the functionchange_page_attr uses thep->size parameter
that is passed in as the bound for a loop iterating over an array. Due
to the race the read ofp->size can return a stale bound causing
the loop insidechange_page_attr to access the array out of
bounds.



iounmap(volatile *addr){
read_lock(&vmlist_lock);
for (p = vmlist; p; p = p->next) {

if (p->addr == addr) break;
}

1: read_unlock(&vmlist_lock);
change_page_attr(virt_to_p(p->phys_addr),

2: p->size >> PAGE_SHIFT);
}

/* called with write_lock(vmlist_lock) */
__remove_vm_area(*addr){
3: for (t = vmlist; t != NULL; t = t->next) {

if (t->addr == addr) break;
}

4: unmap_vm_area(t);
5: t->size -= PAGE_SIZE;

return t;
}

Figure 13: A real race found after applying filters.

5. RELATED WORK
We now present a brief overview of the vast body of work per-

taining to techniques for finding data races.

Dynamic Techniques. Most currently used race detection tech-
niques are dynamic. These detectors principally use two tech-
niques. The first is Lamport’s happen’s-before relation [17], used
in [7, 18]. The second is dynamically computed locksets, popular-
ized by [25]. Much recent effort has gone into lowering the over-
head imposed by dynamic analysis – for example by using stati-
cally precomputed locksets to prune redundant checks [5, 30]. Re-
cent developments include the extension of these techniques to find
atomicity[11] violations in Java code [29, 12], and the use of au-
tomated replay to determine whether a given dynamically detected
race is benign or harmful [21]. The principal drawback with dy-
namic approaches is that they only work on closed programs which
can be executed, they require tests that sufficiently exercise the
code, and that ultimately, they cannot be used to classify all po-
tential accesses. It is also unclear whether they can be scaled to
multi-million line, low-level software.

Static Techniques for Java. Java’s native support for multithread-
ing coupled with its restricted use of syntactically scopedlocks has
given rise to a variety of static techniques for detecting and prov-
ing the absence of races in Java code. Early work includes the
development of type systems that encode a static lockset analysis
[9, 10]. These type based approaches were made more expressive
by incorporating a notion ofownership[3]. Similar type systems
were designed to ensure race-freedom in Cyclone [14]. Whilethese
type systems are eminently scalable, they require user annotation,
though there has been some work on using SAT solvers [13] and
dynamic locksets [2] to infer the lock annotations. Anotherline of
work is that of [28] which finds races by computing anObject Use
Graphthat statically approximates the dynamic happens-before re-
lation. A recent line of work [20] shows how to effectively use
cloning-based context-sensitivity to drastically improve the preci-
sion of lockset computations. The approach was further refined
in [19] by using a notion of must-not aliasing to prune the setof
warnings. The above techniques exploit key properties of Java –
namely the scoped use of locks, which mitigates the need for flow-
sensitivity. Thus, while they are not directly applicable to our set-
ting, we believe that it may be possible to apply ideas like owner-
ship and must-not aliasing to lower the false positives thatarise due
to initialization and unlikely aliasing respectively.

Static Techniques for C. Analyses devised for finding races in C
programs must cope with several additional problems. Principal
among them is the use of unstructured locks, which force the anal-
ysis to be flow- and context- sensitive. The only approach we know
of that has scaled to millions of lines is RACERX, which also finds
deadlocks, and runs over large code bases in minutes. UnlikeRE-
LAY , RACERX uses a top-down approach to computing the lock-
sets at each program point. The paper reports that in order toscale,
several drastic compromises had to be made, such as truncating the
summaries and representing all lvalues with their types. Asa result,
the analysis discards valuable information prematurely, discarding
possible races well before the warning generation phase. Conse-
quently, the tool was only able to unearth a small handful of warn-
ings and, and an order of magnitude fewer races. A more precise
approach is that of [23] which uses a constraint based technique to
computecorrelationsthat describe the locks that protect an lvalue.
While this approach is as precise as ours, it has only been applied
to programs two orders of magnitude smaller than the Linux ker-
nel. We conjecture that the principle bottleneck is the difficult task
of solving a monolithic set of constraints generated over millions
of lines of code. This is in contrast to RELAY whose algorithm
is modular and readily parallelizable. Finally, heavyweight tech-
niques such as model checking [16, 24] have been applied to find
and prove the absence of races. These techniques are essential in
situations where the synchronization is not lock-based, but instead
is via exotic mechanisms like state variables, interrupt disabling,
or the idioms described in Section 4. It is unclear whether such
heavyweight methods can be scaled to large code bases.

Finally, while others have designed bottom-up analyses using
complete summaries [4, 6], our work, and the notion of paralleliza-
tion is directly inspired by the approach taken by [15].

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a static race detection analysis that

scales to millions of lines of C code. At the heart of our technique
is the notion of a relative lockset which allows functions tobe sum-
marized independent of the calling context. This, in turn, allows us
to perform a modular, bottom-up analysis that is easy to parallelize.
We have analyzed 4.5 million lines of C code in 5 hours, and after
applying some simple filters, found a total of 53 races.

One of our long-term goals is to soundly eliminate false positives
to the point where a large fraction of the remaining warnings, say
more than70%, correspond to real races. To this end, we would
like to replace the simple but unsound filters with sound analyses
targeted at the coding patterns that we have found to be the lead-
ing causes of false positives. Examples of such analyses include a
thread-escape analysis for the initialization pattern, a less conserva-
tive version of thelockUpdate function for the re-entrant locking
pattern, and a light-weight shape analysis for the unsharing pattern.

Another long-term goal is to address the problem of deter-
mining “serious" races. Some of the races are clearly benign,
as deduced from syntactic cues such as variable names like
oops_in_progress, while others appear to be dangerous. The
dangerous races are often those that cause higher-level semantic
bugs, such as atomicity violations or unsafe memory accesses like
the one shown in Figure 13. We hope to use RELAY as a foundation
for finding such deeper semantic bugs.
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