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Abstract

Making software reliable is one of the most important technological challenges facing our
society today. This thesis presents a new type system that addresses this problem by
statically preventing several important classes of programming errors. If a program type
checks, we guarantee at compile time that the program does not contain any of those errors.

We designed our type system in the context of a Java-like object-oriented language; we
call the resulting system SafeJava. The SafeJava type system offers significant software
engineering benefits. Specifically, it provides a statically enforceable way of specifying
object encapsulation and enables local reasoning about program correctness; it combines
effects clauses with encapsulation to enable modular checking of methods in the presence of
subtyping; it statically prevents data races and deadlocks in multithreaded programs, which
are known to be some of the most difficult programming errors to detect, reproduce, and
eliminate; it enables software upgrades in persistent object stores to be defined modularly
and implemented efficiently; it statically ensures memory safety in programs that manage
their own memory using regions; and it also statically ensures that real-time threads in
real-time programs are not interrupted for unbounded amounts of time because of garbage
collection pauses. Moreover, SafeJava provides all the above benefits in a common unified
type system framework, indicating that seemingly different problems such as encapsulation,
synchronization issues, software upgrades, and memory management have much in common.

We have implemented several Java programs in SafeJava. Our experience shows that Safe-
Java is expressive enough to support common programming patterns, its type checking is
fast and scalable, and it requires little programming overhead. In addition, the type declara-
tions in SafeJava programs serve as documentation that lives with the code, and is checked
throughout the evolution of code. The SafeJava type system thus has significant software
engineering benefits and it offers a promising approach for improving software reliability.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

The motivation behind this thesis is the need for reliable software. Software is rapidly
becoming the foundation for our entire civil infrastructure. All activities including trans-
portation, telecommunications, energy, medicine, and banking rely on the correct working
of software systems. As software becomes more pervasive in our infrastructure, failures of
software can cause more and more damage. Hence the increasing need for reliable software.
Software reliability also has a significant impact on our economy. Studies estimate that
bugs in software cost businesses worldwide about $175 billion in the year 2001 [124]. Mak-
ing software reliable is one of the most important problems facing computer science today.
Making software reliable is also one of the most challenging problems, primarily because of
the inherent complexity of large software systems.

This thesis presents a new type system that improves software reliability by preventing
several classes of common but potentially serious programming errors. If a program type
checks, the system guarantees at compile time that the program does not contain any of
those errors. We designed our type system in the context of a Java-like object-oriented
language; we call the resulting system SafeJava.

The SafeJava type system offers significant software engineering benefits. Specifically, Safe-
Java provides a statically enforceable way of specifying object encapsulation and enables
local reasoning about program correctness; it combines effects clauses with encapsulation
to enable modular checking of methods in the presence of subtyping; it statically prevents
data races and deadlocks in multithreaded programs, which are some of the most difficult
programming errors to detect, reproduce, and eliminate; it enables software upgrades in
persistent object stores to be defined modularly and implemented efficiently; it statically
ensures memory safety in programs that manage their own memory using regions; and it
also statically ensures that real-time threads in real-time programs are not interrupted for
unbounded amounts of time. Moreover, SafeJava provides all these benefits in a unified
type system framework, indicating that seemingly different issues such as encapsulation,
synchronization, upgrades, and memory management have much in common.

We have implemented several Java programs in SafeJava. Our experience shows that Safe-
Java is expressive enough to support common programming patterns, its type checking
is fast and scalable, and it requires little programming overhead. In addition, the type
declarations in SafeJava programs serve as documentation that lives with the code, and is
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checked throughout the evolution of code. The SafeJava type system thus offers a promising
approach for improving software reliability.

The rest of this introductory chapter is organized as follows. Sections 1.1 to 1.5 elaborate
on the various benefits offered by the SafeJava type system. Section 1.6 highlights the
contributions of this thesis. Section 1.7 describes the structure of the subsequent chapters.

1.1 Enforcing Object Encapsulation

The ability to reason locally about program correctness is crucial when dealing with large
programs. Local reasoning allows correctness to be dealt with one module at a time. The
standard approach is to provide each module with a specification describing its expected
behavior. The goal is to prove that each module satisfies its specification, using only the
specifications but not code of other modules. This way the complexity of the proof effort
(formal or informal) can be kept under control.

This local reasoning approach is sound if separate verification of individual modules suffices
to ensure the correctness of the composite program [98, 56]. The key to sound local reasoning
in object-oriented languages is object encapsulation. Consider, for example, a Stack object
s that is implemented using a linked list. Local reasoning about the correctness of the Stack
implementation is possible if objects outside s do not directly access the list nodes, i.e., the
list nodes are encapsulated within the s.

SafeJava uses a variant of ownership types for specifying and statically enforcing object
encapsulation. In SafeJava, a program can declare that s owns all the list nodes. The type
system then statically ensures that the list nodes are encapsulated within s.

A type system that strictly enforces object encapsulation, however, is too constraining [113]:
it does not allow efficient implementation of important constructs like iterators [104, 71].
Consider, for example, an iterator over the above-mentioned Stack object s. If the iterator
is encapsulated within s, it cannot be used outside s. If the iterator is not encapsulated
within s, it cannot directly access the list nodes in s, and hence cannot run efficiently.

Previous ownership type systems were either too constraining to support constructs like
iterators [43, 42], or too permissive to support local reasoning [41]; for example they allowed
objects outside the above-mentioned Stack object s to temporarily get direct access to the
list nodes.

This thesis argues that the right way to solve the problem is to provide special access
privileges to objects belonging to classes in the same module; we show how to do this
for inner classes [107, 89]. SafeJava allows inner class objects to have privileged access to
the representations of the corresponding outer class objects. This principled violation of
encapsulation allows programmers to express constructs like iterators using inner classes,
yet supports local reasoning about the correctness of the classes. SafeJava supports local
reasoning because a class and its inner classes can be reasoned about together as a module.

SafeJava also allows programmers to use unique pointers [108]. Like ownership types, unique
pointers are useful to constrain object aliasing. Because SafeJava combines ownership types
and unique pointers in a common framework, it supports constructs that neither ownership
types nor unique pointers alone can support, while enforcing object encapsulation.
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1.2 Checking Side Effects of Methods Modularly

SafeJava combines object encapsulation with effects clauses [106] which are useful for spec-
ifying assumptions that must hold at method boundaries and enable modular checking of
programs.

Effects clauses have been incorporated into many program formalisms, specification lan-
guages, and program checkers. Examples include Morgan’s specification statement [110],
Z [126], Larch [82], JML [96], and ESC [57, 69]. SafeJava also uses effects clauses to statically
verify various program properties.

In a language that does not have a notion of object encapsulation, it is often difficult to
specify the side effects of a method precisely without exposing the representation of its
object. Consider, for example, the modifies clause [103] on the push method of a Stack
object that is implemented using a linked list. The modifies clause specifies the names of
all the objects that the corresponding method may modify. Suppose we want to check the
modifies clause automatically with a program analysis tool. Since the push method may
modify the list nodes, the modifies clause must specify the names of the list nodes, thus
exposing the representation of the Stack object.

The problem gets worse if there are several Stack implementations. For example, in an
object-oriented language like Java, one can have an abstract Stack class and different sub-
classes of Stack that use different representations. The subclasses add new fields to Stack,
and the push method in a subclass might modify the objects pointed to by the new fields. In
this case it is impossible to specify the modifies clause of the push method of Stack, because
the new fields added by subclasses are not visible in the scope of the abstract Stack class.

To solve this problem, one must use some abstraction mechanism with which one can
refer to the objects that are not in scope without directly mentioning their names. Data
groups [97, 99] are one such abstraction mechanism. SafeJava provides an alternate solution.
SafeJava allows effects clauses to use the name of an object o to denote all the objects
(reflexively and transitively) encapsulated within o. The push method of Stack can declare
that it modifies the corresponding Stack object. If a subclass adds a new field f, it can
declare that the object pointed to by f is encapsulated within the Stack object. The push
method in the subclass is then allowed to modify the object pointed to by f.

SafeJava thus allows programs to specify the side effects of a method precisely in the presence
of subtyping without representation exposure.

1.3 Preventing Data Races and Deadlocks

Multithreaded programming is becoming a mainstream programming practice. But mul-
tithreaded programming is difficult and error prone. Multithreaded programs synchronize
operations on shared mutable data to ensure that the operations execute atomically. Failure
to correctly synchronize such operations can lead to data races or deadlocks. A data race
occurs when two threads concurrently access the same data without synchronization, and
at least one of the accesses is a write. A deadlock occurs when there is a set of threads such
that every thread in the set is waiting on a lock held by another thread in the set. Synchro-
nization errors in multithreaded programs are timing-dependent, non-deterministic bugs,
and are among the most difficult programming errors to detect, reproduce, and eliminate.
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SafeJava provides a new static type system for multithreaded programs; well-typed pro-
grams in SafeJava are guaranteed to be free of data races and deadlocks. The basic idea is
as follows. When programmers write multithreaded programs, they already have a locking
discipline in mind. SafeJava allows programmers to specify this locking discipline in their
programs in the form of type declarations. SafeJava statically verifies that a program is
consistent with its type declarations.

To prevent data races, programmers associate every object with a protection mechanism
that ensures that accesses to the object never create data races. The protection mechanism
of an object can specify either the mutual exclusion lock that protects the object from
unsynchronized concurrent accesses, or that threads can safely access the object without
synchronization because either 1) the object is immutable, 2) the object is accessible to
a single thread, or 3) there is a unique pointer to the object. Unique pointers are useful
to support object migration between threads. The SafeJava type checker statically verifies
that a program uses objects only in accordance with their declared protection mechanisms.

The SafeJava type system is significantly more expressive than previously proposed type
systems for preventing data races [68, 11]. In particular, SafeJava lets programmers write
generic code to implement a class, then create different objects of the class that have different
protection mechanisms. SafeJava does this by introducing a way of parameterizing classes
that lets programmers defer the protection mechanism decision from the time when a class
is defined to the times when objects of that class are created.

To prevent deadlocks, programmers partition all the locks into a fixed number of lock levels
and specify a partial order among the lock levels. The SafeJava type checker statically
verifies that whenever a thread holds more than one lock, the thread acquires the locks
in the descending order of lock levels. SafeJava allows programmers to write code that is
polymorphic in lock levels. Programmers can specify a partial order among formal lock
level parameters using where clauses [50, 112].

SafeJava also allows programmers to use recursive tree-based data structures to further order
the locks within a given lock level. For example, programmers can specify that nodes in a
tree must be locked in the tree order. SafeJava allows mutations to the data structure that
change the partial order at runtime. The SafeJava type checker uses an intraprocedural
intra-loop flow-sensitive analysis to statically verify that the mutations do not introduce
cycles in the partial order, and that the changing of the partial order does not lead to
deadlocks. We do not know of any other sound static system for preventing deadlocks that
allows changes to the partial order at runtime.

The SafeJava type system combines object encapsulation with safe multithreading. Object
encapsulation is useful for safe multithreading because the same lock that protects an object
can also protect the objects encapsulated within that object.

1.4 Enabling Safe Upgrades in Persistent Object Stores

Persistent object stores provide a simple yet powerful programming model that allows appli-
cations to store objects reliably so that they can be used again later and shared with other
applications. Providing a satisfactory way of upgrading objects in a persistent object store
has been a long-standing challenge. A natural way to define upgrades is for programmers
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to provide a transform function [138] for each class whose objects need to be upgraded. A
transform function initializes the new form of an object using its current state. The system
carries out the upgrade by using the transform functions to transform all objects whose
classes are being replaced.

This way of handling upgrades introduces two problems:

1. The system must provide good semantics that let programmers reason about their
transform functions locally, thus making it easy to design correct upgrades.

2. The system must run upgrades efficiently, both in space and time.

This thesis provides solutions to both problems.

The thesis first introduces a set of upgrade modularity conditions that constrain the behavior
of an upgrade system. Any upgrade system that satisfies the conditions guarantees that
when a transform function runs, it only encounters object interfaces and invariants that
existed when its upgrade was defined. The conditions thus allow transform functions to be
defined modularly: a transform function can be considered an extra method of the class being
replaced, and can be reasoned about like the rest of the class. This is a natural assumption
that programmers would implicitly make in any upgrade system—our conditions provide
a grounding for this assumption. This way an upgrade system provides good semantics to
programmers who design upgrades.

The thesis then shows how upgrades implemented in SafeJava can execute efficiently, while
satisfying the upgrade modularity conditions. Previous approaches do not provide a satis-
factory solution to this problem. An upgrade system could satisfy the conditions by keeping
old versions of all objects, since old versions preserve old interfaces and old object states.
However versions are expensive, and to be practical, an upgrade system must avoid them
most of the time. Some earlier systems [116, 13, 100] avoid versions by severely limiting
the expressive power of upgrades (e.g., transform functions are not allowed to make method
calls); others [8, 114] limit the number of versions using a stop-the-world approach that
shuts down the system for upgrade and discards the versions when the upgrade is complete;
yet others [138] do not satisfy the upgrade modularity conditions that enable programmers
to reason about their upgrades locally.

Our approach exploits the fact most transform functions are well behaved : they access only
the object being transformed and its encapsulated objects. SafeJava statically checks if
transform functions are well behaved. If they are, the runtime system provides an efficient
way to enforce the upgrade modularity conditions without maintaining versions. If they
aren’t, we provide an additional mechanism, triggers, which can be used to control the
order of transform functions to satisfy the conditions. If even triggers are insufficient, we
use versions but only in cases where they are needed.

1.5 Enabling Safe Region-Based Memory Management

The Real-Time Specification for Java (RTSJ) [18] provides a framework for building real-
time systems. The RTSJ allows a program to create real-time threads with hard real-time
constraints. These real-time threads cannot use the garbage-collected heap because they
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cannot afford to be interrupted for unbounded amounts of time by the garbage collec-
tor. Instead, the RTSJ allows these threads to use objects allocated in immortal memory
(which is never garbage collected) or in regions [128]. Region-based memory management
systems structure memory by grouping objects in regions under program control. Memory
is reclaimed by deleting regions, freeing all objects stored therein. The RTSJ uses runtime
checks to ensure that deleting a region does not create dangling references and that real-time
threads do not access heap references.

SafeJava introduces a new static type system for writing real-time programs in Java. Safe-
Java guarantees that the RTSJ runtime checks will never fail for well-typed programs.

The SafeJava type system makes several important technical contributions over previous
type systems for region-based memory management. For object-oriented programs, it com-
bines region types [39, 48, 80, 128] and ownership types [23, 24, 26, 41, 43] in a unified
type system framework. Region types statically ensure that programs never follow dangling
references. Ownership types statically enforce object encapsulation and enable modular
reasoning about program correctness in object-oriented programs. Consider, for example,
a Stack object s that is implemented using a Vector object v. To reason locally about the
correctness of the Stack implementation, a programmer must know that v is not directly
accessed by objects outside s. With ownership types, one can declare that s owns v. The
type system then statically ensures that v is encapsulated within s.

In an object-oriented language that has only region types (e.g., [39]), the types of s and
v would declare that they are allocated in some region r. In an object-oriented language
that only has ownership types, the type of v would declare that it is owned by s. SafeJava
provides a simple unified mechanism to declare both properties. The type of s can declare
that it is allocated in r and the type of v can declare that it is owned by s. SafeJava then
statically ensures that both objects are allocated in r, that there are no pointers to v and s
after r is deleted, and that v is encapsulated within s. SafeJava thus combines the benefits
of region types and ownership types.

SafeJava extends region types to multithreaded programs by allowing explicit memory man-
agement for objects shared between threads. It allows threads to communicate through ob-
jects in shared regions in addition to the heap. A shared region is deleted when all threads
exit the region. However, programs in a system with only shared regions (e.g., [79]) will have
memory leaks if two long-lived threads communicate by creating objects in a shared region.
This is because the objects will not be deleted until both threads exit the shared region. To
solve this problem, SafeJava introduces subregions within a shared region. A subregion can
be deleted more frequently, for example, after each loop iteration in the long-lived threads.

SafeJava introduces typed portal fields in subregions to serve as a starting point for inter-
thread communication, and user-defined region kinds to support subregions and portals.

SafeJava extends region types to real-time programs by statically ensuring that real-time
threads do not interfere with the garbage collector. SafeJava augments region kind decla-
rations with region policy declarations. It supports two policies for creating regions as in
the RTSJ. A region can be an LT (Linear Time) region, or a VT (Variable Time) region.
Memory for an LT region is preallocated at region creation time, so that allocating an object
in an LT region only takes time proportional to the size of the object (because all the bytes
have to be zeroed). Memory for a VT region is allocated on demand, so that allocating an
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object in a VT region takes variable time. SafeJava checks that real-time threads do not
use heap references, create new regions, or allocate objects in VT regions.

SafeJava also prevents an RTSJ priority inversion problem. In the RTSJ, any thread
entering a region waits if there are threads exiting the region. If a regular thread exiting
a region is suspended by the garbage collector, then a real-time thread entering the region
might have to wait for an unbounded amount of time. SafeJava statically ensures that this
priority inversion problem cannot happen.

1.6 Contributions

This thesis presents SafeJava, a new type system that improves software reliability by
preventing several classes of common but potentially serious programming errors. The
thesis is based on several papers that we previously published [22, 23, 24, 25, 26, 27], and
it makes the following contributions:

• Enforcing Object Encapsulation: Object encapsulation is key to sound local rea-
soning in object-oriented languages. SafeJava is the first ownership type system that
can express constructs like iterators while also supporting local reasoning. SafeJava is
also the first system that combines object encapsulation with effects clauses, unique
pointers, and immutable objects.

• Combining Object Encapsulation With Effects Clauses: Effects clauses are
useful for specifying assumptions that must hold at method boundaries and enable
modular checking of programs. SafeJava combines object encapsulation with effects
clauses to allow programs to precisely specify the side effects of a method in the
presence of subtyping and without representation exposure. SafeJava allows effects
clauses to use the name of an object to denote all the objects encapsulated within
that object. SafeJava first combined object encapsulation with effects clauses in [26]
to prevent data races in multithreaded programs. SafeJava also uses effects clauses to
statically verify several other program properties.

• Combining Object Encapsulation With Unique Pointers: SafeJava combines
ownership types with unique pointers to express constructs that neither ownership
types nor unique pointers alone can express, while enforcing object encapsulation.
We first combined ownership types with unique pointers in [26] to support ownership
transfer. Recent work [44] proposes a more flexible approach that allows a program
to specify a unique external pointer to an object; there can be other pointers to that
object from objects encapsulated within it. We subsequently adopted this approach.

• Combining Object Encapsulation With Immutability: Immutable objects have
many advantages. Unlike mutable objects, they can be shared across multiple aliases
without complicating the task of understanding and reasoning about correctness of
programs. SafeJava is the first system that extends the notion of immutability to
object encapsulation. SafeJava statically verifies that if an object is declared to be
immutable, then the program does not modify that object or objects encapsulated
within that object. SafeJava first combined ownership types with immutable objects
in [26] to allow multiple threads to access an immutable object (and its encapsulated
objects) without synchronization and without causing data races.
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• Preventing Data Races: SafeJava provides a new static type system that prevents
data races in multithreaded programs. Unlike previously proposed type systems for
preventing data races, SafeJava lets programmers write generic code to implement a
class, then create different objects of the class that are protected differently from data
races. For example, in SafeJava, programmers can write a generic Queue implemen-
tation, then create different Queue objects that can include:

– Queue objects protected by mutual exclusion locks, containing
Queue items protected by mutual exclusion locks
Queue items encapsulated within other data structures

– Thread-local Queue objects,
– Queue objects with unique pointers, and
– Immutable Queue objects, containing

Queue items protected by mutual exclusion locks
Thread-local Queue items
Queue items encapsulated within other data structures

In previous type systems, one needed a different Queue implementation to support
each of the above cases.

• Preventing Deadlocks: SafeJava provides a new static type system that prevents
deadlocks in multithreaded programs. It makes the following contributions:

Static Lock Levels: SafeJava allows programmers to partition all the locks into a fixed
number of lock levels and specify a partial order among the lock levels. The type
checker then statically verifies that whenever a thread holds more than one lock, the
thread acquires the locks in the descending order.

Lock Level Polymorphism: SafeJava allows programmers write code that is polymor-
phic in lock levels. SafeJava also allows programmers to specify a partial order among
formal lock level parameters using where clauses [50, 112]. This enables programmers
to write code in which the exact levels of some locks are not known statically, but
only some ordering constraints among the unknown lock levels are known statically.

Support for Condition Variables: In addition to mutual exclusion locks, SafeJava
prevents deadlocks in the presence of condition variables. SafeJava statically enforces
the constraint that a thread can invoke e.wait only if the thread holds no locks other
than the lock on e. Since a thread releases the lock on e on executing e.wait, the above
constraint implies that any thread that is waiting on a condition variable holds no
locks. This in turn implies that there cannot be a deadlock that involves a condition
variable. SafeJava thus prevents the nested monitor problem [105].

Partial-Orders Based on Mutable Trees: SafeJava allows programmers to use recur-
sive tree-based data structures to further order the locks within a given lock level.
SafeJava allows mutations that change the partial order at runtime. The type checker
uses an intraprocedural intra-loop flow-sensitive analysis to statically verify that the
mutations do not introduce cycles in the partial order, and that the changing of the
partial order does not lead to deadlocks.

Partial-Orders Based on Monotonic DAGs: SafeJava also allows programmers to use
recursive DAG-based data structures to order the locks within a given lock level. DAG
edges cannot be modified once initialized. Only newly created nodes may be added
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to a DAG by initializing the newly created nodes to contain DAG edges to existing
DAG nodes.

Runtime Ordering of Locks: SafeJava supports imposing an arbitrary linear order
at runtime on locks within a given lock level. SafeJava also provides a primitive to
acquire such locks in the linear order.

• Enabling Safe Software Upgrades in Persistent Object Stores: SafeJava en-
ables software upgrades in persistent object stores to be defined modularly and im-
plemented efficiently. It makes the following contributions:

Defining Upgrade Modularity Conditions: This thesis defines upgrade modularity con-
ditions that any upgrade system must satisfy to support local reasoning about up-
grades. These conditions are more general than earlier definitions [138]: they apply to
both lazy and stop-the-world upgrade systems; they also apply to both systems that
use versions and systems that don’t.

Satisfying Upgrade Modularity Conditions: The thesis then describes a new approach
for executing upgrades efficiently while satisfying the upgrade modularity conditions.
The approach exploits object encapsulation properties in a novel way. The thesis
proves that our upgrade system satisfies the upgrade modularity conditions when
transforms are well-behaved. The thesis also shows that the conditions hold through
the use of triggers and versions.

• Enabling Safe Region-Based Memory Management: SafeJava allows programs
to safely manage their own memory using regions. It makes several important techni-
cal contributions over previous type systems for region-based memory management:

Region types for object-oriented programs: SafeJava combines region types and own-
ership types in a unified type system framework that statically enforces object encap-
sulation as well as enables safe region-based memory management.

Region types for multithreaded programs: SafeJava introduces 1) subregions within a
shared region, so that long-lived threads can share objects without using the heap and
without memory leaks and 2) typed portal fields to serve as a starting point for typed
inter-thread communication. It also introduces user-defined region kinds to support
subregions and portals.

Region types for real-time programs: SafeJava allows programs to create LT (Linear
Time) and VT (Variable Time) regions as in the Real-Time Specification for Java
(RTSJ). It checks that real-time threads do not use heap references, create new regions,
or allocate objects in VT regions, so that they do not wait for unbounded amounts of
time. It also prevents an RTSJ priority inversion problem.

• Supporting Safe Runtime Downcasts With Ownership Types: SafeJava is
primarily a static type system. The type checker uses the ownership type annotations
to statically ensure the absence of certain classes of errors, but it is usually unnecessary
to preserve the ownership information at runtime. However, languages like Java are
not purely statically typed languages. Java allows downcasts that are checked at
runtime. To support safe runtime downcasts in a language with ownership types, the
system must preserve some ownership information at runtime.

This thesis describes an efficient technique for supporting safe runtime downcasts in
SafeJava. This technique uses the type passing approach, but avoids the associated
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significant space overhead by storing only the runtime ownership information that is
potentially needed to support safe downcasts. Moreover, this technique does not use
any interprocedural analysis, so it preserves the separate compilation model of Java.

• Type Inference: Although SafeJava is explicitly typed in principle, it would be
onerous to fully annotate every method with the extra type information. Instead,
SafeJava uses a combination of type inference and well-chosen defaults to significantly
reduce the number of annotations needed in practice. SafeJava also supports user-
defined defaults to cover specific patterns that might occur in user code. Note that our
approach to inference is purely intraprocedural and we do not infer method signatures
or types of instance variables. Rather, we use a default completion of partial type
specifications in those cases. This approach permits separate compilation.

• Programming Experience: To gain preliminary experience, we implemented sev-
eral Java programs in SafeJava. These include classes from the Java libraries, mul-
tithreaded Java server programs, and Real-Time Specification for Java (RTSJ) pro-
grams. These programs exhibit a variety of programming paradigms. We found that
SafeJava is expressive enough to support these programs.

In each case, once we understood how the program worked, adding the extra type
annotations was fairly straightforward. On average, we had to annotate about one in
thirty lines of code.

1.7 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the basic Safe-
Java type system for enforcing object encapsulation. Chapter 3 extends the type system to
combine object encapsulation with effects clauses, unique pointers, and immutable objects.
Chapter 4 builds on this type system to prevent data races and deadlocks in multithreaded
programs. This chapter also introduces our type inference techniques that reduce program-
ming overhead. We also describe how SafeJava supports safe runtime downcasts in this
chapter. Chapter 5 shows how the type system enables safe software upgrades in persistent
object stores. Chapter 6 extends the system to prevent memory errors in programs that
manage their own memory using regions. Chapter 7 concludes.
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Chapter 2

Enforcing Object Encapsulation

The ability to reason locally about program correctness is crucial when dealing with large
programs. Local reasoning allows correctness to be dealt with one module at a time. The
standard approach is to provide each module with a specification describing its expected
behavior. The goal is to prove that each module satisfies its specification, using only the
specifications but not code of other modules. This way the complexity of the proof effort
(formal or informal) can be kept under control.

This local reasoning approach is sound if separate verification of individual modules suffices
to ensure the correctness of the composite program [98, 56]. The key to sound local reasoning
in object-oriented languages is object encapsulation. Consider, for example, a Stack object
s that is implemented using a linked list. Local reasoning about the correctness of the Stack
implementation is possible if objects outside s do not directly access the list nodes, i.e., the
list nodes are encapsulated within the s.

SafeJava uses a variant of ownership types for specifying and statically enforcing object
encapsulation. In SafeJava, a program can declare that s owns all the list nodes. The type
system then statically ensures that the list nodes are encapsulated within s.

A type system that strictly enforces object encapsulation, however, is too constraining [113]:
it does not allow efficient implementation of important constructs like iterators [104, 71].
Consider, for example, an iterator over the above-mentioned Stack object s. If the iterator
is encapsulated within s, it cannot be used outside s. If the iterator is not encapsulated
within s, it cannot directly access the list nodes in s, and hence cannot run efficiently.

Previous ownership type systems were either too constraining to support constructs like
iterators [43, 42], or too permissive to support local reasoning [41]; e.g., they allowed objects
outside the above-mentioned Stack object s to temporarily get direct access to the list nodes.

This thesis argues that the right way to solve the problem is to provide special access
privileges to objects belonging to classes in the same module; we show how to do this
for inner classes [107, 89]. SafeJava allows inner class objects to have privileged access to
the representations of the corresponding outer class objects. This principled violation of
encapsulation allows programmers to express constructs like iterators using inner classes,
yet supports local reasoning about the correctness of the classes. SafeJava supports local
reasoning because a class and its inner classes can be reasoned about together as a module.
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Figure 2-1: Stack Object With Encapsulated Linked List

The rest of this chapter is organized as follows. Section 2.1 discusses object encapsula-
tion. Section 2.2 introduces the basic SafeJava type system that uses ownership types to
enforce object encapsulation. Section 2.3 provides a formal description of the type system.
Section 2.4 describes extensions to the type system to support inner classes. Section 2.5
discusses some practical issues about SafeJava. Section 2.6 presents related work, and
Section 2.7 concludes.

2.1 Object Encapsulation

Reasoning about a class in an object-oriented program involves reasoning about the behavior
of objects belonging to the class. Typically objects point to other subobjects, which are used
to represent the containing object. Local reasoning about class correctness is possible if the
subobjects are encapsulated :

E1. An object x encapsulates an object y if it maintains an encapsulation boundary such
that y is inside the boundary and furthermore if z is outside the boundary, then z
cannot access y. (An object z accesses an object y if z has a pointer to y, or methods
of z obtain a pointer to y.)

Encapsulation of subobjects supports local reasoning because it ensures that outside objects
cannot interact with the subobjects without calling methods of the containing object. And
therefore the containing object is in control of its subobjects.

However, encapsulation of all subobjects is often more than is needed for local reasoning.
Encapsulation is only required for subobjects that the containing object depends on [98]:

E2. An object a depends on subobject b if a reads/writes fields of b or calls methods of
b and furthermore these reads/writes or calls expose mutable behavior of b in a way
that affects the invariants of a.

Thus, a stack implemented using a linked list depends on the list but not on the items
contained in the list. If code outside could manipulate the list, it could invalidate the
correctness of the stack implementation. But code outside can safely use the items contained
in the stack because the stack doesn’t call their methods; it only depends on the identities
of the items and the identities never change. Similarly, a set of immutable elements does
not depend on the elements even if it invokes a.equals(b) to ensure that no two elements a
and b in the set are equal, because the elements are immutable.
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Figure 2-3: An Ownership Relation

We therefore propose the following methodology:1

E3. Every object must encapsulate all objects it depends on.

Figure 2-1 shows an example, where a stack object is implemented using a linked list. Since
the stack object depends on the list nodes, the list nodes are encapsulated within the stack
object and outside objects cannot directly access the list nodes. But stack object does not
depend on the items stored in the stack, so the items stored in the stack are not encapsulated
in the stack object.

In general, the encapsulation relation forms a hierarchy. In Figure 2-2, objects o2, o3,
and o4 are encapsulated within o1, object o3 is encapsulated within o2, and object o7 is
encapsulated within o6.

2.2 Ownership Types for Enforcing Object Encapsulation

Ownership types [23, 24, 26, 41, 43] provide a statically enforceable way of specifying object
encapsulation. The idea is that an object can own subobjects it depends on, thus preventing
them from being accessible outside. This section presents the basic SafeJava type system.

2.2.1 Object Ownership

The key to the type system is the concept of object ownership. Every object has an owner.
The owner can either be another object or a special owner called world.

1We relax this methodology slightly in Section 2.4 to support constructs like iterators.
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SJ1. Every object has an owner.

SJ2. The owner can either be another object or world.

SJ3. The ownership relation forms a tree rooted at world.

SJ4. The owner of an object does not change over time.
(Except if there is a unique pointer to that object. See Section 3.3.)

SJ5. If object z owns y but z 6º x, then x cannot access y.
(Except if x is an inner class object of z. See Section 2.4.)

Figure 2-4: Ownership Properties

Figure 2-3 presents an example ownership relation. We draw an arrow from x to y if x
owns y. In the figure, the special owner world owns objects o1, o5, and o6; o1 owns o2 and
o4; o2 owns o3; and o6 owns o7. The ownership relation in Figure 2-3 corresponds to the
encapsulation relation in Figure 2-2.

Ownership allows a program to statically declare encapsulation boundaries that capture
dependencies:

E4. An object should own all the objects it depends on.

The system then enforces encapsulation: if y is inside the encapsulation boundary of z and
x is outside, then x cannot access y. In Figure 2-3, o7 is inside the encapsulation boundary
of o6 and o1 is outside, so o1 cannot access o7. o1 can only access objects o2, o4, o5, and
o6.

In general, an object can only access: 1) itself and objects it owns, 2) its ancestors in the
ownership tree and objects they own, and 3) globally accessible objects, namely objects
owned by world.

Note the analogy with nested procedures: proc P1 {var x2; proc P2 {var x3; proc P3 {...}}}.
Say xn+1 and Pn+1 are children of Pn. Then Pn can only access: 1) Pn and its children, 2)
the ancestors of Pn and their children, and 3) global variables and procedures.

We use the notation o1 º o2 to denote that o1 directly or transitively owns o2 or if o1 is the
same as o2. The relation º is thus the reflexive transitive closure of the owns relation.

SafeJava statically guarantees the properties in Figure 2-4. SJ3 states that our ownership
relation has no cycles. SJ4 states that the owner of an object does not change over time.
SJ5 states the encapsulation property of our system, that if y is inside the encapsulation
boundary of z and x is outside, then x cannot access y.

(We later present extensions to the basic type system that relax Properties SJ4 and SJ5.
Sections 2.4 relaxes Property SJ5 to allow inner class objects to have privileged access to
the owned objects of the corresponding outer class objects. Section 3.3 shows how unique
pointers can be used to support ownership transfer.)
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P ::= defn* e
defn ::= class cn extends c {field* meth*}

c ::= cn | Object
meth ::= t mn(arg* ) {e}
field ::= t fd
arg ::= t x

t ::= c | int
formal ::= f

e ::= x | x = e | let (arg=e) in {e} | x.fd | x.fd = y | enew | emethod

enew ::= new c
emethod ::= x.mn(y* )

cn ∈ class names
fd ∈ field names

mn ∈ method names
x,y ∈ variable names

Figure 2-5: Grammar for a Core Subset of Java

defn ::= class cn〈formal+〉 extends c where constr* {field* meth*}
c ::= cn〈owner+〉 | Object〈owner〉

owner ::= formal | world | this
constr ::= (owner º owner) | (owner 6º owner)
meth ::= t mn〈formal* 〉(arg* ) where constr* {e}

emethod ::= x.mn〈owner* 〉(y* )

f ∈ owner names

Figure 2-6: Grammar Extensions to Support Ownership Types

2.2.2 Owner Polymorphism

To simplify the presentation of key ideas, we describe our type system in the context of a
core subset of Java [77]. Our approach, however, extends to the whole of Java and other
similar languages. Figure 2-5 presents the grammar for our Java subset. This Java subset
is similar to Classic Java [70], and has much of the same semantics as Classic Java. A
program is a sequence of class definitions followed by an initial expression. A predefined
class Object is the root of the class hierarchy. The SafeJava language constructs are similar
to the corresponding constructs in Java.

Figure 2-6 presents grammar extensions to support ownership types. Figure 2-7 shows an
example TStack program. A TStack is a stack of T objects. It is implemented using a linked
list. For simplicity, all examples in this thesis use a language that is syntactically close to
Java. (The example shows type annotations written explicitly. However, many of them can
be automatically inferred. We discuss type inference in Section 2.5.)

Every class definition is parameterized with one or more owners. The first owner parameter
is special: it identifies the owner of the corresponding object. The other owner parameters
propagate the ownership information. Parameterization allows programmers to implement
a generic class whose objects have different owners. This parameterization is similar to
parametric polymorphism [3, 29, 32, 90, 112, 132] except that our parameters are owners,
not types. Our type system would fit naturally in a language with parameterized types.2

2If we had parameterized types in the language, the Stack declaration would look like the following:
class Stack<stackOwner>[T<TOwner>] {...}
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3

4 void push(T<TOwner> value) {

5 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head);

6 head = newNode;

7 }

8 T<TOwner> pop() {

9 if (head == null) return null;

10 T<TOwner> value = head.value();

11 head = head.next();

12 return value;

13 }

14 }

15

16 class TNode<nodeOwner, TOwner> {

17 TNode<nodeOwner, TOwner> next; T<TOwner> value;

18

19 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) {

20 this.value = v;

21 this.next = n;

22 }

23 T<TOwner> value() { return value; }

24 TNode<nodeOwner, TOwner> next() { return next; }

25 }

26

27 class T<TOwner> { }

28

29 class TStackClient<clientOwner> {

30 void test() {

31 TStack<this, this> s1;

32 TStack<this, world> s2;

33 TStack<world, world> s3;

34 /* TStack<world, this> s4; illegal! */

35 }}

Figure 2-7: Stack of T Objects

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)
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(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

(TStackClient)
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(T)
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(T)

(T)
s1.head.next.value
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Figure 2-8: Ownership Relation for TStacks s1, s2, s3
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1 class C<cOwner, sOwner, tOwner> where (tOwner >= sOwner) {

2 ...

3 TStack<sOwner, tOwner> s;

4 }

Figure 2-9: Using Where Clauses to Constrain Owners

An owner can be instantiated with this, with world, or with another owner parameter. Ob-
jects owned by this are encapsulated objects that cannot be accessed from outside. Objects
owned by world can be accessed from anywhere.

In Figure 2-7, the TStack class is parameterized by stackOwner and TOwner. stackOwner
owns the TStack object. (Recall that the first owner parameter always owns the correspond-
ing object.) TOwner owns the T objects contained in the TStack. The code specifies that
the TStack object owns the nodes in the list; therefore the list nodes cannot be accessed
from outside the TStack object.

The type of TStack s1 is instantiated using this for both the owner parameters. This means
that TStack s1 is owned by the TStackClient object that created it and so are the T objects
in s1. TStack s2 is owned by the TStackClient object, but the T objects in s2 are owned by
world. TStack s3 is owned by world and so are the T objects in s3. The ownership relation
for s1, s2, and s3 is depicted in Figure 2-8 (assuming the stacks contain two elements each).
(The dotted line indicates that every object is transitively owned by world.)

2.2.3 Constraints on Owners

For every type cn〈o1, ..., on〉 with multiple owners, SafeJava statically enforces the constraint
that (oi º o1) for all i ∈ {1..n}. (Recall from Figure 2-4 that the ownership relation forms
a tree rooted at world, and that the notation (oa º ob) means that either ob is the same
as oa or ob is a descendant of oa in the ownership tree.) Thus, the type of TStack s4 in
Figure 2-7 is illegal because (this 6º world).

The above constraint is the same as in [41]. However, we extend it to parameterized
methods as well. For a method m〈on+1, ..., ok〉(...){...} of an object of type cn〈o1, ..., on〉,
the restriction is that (oi º o1) for all i ∈ {1..k}.

(These constraints are necessary to provide encapsulation in the presence of subtyping.
Otherwise, subtyping interacts with ownership in a subtle way to violate encapsulation.
Figure 2-14 in Section 2.6 illustrates this point with an example. Also, Theorem 1 in Sec-
tion 2.2.4 uses these constraints to prove the encapsulation guarantee provided by SafeJava.)

To allow ownership constraints to be checked modularly, it is sometimes necessary for pro-
grammers to specify additional constraints on class and method parameters. For example,
in Figure 2-9, the type of s is legal only if (tOwner º sOwner). SafeJava allows programmers
to specify such additional constraints using where clauses [50, 112], and it statically enforces
the constraints. For example, in Figure 2-9, class C specifies that (tOwner º sOwner). An
instantiation of C that does not satisfy the constraint is illegal.
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Subtyping

The rule for declaring a subtype is that the first owner parameter of the supertype must
be the same as that of the subtype; in addition, of course, the supertype must satisfy the
constraints on owners. The first owners have to match because they are special, in that
they own the corresponding objects. Thus, TStack〈stackOwner, TOwner〉 is a subtype of
Object〈stackOwner〉. But T〈TOwner〉 is not a subtype of Object〈world〉 because the first
owners do not match.

2.2.4 Encapsulation Theorem

The SafeJava type system we describe so far (without inner classes) enforces the following
encapsulation property:

Theorem 1. In SafeJava without inner classes, an object x can access an object owned by
o only if (o º x)

Proof. Consider the code: class C〈f, ...〉{... T 〈o, ...〉 y ...}. Variable y of type T 〈o, ...〉 is
declared within the static scope of class C. Owner o can therefore be either 1) this, or 2)
world, or 3) a formal class parameter, or 4) a formal method parameter. We will show that
in each case, the constraint (o º this) holds. In the first two cases, the constraint holds
trivially. In the last two cases, (o º f) and (f º this), so the constraint holds. Therefore
an object x of a class C can access an object y owned by o only if (o º x).

The above theorem is equivalent to Property SJ5 in Figure 2-4. It is easy to see that the
type system described so far also preserves Properties SJ1 to SJ4.

2.3 Formal Description

The previous section presented the grammar for our basic type system in Figures 2-5 and
2-6. This section describes some of the important rules for type checking. The full set of
rules are in shown in Appendix 2.A at the end of this chapter.

The core of our type system is a set of rules for reasoning about the typing judgment:
P ; E ` e : t. P , the program being checked, is included here to provide information about
class definitions. E is an environment providing types for the free variables of e. t is the
type of e.

We define a typing environment as: E ::= ∅ | E, t x | E, owner f | E, constr
The typing environment contains the declared types of variables, the declared owner pa-
rameters, and the declared constraints among owners.

A useful auxiliary judgment is P ; E ` constr , where constr is an ownership constraint of
the form either o1 º o2 or o1 6º o2. The judgment states that the constraint holds in the
typing environment E. The rules for this judgment are as follows:

[CONSTR ENV]

E = E1, constr, E2

P ; E ` constr

[OWNER º]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLD º ]

P ; E `owner o
P ; E ` (world º o)

[REFL º]

P ; E `owner o
P ; E ` (o º o)

[TRANS º]

P ; E ` (o3 º o2)
P ; E ` (o2 º o1)
P ; E ` (o3 º o1)
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The first rule states that if a constraint is part of a class or method declaration, then the
type checker assumes that constraint within the scope of that class or method. The second
rule states that the first owner parameter of a type owns the corresponding object. (Recall
this fact from Section 2.2.2). The third rule states that world transitively owns all objects.
The fourth and fifth rules state that the ownership relation is reflexive and transitive.

The rule for creating a new object of type cn〈o1..n〉 must ensure that the type cn〈o1..n〉
is valid. The rule for that checks that cn〈f1..n〉 is a valid class; that owners o1..on are
valid owners (a valid owner is either this, or world, or a formal owner parameter); that
oi º o1 for all i ∈ {1..n} (recall this constraint from Section 2.2.3); and that all the other
constraints in the declaration of class cn are satisfied. Note that since each constraint constr
is declared inside the class, it might contain occurrences of the formal owner parameters
f1..fn. When constr is used outside the class, one must rename the formal parameters with
their corresponding actual owner parameters o1..on.

[EXP NEW]

P ; E ` cn〈o1..n〉
P ; E ` new cn〈o1..n〉 : cn〈o1..n〉

[TYPE C]

P ` class cn〈f1..n〉... where constr∗ ...
P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]

P ; E ` cn〈o1..n〉

The rules for subtyping are similar to those in parametric polymorphism [3, 29, 32, 90, 112,
132], except that the first owner parameter of the supertype must be the same as that of
the subtype. The first owners have to match because they are special, in that they own the
corresponding objects. The subtyping relation is reflexive and transitive.

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

The rule for a let expression simply adds the new variable and its type to the type environ-
ment. The rules for reading and writing a variable look up the type of the variable from
the type environment.

[EXP LET]

arg = t x P ; E ` e : t
P ; E, arg ` e′ : t′

P ; E ` let (arg = e) in {e′} : t′

[EXP VAR]

E = E1, t x, E2

P ; E ` x : t

[EXP VAR ASSIGN]

P ; E ` x : t
P ; E ` e : t

P ; E ` x = e : t

The rule for accessing field x.fd checks that x is a well-typed expression of some class type
cn〈o1..n〉, where o1..n are actual owner parameters. It verifies that the class cn with formal
parameters f1..n declares or inherits a field fd of type t. Note that the rule renames t when
it used outside class cn.

The rule for assigning to a field is similar.

[EXP REF]

P ; E ` x : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉

P ; E ` x.fd : t [o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E ` x : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉
P ; E ` y : t [o1/f1]..[on/fn]

P ; E ` x.fd = y : t [o1/f1]..[on/fn]
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The rule for invoking a method on an object checks that the type of that object declares or
inherits the method, and that the method arguments are of the right type. Since methods
in our system may be parameterized, the rule checks that the method parameters are
instantiated with valid owners, and that the constraints on the owners satisfied. The rule
appropriately renames all the types when they are used outside their declared context.

[EXP INVOKE]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) where constr∗ {e}) ∈ cn〈f1..n〉

P ; E ` x : cn〈o1..n〉 P ; E ` oi º o1 P ; E ` constr [o1/f1]..[om/fm]

P ; E ` xj : tj [o1/f1]..[om/fm]
P ; E ` x.mn〈o(n+1)..m〉(x1..k) : t [o1/f1]..[om/fm]

2.4 Inner Classes

The previous sections presented the basic SafeJava type system that enforces object en-
capsulation and thus enables local reasoning about program correctness. But strict object
encapsulation is too constraining [113]: it prevents efficient implementation of important
constructs like iterators. For example, to run efficiently, an iterator over a Stack object s
implemented using a linked list needs access to the list nodes in s. To provide this access,
we have to allow objects like iterators to violate encapsulation.

Local reasoning is still possible provided all violations of encapsulation are limited to code
contained in the same module. For example, if both the Stack and its iterator are im-
plemented in the same module, one can still reason about their correctness locally, by
examining the code of that module.

This section extends our basic type system with inner classes to support constructs like
iterators, while supporting local reasoning. Our inner classes are similar to the member
inner classes in Java. Inner class definitions are nested inside other classes. Figure 2-10
shows grammar extensions to support inner classes. Figure 2-11 shows an example. In
the figure, the inner class TStackEnum implements an iterator for the TStack; the elements
method of TStack provides a way of creating an iterator over the TStack. The TStack code
is otherwise similar to that in Figure 2-7.

An inner class is parameterized with owners like a regular class. In Figure 2-11, the TStack-
Enum class is parameterized with enumOwner. Its complete type is TStack〈stackOwner,
TOwner〉.TStackEnum〈enumOwner〉. It is declared to be a subtype of TEnumeration〈enum-
Owner, TOwner〉. Like a regular class, the first owner parameter of an inner class identifies
the owner of the corresponding object. In Figure 2-11, enumOwner owns the TStackEnum
object.

Recall from before that for every type cn〈o1, ..., on〉 with multiple owners, SafeJava stati-
cally enforces the constraint that (oi º o1) for all valid i. For an inner class cn1 of type
cnk〈ok1..knk

〉..cn2〈o21..2n2〉.cn1〈o11..1n1〉, the constraint is that (oij º o11) for all valid i, j.
(This constraint is necessary to support local reasoning.) Thus, in Figure 2-11, it must be
the case that (TOwner º enumOwner) and (stackOwner º enumOwner).

The elements method in the figure is parameterized by enumOwner. It can only be in-
stantiated with an owner that satisfies the above mentioned constraints, that (TOwner º
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defn ::= class cn〈formal+〉 extends c where constr* {innerclass* field* meth*}
innerclass ::= defn

c ::= cn〈owner+〉 | Object〈owner〉 | c.cn〈owner+〉
owner ::= formal | world | this | cn.this
enew ::= new c | x.new c

Figure 2-10: Grammar Extensions to Support Inner Classes

1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3 ...

4 TStackEnum<enumOwner> elements<enumOwner>()

5 where (TOwner >= enumOwner) (stackOwner >= enumOwner) {

6 return new TStackEnum<enumOwner>();

7 }

8

9 class TStackEnum<enumOwner> implements TEnumeration<enumOwner, TOwner> {

10 TNode<TStack.this, TOwner> current;

11

12 TStackEnum() { current = TStack.this.head; }

13

14 T<TOwner> getNext() {

15 if (current == null) return null;

16 T<TOwner> t = current.value(); current = current.next(); return t;

17 }

18 boolean hasMoreElements() { return (current != null); }

19 }}

20

21 class TStackClient<clientOwner> {

22 void test() {

23 TStack<this, world> s = new TStack<this, world>();

24 TEnumeration<this, world> e = s.elements<this>();

25 }}

26

27 interface TEnumeration<enumOwner, TOwner> {

28 T<TOwner> getNext();

29 boolean hasMoreElements();

30 }

Figure 2-11: TStack Iterator

enumOwner) and (stackOwner º enumOwner). This requirement is captured in the where
clause. Note that the constraints on method parameters described in Section 2.2.3 also
imply that for iterators created with the elements method, it must be that (enumOwner º
stackOwner). Thus, for iterators used outside the TStack class, enumOwner and stackOwner
must be the same.

Recall also that in a regular class, an owner can be instantiated with this, with world, or
with another owner parameter. Within an inner class, an owner can also be instantiated
with cn.this, where cn is an outer class. This feature allows an inner object to access the
objects encapsulated within its outer objects. In Figure 2-11, the owner of the current
field inTStackEnum is instantiated with TStack.this. The current field accesses list nodes
encapsulated within its outer TStack object.

Encapsulation Theorem

The SafeJava type system (with inner classes) provides the following encapsulation property:
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Theorem 2. An object x can access an object owned by o only if:

1. (o º x), or

2. x is an inner class object of o.

Proof. Consider the code: class C〈f, ...〉{... T 〈o, ...〉 y ...}. Variable y of type T 〈o, ...〉 is
declared within the static scope of class C. Owner o can therefore be either 1) this, or 2)
world, or 3) a formal class parameter, or 4) a formal method parameter, or 5) C ′.this, where
C ′ is an outer class. We will show that in the first four cases, the constraint (o º this)
holds. In the first two cases, the constraint holds trivially. In the last two cases, (o º f)
and (f º this), so the constraint holds. In the fifth case, (C ′.this = o). Therefore an object
x of a class C can access an object y owned by o only if either 1) (o º x), as in the first
four cases, or 2) x is an inner object of o, as in the fifth case.

Discussion

In a previous version of our system [24], the typing rules for inner classes were more flexible.
An inner class was parameterized with owners just like a regular class. However, the outer
class parameters were not automatically visible inside an inner class. If an inner class used
an outer class parameter, it had to explicitly include the outer class parameter in its decla-
ration. For example, consider the TStackEnum class in Figure 2-12 which is implemented in
the previous version of our type system. The TStackEnum declaration includes the owner
parameter TOwner from its outer class. TOwner is therefore visible inside TStackEnum.
But the TStackEnum declaration does not include stackOwner. Therefore, stackOwner is
not visible inside TStackEnum.

Recall that for an inner class cn1 of type cnk〈ok1..knk
〉..cn2〈o21..2n2〉.cn1〈o11..1n1〉, SafeJava

enforces the constraint that (oij º o11) for all valid i, j. The previous version of the system
only enforced the constraint that (o1j º o11) for all valid j.

This additional flexibility in typing rules allowed programmers to create wrappers [71] that
exposed a limited interface to an underlying object, and use the wrappers in contexts
where the underlying objects were inaccessible. In the figure, the TStackClient creates an
unencapsulated iterator e2 over an encapsulated TStack s; the program can then pass e2
to objects outside the TStackClient. In general, the typing rules in the previous version
of the type system allowed programs to use an inner class to create a wrapper around an
encapsulated subobject and pass the wrapper object outside the encapsulation boundary.

Even though the previous version of the type system was more expressive, we encountered
problems when we were extending it to ensure safe memory management and safe mul-
tithreading. For example, for safe region-based memory management, we had to ensure
that the region containing an inner class object does not outlive the region containing its
outer class object, because otherwise that could create dangling references. Similarly, for
safe multithreading, we had to ensure that whenever a thread accesses a shared outer class
object through its inner class object, that the thread first acquires the lock that protects
the outer class object, because otherwise that could cause data races. To check these con-
ditions statically, we had to ensure that an inner class object is not accessible outside the
encapsulation boundary where the outer class object is inaccessible.

We therefore took the current approach in SafeJava.
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3 ...

4 TStackEnum<enumOwner, TOwner> elements<enumOwner>()

5 where (TOwner >= enumOwner) {

6 return new TStackEnum<enumOwner, TOwner>();

7 }

8

9 class TStackEnum<enumOwner, TOwner> implements TEnumeration<enumOwner, TOwner> {

10 TNode<TStack.this, TOwner> current;

11

12 TStackEnum() { current = TStack.this.head; }

13

14 T<TOwner> getNext() {

15 if (current == null) return null;

16 T<TOwner> t = current.value(); current = current.next(); return t;

17 }

18 boolean hasMoreElements() { return (current != null); }

19 }}

20

21 class TStackClient<clientOwner> {

22 void test() {

23 TStack<this, world> s = new TStack<this, world>();

24 TEnumeration<this, world> e1 = s.elements<this> ();

25 TEnumeration<world, world> e2 = s.elements<world>();

}}

26

27 interface TEnumeration<enumOwner, TOwner> {

28 T<TOwner> getNext();

29 boolean hasMoreElements();

30 }

Figure 2-12: TStack Iterator in a Previous Version of our System [24]

2.5 Practical Issues

Although SafeJava is explicitly typed in principle, it would be onerous to fully annotate
every method with the extra type information. Instead, SafeJava uses a combination of
inference and well-chosen defaults to significantly reduce the number of annotations needed
in practice. We describe type inference and default types later in the thesis, in Section 4.5.
We emphasize that this approach to inference is purely intraprocedural and does not infer
method signatures or types of instance variables. Rather, it uses a default completion
of partial type specifications in those cases to minimize the required annotations. This
approach permits separate compilation. On average, we had to change about one in thirty
lines of code to express Java programs in SafeJava. We describe programming experience
in SafeJava in Sections 4.8 and 6.7.

The system we described is a purely static type system. The ownership relations are used
for compile-time type checking and are not preserved at runtime. Consequently, SafeJava
programs have no runtime overhead compared to regular Java programs. In fact, one way to
compile and run a SafeJava program is to convert it to a Java program after type checking,
by removing the owner parameters, the constraints on owners, and the effects clauses.

A language like Java, however, is not purely statically typed. Java allows downcasts that
are checked at runtime. Suppose an object with declared type Object〈o〉 is downcast to
Vector〈o,e〉. Since the result of this operation depends on information that is only available
at runtime, our type checker cannot verify at compile-time that e is the right owner pa-
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rameter even if we assume that the object is indeed a Vector. To safely support downcasts,
a system has to keep some ownership information at runtime. This is similar to keeping
runtime information with parameterized types [112, 132]. In Section 4.4, we describe how
to do this efficiently for ownership by keeping runtime information only for objects that can
be potentially involved in downcasts into types with multiple parameters.

Our type checking rules ensure that for a program to be well-typed, the program respects
the properties described in Figures 2-4 and 3-5. A complete syntactic proof [137] of type
soundness can be constructed by defining an operational semantics (by extending the oper-
ational semantics of Classic Java [70]) and proving that well-typed programs do not reach
an error state and the generalized subject reduction theorem holds for well-typed programs.
The subject reduction theorem states that the semantic interpretation of a term’s type is
invariant under reduction. The proof is straightforward but tedious, so it is omitted here.

2.6 Related Work

SafeJava uses a variant of ownership types to statically enforce object encapsulation and en-
ables local reasoning about program correctness. As we stated in Theorem 2 in Section 2.4,
SafeJava provides the following encapsulation guarantee:

O1. Owners as encapsulating objects: An object x can access an object owned by o
only if (o º x) or x is an inner class object of o.

This section presents an overview of ownership type systems and the encapsulation guar-
antees they provide, and other related type systems.

Early Work:
Euclid [94] is one of the first languages that considered the problem of aliasing. [87] stressed
the need for better treatment of aliasing in object-oriented programs. Early work on Is-
lands [86] and Balloons [7] focused on fully encapsulated objects where all subobjects an
object can access are not accessible outside the object. Universes [111] also enforces full en-
capsulation, except for read-only references. However, full encapsulation significantly limits
expressiveness, and is often more than is needed. The work on ESC/Java pointed out that
encapsulation is required only for subobjects that the containing object depends on [98, 56],
but ESC/Java was unable to always enforce encapsulation.

Ownership Types:
Ownership type systems use naming to enforce encapsulation. The type of an object in-
cludes the name of its owner. To access an object, a program must name the type of that
object, and hence must name the owner of that object. Ownership types were proposed
in [43] and formalized in [42]. These systems enforce object encapsulation, but do so by sig-
nificantly limiting expressiveness. In these systems, a subtype must have the same owners
as a supertype. So TStack〈thisOwner,TOwner〉 cannot be a subtype of Object〈thisOwner〉.
Moreover, they do not support constructs like iterators.

PRFJ, SCJ, and JOE:
PRFJ [26], SCJ [23], and JOE [41] extend ownership types to support a natural form of
subtyping that is similar to subtyping in parametric type systems [3, 29, 32, 90, 112, 132].
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A subtype can have different owners than a supertype. However, the first owners must
match because the first owners own the corresponding object. To support subtyping, JOE
enforces the constraint that in every type T 〈o1, ..., on〉 with multiple owners, (oi º o1) for all
i ∈ {1..n}. Without this constraint and with subtyping, JOE would not have provided any
meaningful encapsulation guarantees. Figure 2-14 illustrates point this with an example.
PRFJ and SCJ allow an object to contain pointers to subobjects owned by a different object,
but they have effects clauses that prevent a program from following such pointers. The above
systems effectively enforce encapsulation for object fields. However, to support constructs
like iterators, they allow method local variables to violate encapsulation. Therefore they do
not support local reasoning.

Figure 2-13 presents example code in these systems that violates object encapsulation. (We
adopted the example from the JOE paper [41]. But we present this and other examples in
our syntax, that is slightly different from the syntax in the original papers.) The example
shows an iterator for the TStack in Figure 2-7. In the example, the TStack object owns
the iterator object. But a TStackClient object that is outside the encapsulation bound-
ary of the TStack object accesses the iterator object, thus violating object encapsulation
(Property O1). However, note that type of the iterator contains the TStack object. So the
TStackClient object can access the iterator only when the TStack object is in scope. This
ensures that the violation of object encapsulation is temporally bounded.

PRFJ, SCJ, and JOE enforce the weak encapsulation property O2. JOE also enforces the
weak encapsulation property O3. These properties imply that an application must access
the owner of an object before it can access the object.

O2. Owners as capabilities: The owner of object x must be in scope when an application
accesses x.

O3. Owners as dominators: All paths in the heap from the root object to object x
must pass through x’s owner.

AliasJava:
AliasJava [6] uses ownership types to aid program understanding. Like other ownership
type systems, AliasJava allows programmers to use ownership information to reason about
aliasing. AliasJava is also more flexible than other ownership type systems. For example,
in AliasJava, an iterator object that accesses encapsulated subobjects of a collection can
outlive the collection object. However, unlike other ownership type systems, AliasJava
does not enforce properties like O1, O2, or O3 which either disallow violations of object
encapsulation entirely or temporally limit such violations. This is because AliasJava has
subtyping, but it neither has the constraint that other owners º the first owner as in
JOE [41], nor does it have effects clauses as in PRFJ [26] and SCJ [23].

Figure 2-14 presents AliasJava code that violates O1, O2, and O3. (Again, the syntax in
the original paper is slightly different.) In the example, SomeClass passes its encapsulated
object f to a publicly accessible object s, leading to a violation of object encapsulation
(Property O1). The interaction between subtyping and ownership enables the creation of a
path to f through s that does not go through f’s owner. Other parts of the program can then
access f using this path even if they have no relationship with f’s owner. The decoupling of
f from its owner is further illustrated by the fact that the program can access f even after
f’s owner becomes garbage.
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3 ...

4 TStackEnum<this, TOwner> elements() {

5 return new TStackEnum<this, TOwner>(head);

6 }

7 }

8 class TStackEnum<enumOwner, TOwner> {

9 TNode<enumOwner, TOwner> curr;

10 TStackEnum(TNode<enumOwner, TOwner> head) {curr = head;}

11 T<TOwner> getNext() {...} boolean hasMoreElements() {...}

12 }

13 class TStackClient<clientOwner> {

14 void test() {

15 TStack<this, this> s = new TStack<this, this>;

16 TStackEnum<s, this> e = s.elements(); /* Violates OE1 */

17 } /* owner of e is a local variable! */

18 }

Figure 2-13: Violation of Object Encapsulation in [23], [26], and [41]

Confined Types:
Confined types [17, 81] provide a light weight mechanism to statically ensure that objects
of package protected classes do not escape their package boundaries. Confined types thus
offer package level protection, unlike ownership types where the confinement is at an object
level. Moreover, confined types are not polymorphic. Therefore, unlike ownership types, a
program cannot create some confined and some unconfined objects of the same class.

Types for Safe Region-Based Memory Management:
Region types [39, 48, 80, 84, 128] statically ensure memory safety in programs that manage
their own memory using regions. Ownership types and region types are related. Consider,
for example, a Stack object s that is implemented using a Vector object v. In an object-
oriented language that only has region types (e.g., [39]), the types of s and v would declare
that they are allocated in some region r. In an object-oriented language that only has
ownership types, the type of v would declare that it is owned by s. Chapter 6 shows how
SafeJava combines regions types and ownership types in a unified type system framework.
SafeJava provides a simple unified mechanism to declare both properties. The type of s can
declare that it is allocated in r and the type of v can declare that it is owned by s. SafeJava
then statically ensures that both objects are allocated in r, that there are no pointers to v
and s after r is deleted, and that v is encapsulated within s.

Types for Safe Concurrent Programming:
Ownership types are related to type systems for statically preventing data races and dead-
locks in multithreaded programs [68, 26, 23] because the lock that protects a shared mutable
object from concurrent accesses also protects its encapsulated subobjects. Chapter 4 shows
how SafeJava combines these type systems in a unified framework.

Types for Safe Software Upgrades:
Ownership types are also related to software upgrades. Chapter 5 shows how the SafeJava
type system enables safe software upgrades in persistent object stores.
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1 class Foo<o> { int x = 0; void accessMe() { x++; } }

2

3 class SuperType<o> { void some_method() {} }

4

5 class SubType<o,c> extends SuperType<o> {

6 Foo<c> owner_parameter_c_owns_me;

7 SubType(Foo<c> x) {owner_parameter_c_owns_me = x;}

8 void some_method() {owner_parameter_c_owns_me.accessMe();}

9 }

11 class SomeClass<o> {

12 Foo<this> f = new Foo<this>;

13 SuperType<world> s = new SubType<world,this>(f); // "this" is not >= "world" !!!

14 SuperType<world> get() {return s;}

15 }

17 class Main<o> {

18 void m() {

19 SuperType<world> s = null;

20 {SomeClass<this> c = new SomeClass<this>; s = c.get();}

21 s.some_method(); // Violates O1, O2, O3

22 }}

// SubType s is not encapsulated within SomeClass but some_method of SubType

// accesses Foo object owned by SomeClass Therefore Violates O1

// some_method accesses owner_parameter_c_owns_me whose owner c is now garbage

// Therefore Violates O2

// There is path to owner_parameter_c_owns_me through s that does not go through c

// Therefore Violates O3

Figure 2-14: Violation of Encapsulation in [6]

Shape Analysis:
Systems such as TVLA [120], PALE [109], and Roles [93] specify the shape of a local
object graph in more detail than ownership types. TVLA can verify properties such as
when the input to the program is a tree, the output is also a tree. PALE can verify
all the data structures that can be expressed as graph types [91]. Roles can verify global
properties such as the participation of objects in multiple data structures. Roles also support
compositional interprocedural analysis. In contrast to these systems that take exponential
time for verification, ownership types provide a lightweight and practical way to constrain
aliasing.

2.7 Conclusions

Object encapsulation is key to sound local reasoning in object-oriented languages. This
chapter presented SafeJava, the first ownership type system that can express constructs
like iterators while also supporting local reasoning. The subsequent chapters of this thesis
build on this type system to verify several program properties statically.
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2.A Rules for Type Checking

This section formally presents the basic SafeJava type system that includes ownership types.
The grammar for the type system is shown below.

P ::= defn* e
defn ::= class cn〈formal+〉 extends c where constr* {field* meth*}

c ::= cn〈owner+〉 | Object〈owner〉
owner ::= formal | world | this
constr ::= (owner º owner) | (owner 6º owner)
meth ::= t mn〈formal* 〉(arg* ) where constr* {e}
field ::= t fd
arg ::= t x

t ::= c | int
formal ::= f

e ::= new c | x | x = e | let (arg=e) in {e} | x.fd | x.fd = y | x.mn〈owner* 〉(y* )

cn ∈ class names
fd ∈ field names

mn ∈ method names
x,y ∈ variable names

f ∈ owner names

We first define a number of predicates used in the type system. These predicates are
based on similar predicates from [70]. We refer the reader to that paper for their precise
formulation.

Predicate Meaning
WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice in P
FieldsOnce(P) No class contains two fields, declared or inherited, with same name
MethodsOncePerClass(P) No class contains two methods with same name
OverridesOK(P) Overriding methods have the same return type and parameter

types as the methods being overridden.

The core of our type system is a set of rules for reasoning about the typing judgment:
P ; E ` e : t

P , the program being checked, is included here to provide information about class defi-
nitions. E is an environment providing types for the free variables of e. t is the type of
e.

We define a typing environment as E ::= ∅ | E, t x | E, owner f | E, constr

The typing environment contains the declared types of variables, the declared owner pa-
rameters, and the declared constraints among owners.
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We define the type system using the following judgments. We present the typing rules for
these judgments after that.

Judgment Meaning
` P : t program P yields type t
P ` defn defn is a well-formed class
P ; E `owner o o is an owner
P ; E ` constr constraint constr is satisfied
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E ` wf typing environment E is well-formed
P ` field ∈ c class c declares/inherits field
P ` meth ∈ c class c declares/inherits meth
P ; E ` field field is a well-formed field
P ; E ` meth meth is a well-formed method
P ; E ` e : t expression e has type t

` P : t

[PROG]

WFClasses(P) ClassOnce(P) FieldsOnce(P)
MethodsOncePerClass(P) OverridesOK(P)

P = defn1..n e P ` defni P ; ∅; world; world ` e : t
` P : t

P ` defn

[CLASS]

E = cn〈f1..n〉 this, owner f1..n, fi º f1, constr∗
P ; E ` wf P ; E ` c′
P ; E ` fieldi P ; E ` methi

P ` class cn〈f1..n〉 extends c′ where constr∗
{field∗ meth∗}

P ; E ` constr

[CONSTR ENV]

E = E1, constr, E2

P ; E ` constr

[OWNER º]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLD º ]

P ; E `owner o
P ; E ` (world º o)

[REFL º]

P ; E `owner o
P ; E ` (o º o)

[TRANS º]

P ; E ` (o3 º o2)
P ; E ` (o2 º o1)
P ; E ` (o3 º o1)

P ; E `owner o

[OWNER WORLD]

P ; E `owner world

[OWNER FORMAL]

E = E1, owner f , E2

P ; E `owner f

[OWNER THIS]

E = E1, c this, E2

P ; E `owner this

P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV X]

P ; E ` t
x /∈ Dom(E)
P ; E ` wf

P ; E, t x ` wf

[ENV OWNER]

f /∈ Dom(E)
P ; E ` wf

P ; E, owner f ` wf

[ENV CONSTR]

constr = (o′ º o) ∨ constr = (o′ 6º o)
P ; E ` wf P ; E `owner o, o′

E′ = E, constr
6 ∃x,y (P ; E′ ` y º x) ∧ (P ; E′ ` y 6º x)

P ; E, constr ` wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE OBJECT]

P ; E `owner o
P ; E ` Object〈o〉

[TYPE C]

P ` class cn〈f1..n〉... where constr∗ ...
P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]

P ; E ` cn〈o1..n〉
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P ; E ` t1 <: t2

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

P ; E ` field

[FIELD]

P ; E ` t
P ; E ` t fd

P ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` field ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field [o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` method

[METHOD] E′ = E, owner f1..n, constr∗, arg∗ P ; E′ ` wf P ; E′ ` e : t
P ; E ` t mn〈f1..n〉(arg∗) where constr∗ {e}

P ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth ...}
P ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P ` meth ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` meth [o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` e : t

[EXP TYPE]

P ; E ` e : t
P ; E ` e : t

P ; E ` e : t

[EXP SUB]

P ; E ` e : t′
P ; E ` t′ <: t
P ; E ` e : t

[EXP REF]

P ; E ` x : cn〈o1..n〉
P ` (t fd) ∈ cn〈f1..n〉

P ; E ` x.fd : t [o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E ` x : cn〈o1..n〉
P ` (t fd) ∈ cn〈f1..n〉

P ; E ` y : t [o1/f1]..[on/fn]
P ; E ` x.fd = y : t [o1/f1]..[on/fn]

[EXP NEW]

P ; E ` c
P ; E ` new c : c

[EXP LET]

arg = t x P ; E ` e : t
P ; E, arg ` e′ : t′

P ; E ` let (arg = e) in {e′} : t′

[EXP VAR ASSIGN]

P ; E ` x : t
P ; E ` e : t

P ; E ` x = e : t

[EXP VAR]

E = E1, t x, E2

P ; E ` x : t

[EXP INVOKE]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) where constr∗ ...) ∈ cn〈f1..n〉

P ; E ` x : cn〈o1..n〉 P ; E ` xj : tj [o1/f1]..[om/fm]
P ; E ` oi º o1 P ; E ` constr [o1/f1]..[om/fm]

P ; E ` x.mn〈o(n+1)..m〉(x1..k) : t [o1/f1]..[om/fm]
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Chapter 3

Effects Clauses, Unique Pointers,
and Immutable Objects

SafeJava is the first static type system that combines object encapsulation with effects
clauses, unique pointers, and immutable objects.

Effects clauses [106] are useful for specifying assumptions that must hold at method bound-
aries and enable modular reasoning and checking of programs. SafeJava combines object
encapsulation with effects clauses to allow programs to precisely specify the side effects of a
method in the presence of subtyping and without representation exposure. SafeJava allows
effects clauses to use the name of an object to denote all the objects encapsulated within
that object. SafeJava first combined object encapsulation with effects clauses in [26] to pre-
vent data races in multithreaded programs. SafeJava also uses effects clauses to statically
enforce various other program properties.

Unique pointers [108, 134] are useful to control object aliasing. SafeJava combines ownership
types with unique pointers to express constructs that neither ownership types nor unique
pointers alone can express, while enforcing object encapsulation. We first combined own-
ership types with unique pointers in [26] to support ownership transfer. Recent work [44]
proposes a more flexible approach that allows a program to specify a unique external pointer
to an object; there can be other pointers to that object from objects encapsulated within
it. We subsequently adopted this approach in SafeJava.

Immutable objects have many advantages. Unlike mutable objects, they can be shared
across multiple aliases without complicating the task of understanding and reasoning about
correctness of programs. SafeJava is the first system that extends the notion of immutability
to object encapsulation. SafeJava statically verifies that if an object is declared to be
immutable, then the program does not modify that object or objects encapsulated within
that object. SafeJava first combined ownership types with immutable objects in [26] to
allow multiple threads to access an immutable object and its encapsulated objects without
synchronization and without causing data races.

The rest of this chapter is organized as follows. Section 3.1 presents effects clauses. Sec-
tion 3.2 presents a formal description of the type system. Sections 3.3 and 3.4 extend the
type system to support objects with unique pointers and immutable objects.
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meth ::= t mn〈formal* 〉(arg* ) reads (owner* ) writes (owner* ) where constr* {e}

Figure 3-1: Grammar Extensions to Support Effects Clauses

1 class IntVector<vOwner> {

2 int elementCount;

3 int init() writes(this) { elementCount = 0; }

4 int size() reads (this) { return elementCount; }

5 void add(int x) writes(this) { elementCount++; ... }

6 }

7 class IntStack<sOwner> {

8 IntVector<this> vec;

9 int init() writes(this) { vec = new IntVector<this>; vec.init(); }

10 void push(int x) writes(this) { vec.add(x); }

11 }

12 void m<sO,vO> (IntStack<sO> s, IntVector<vO> v) writes (s) reads (v) where !(v >= s) !(s >= v) {

13 int n = v.size(); s.push(3); assert(n == v.size());

14 }

Figure 3-2: Using Effects Clauses to Enable Modular Reasoning

3.1 Effects Clauses

SafeJava combines encapsulation with effects clauses [106] which are useful for specifying
assumptions that must hold at method boundaries and enable modular checking of pro-
grams.

Effects clauses have been incorporated into many program formalisms, specification lan-
guages, and program checkers. Examples include Morgan’s specification statement [110],
Z [126], Larch [82], JML [96], and ESC [57, 69]. SafeJava uses effects clauses to statically
verify various program properties, as we show in subsequent chapters of this thesis.

Figure 3-1 presents extensions to the grammar shown in Figures 2-5 and 2-6 to support
effects clauses. SafeJava allows programmers to specify reads and writes clauses. Consider
a method that specifies that it writes (w1, ..., wn) and reads (r1, ..., rm). The method can
write an object x (or call methods that write x) only if (wi º x) for some i ∈ {1..n}. The
method can read an object y (or call methods that read y) only if (wi º y) or (rj º y), for
some i ∈ {1..n}, j ∈ {1..m}. SafeJava thus allows a method to both read and write objects
named in its writes clause.

In a language that does not have a notion of object encapsulation, it is often difficult to
precisely specify the side effects of a method without exposing the representation of its
object. Consider, for example, the writes clause on the push method of a Stack object that
is implemented using a Vector. Since the push method may write the Vector, the writes
clause must specify the name of the Vector, thus exposing the representation of the Stack
object.

The problem gets worse if there are several Stack implementations. For example, in an
object-oriented language like Java, one can have an abstract Stack class and different sub-
classes of Stack that use different representations. The subclasses add new fields to Stack,
and the push method in a subclass might write the objects pointed to by the new fields. In
this case it is impossible to specify the writes clause of the push method of Stack, because
the new fields added by subclasses are not visible in the scope of the abstract Stack class.
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3

4 void push(T<TOwner> value) writes(this) {

5 TNode<this, TOwner> newNode =

6 new TNode<this, TOwner>(value, head);

7 head = newNode;

8 }

9 T<TOwner> pop() writes(this) {

10 if (head == null) return null;

11 T<TOwner> value = head.value();

12 head = head.next();

13 return value;

14 }

15 }

16

17 class TNode<nodeOwner, TOwner> {

18 TNode<nodeOwner, TOwner> next; T<TOwner> value;

19

20 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) writes(this) {

21 this.value = v; this.next = n;

22 }

23 T<TOwner> value() reads (this) { return value; }

24 TNode<nodeOwner, TOwner> next() writes(this) { return next; }

25 }

26

27 class T<TOwner> { }

Figure 3-3: TStack With Effects Clauses

To solve this problem, one must use some abstraction mechanism with which one can refer
to the objects that are not in scope without directly mentioning their names. SafeJava
allows effects clauses to use the name of an object o to denote all the objects (reflexively
and transitively) owned by o. The push method of Stack can declare that it writes the
corresponding Stack object. If a subclass adds a new field f, it can declare that the object
pointed to by f is owned by the Stack object. The push method in the subclass is then
allowed to write the object pointed to by f.

Figure 3-2 presents an example that shows how ownership types and effects can be used to
enable modular reasoning about programs in the presence of subtyping.1 The example shows
an IntStack implemented using an IntVector vec. (We borrowed this example from [99].) The
example has a method m that receives two arguments: an IntStack s and an IntVector v.
The condition in the assert statement in m can be true only if v is not aliased to s.vec.

In the example, the method m uses a where clause to specify that (s 6º v) and (v 6º s). Since
the ownership relation forms a tree (see Figure 2-4), this constraint implies that v cannot
be aliased to s.vec. Furthermore, IntVector.size declares that it only reads objects owned
by the IntVector, and IntStack.push declares that it only writes (and reads) objects owned
by the IntStack. Therefore, it is possible to reason locally that v.size and s.push cannot
interfere, and thus the condition in the assert statement in m must be true.

Figure 3-3 presents another example that shows the effects clauses for a stack of T objects
implemented using a linked list. Besides the effects clauses, the code in this example is
identical to that in Figure 2-7.

1As mentioned before, all the examples in this thesis use a language that is syntactically closer to Java.
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Researchers have also proposed data groups [97, 99] that can be used to name groups of
objects in an effects clause to write modular specifications in the presence of subtyping.
However, unlike the ownership relation in SafeJava that forms a tree (see Figure 2-4), the
relation between data groups forms a directed acyclic graph (DAG). Therefore, data groups
cannot be used to statically verify the non-interference of two methods. Data groups are
implemented using a theorem prover, and in principle, can be very flexible. However, pivot
uniqueness in [99] imposes drastic restrictions on pivot fields. SafeJava does not impose
such restrictions; it only requires that the owner of an object be unique. In [99], the
owner exclusion constraint is hard coded. In SafeJava, programmers can specify arbitrary
constraints on owners using where clauses; owner exclusion can be a default.

3.2 Formal Description

This section presents a formal description of our type system that includes ownership types
and effects. It builds on the type system presented in Section 2.3. To simplify the presen-
tation of the key ideas, we exclude inner classes from the formal description. We presented
the grammar in Figures 2-5, 2-6, and 3-1. This section describes some of the important
rules for type checking. The full set of rules are in Appendix 3.A at the end of this chapter.

The core of our type system is a set of rules for reasoning about the typing judgment:
P ; E; R; W ` e : t. P , the program being checked, is included here to provide information
about class definitions. E is an environment providing types for the free variables of e. R
and W must subsume the read and write effects of e. t is the type of e.

We define a typing environment as: E ::= ∅ | E, t x | E, owner f | E, constr
The typing environment contains the declared types of variables, the declared owner pa-
rameters, and the declared constraints among owners.

We define read and write effects as: R, W ::= o1..n

R and W contain the declared read and write effects.

A useful auxiliary judgment is P ; E ` constr , where constr is an ownership constraint of
the form either o1 º o2 or o1 6º o2. The judgment states that the constraint holds in the
typing environment E. The rules for this judgment are as follows:

[CONSTR ENV]

E = E1, constr, E2

P ; E ` constr

[OWNER º]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLD º ]

P ; E `owner o
P ; E ` (world º o)

[REFL º]

P ; E `owner o
P ; E ` (o º o)

[TRANS º]

P ; E ` (o3 º o2)
P ; E ` (o2 º o1)
P ; E ` (o3 º o1)

The first rule states that if a constraint is part of a class or method declaration, then the
type checker assumes that constraint within the scope of that class or method. The second
rule states that the first owner parameter of a type owns the corresponding object. (Recall
this fact from Section 2.2.2). The third rule states that world transitively owns all objects.
The fourth and fifth rules state that the ownership relation is reflexive and transitive.

The judgment P ; E ` X º Y states that effects X subsume effects Y . The rule for this
checks that for each owner yj in Y , there is an owner xi in X such that xi º yj .

[X º Y ] X = x1..n Y = y1..m ∀j∈{1..m} ∃i∈{1..n} (xi º yj)

P ; E ` (X º Y )
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The rule for creating a new object of type cn〈o1..n〉 must ensure that the type cn〈o1..n〉
is valid. The rule for that checks that cn〈f1..n〉 is a valid class; that owners o1..on are
valid owners (a valid owner is either this, or world, or a formal owner parameter); that
oi º o1 for all i ∈ {1..n} (recall this constraint from Section 2.2.3); and that all the other
constraints in the declaration of class cn are satisfied. Note that since each constraint constr
is declared inside the class, it might contain occurrences of the formal owner parameters
f1..fn. When constr is used outside the class, one must rename the formal parameters with
their corresponding actual owner parameters o1..on.

[EXP NEW]

P ; E ` cn〈o1..n〉
P ; E; R; W ` new cn〈o1..n〉 : cn〈o1..n〉

[TYPE C]

P ` class cn〈f1..n〉... where constr∗ ...
P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]

P ; E ` cn〈o1..n〉

The rules for subtyping are similar to those in parametric polymorphism [3, 29, 32, 90, 112,
132], except that the first owner parameter of the supertype must be the same as that of
the subtype. The first owners have to match because they are special, in that they own the
corresponding objects. The subtyping relation is reflexive and transitive.

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

The rule for a let expression simply adds the new variable and its type to the type environ-
ment. The rules for reading and writing a variable look up the type of the variable from
the type environment.

[EXP LET]

arg = t x P ; E; R; W ` e : t
P ; E, arg; R; W ` e′ : t′

P ; E; R; W ` let (arg = e) in {e′} : t′

[EXP VAR]

E = E1, t x, E2

P ; E; R; W ` x : t

[EXP VAR ASSIGN]

P ; E; R; W ` x : t
P ; E; R; W ` e : t

P ; E; R; W ` x = e : t

The rule for accessing field x.fd checks that x is a well-typed expression of some class type
cn〈o1..n〉, where o1..n are actual owner parameters. It verifies that the class cn with formal
parameters f1..n declares or inherits a field fd of type t. It also verifies that x is included in
the permitted read effects R. Note that the rule renames t when it used outside class cn.

[EXP REF]

P ; E; R; W ` x : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉 R = R1, r, R2 r º x
P ; E; R; W ` x.fd : t [o1/f1]..[on/fn]

The rule for assigning to a field is similar.

[EXP REF ASSIGN]

P ; E; R; W ` x : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉 W = W1, w, W2 w º x
P ; E; R; W ` y : t [o1/f1]..[on/fn]

P ; E; R; W ` x.fd = y : t [o1/f1]..[on/fn]
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The rule for invoking a method on an object checks that the type of that object declares or
inherits the method, and that the method arguments are of the right type. Since methods
in our system may be parameterized, the rule checks that the method parameters are
instantiated with valid owners, and that the constraints on the owners satisfied. The rule
also checks that the permitted read and write effects R and W subsume the effects mentioned
in the reads and writes clauses of the method. The rule appropriately renames types and
effects when they are used outside their declared context.

[EXP INVOKE]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) reads(r1..r) writes(w1..w) where constr∗ {e}) ∈ cn〈f1..n〉

P ; E; R; W ` x : cn〈o1..n〉 P ; E ` oi º o1 P ; E ` constr [o1/f1]..[om/fm]

P ; E; R; W ` xj : tj [o1/f1]..[om/fm]

P ; E ` R º r1..r [o1/f1]..[om/fm] P ; E ` W º w1..w [o1/f1]..[om/fm]
P ; E; R; W ` x.mn〈o(n+1)..m〉(x1..k) : t [o1/f1]..[om/fm]

3.3 Unique Pointers

This section presents extensions to our type system to support unique pointers [108, 134].
Unique pointers are useful to control object aliasing. Unique pointers have been used in low
level languages to support safe explicit memory deallocation [48, 84] and to track resource
usage [52, 53]. Ownership types combined with unique pointers can express constructs that
neither ownership types nor unique pointers alone can express, while enforcing object en-
capsulation. We first combined ownership types with unique pointers in [26] to support
ownership transfer. Recent work [44] proposes a more flexible approach that allows a pro-
gram to specify a unique external pointer to an object; there can be other pointers to that
object from objects encapsulated within it. We subsequently adopted this approach.

SafeJava statically enforces the uniqueness property shown in Figure 3-5. Property SJ6
states that if a method-local variable or an object field x is declared to be the unique
pointer to an object o, then there can be no other pointer to o, except from fields of objects
encapsulated within o. In other words, x is the unique external pointer to o.

Creating Unique Pointers

Figure 3-4 presents grammar extensions to support unique pointers. The instruction new
creates a unique pointer. A variable (or field) x can be declared to be a unique pointer by
instantiating its type with unique:o as the first parameter. o is an owner. If o is world, then
programmers can simply use unique. The owner o restricts the set of variables that x can be
transferred to. In particular, x can only be transferred to variables where o is in scope. This
restriction is necessary to enforce object encapsulation in the presence of unique pointers.

Figure 3-6 presents some examples, which shows client code for the TStack in Figure 2-7.
In the figure, TStack〈unique, world〉 u3 is equivalent to TStack〈unique:world, world〉 u3 and it
declares that u3 is a unique pointer to a TStack object. TStack〈unique:this, this〉 u1 declares
that u1 is a unique pointer to a TStack object, and that u1 can only be transferred to
variables where this is in scope. That is, u1 cannot be transferred outside the encapsulation
boundary of the TStackClient object.
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ou ::= unique | unique : owner
c ::= ... | cn〈ou owner* 〉 | Object〈ou owner* 〉 | c.cn〈ou owner* 〉
e ::= ... | x-- | x.fd-- | x.fd = y-- | borrow (t x = y) { e }

Figure 3-4: Grammar Extensions to Support Unique Pointers

SJ6. If a method-local variable or an object field x is declared to be the unique pointer
to an object o, then:

i. No other method-local variable can point to o.

ii. If another field x′ of an object o′ points to o then (o º o′).

SJ7. If a method-local variable or an object field x is declared to point to an immutable
object o, then the program cannot write to o or any object o′ where (o º o′).

Figure 3-5: Properties of Objects With Unique Pointers and Immutable Objects

Recall from Section 2.2.3 that to enforce object encapsulation, SafeJava requires that in
every type cn〈o1, ..., on〉 with multiple owners, (oi º o1) for all i ∈ {1..n}. For a type
cn〈unique:o1 o2, ..., on〉, the restriction is that (oi º o1) for all i ∈ {1..n}. This restriction
is necessary to enforce object encapsulation in the presence of unique variables. Thus, the
type of TStack u4 in Figure 2-7 is illegal because (this 6º world).

The rules for creating a unique pointer of a valid type are shown below. These rules are
similar to those in Section 2.3.

[EXP NEW UNIQUE] P ; E ` cn〈unique:o1 o2..n〉
P ; E; R; W ` new cn〈unique:o1 o2..n〉 : cn〈unique:o1 o2..n〉

[TYPE C UNIQUE]

P ` class cn〈f1..n〉... where constr∗ ... P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]
P ; E ` cn〈unique:o1 o2..n〉

Transferring Unique Pointers

Regular variables cannot be assigned to unique variables. Pointers in unique variables can
be transferred to other regular or unique variables only by using the following syntax. x
and y are assumed to be unique variables in the example below.

y = x--; // y = x; x = null;

m(y--); // m(y); y = null;

Guava [11] uses a similar syntax to transfer objects between variables. This syntax is
inspired by the following C expression syntax. i and j are assumed to be integer variables
below.

j = i--; // j = i; i = i-1;

m(j--); // m(j); j = j-1;

In the above example, if the x is a method-local variable and is not subsequently used
within the method, an optimizing compiler will eliminate the instruction x=null as dead
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1 class TStackClient<clientOwner> {

2 void test() writes(world) {

3 TStack<this, this> s1;

4 TStack<this, world> s2;

5 TStack<world, world> s3;

6 /* TStack<world, this> s4; illegal! */

7

8 TStack<unique:this, this> u1, v1;

9 TStack<unique:this, world> u2, v2;

10 TStack<unique, world> u3, v3; // Equivalent to: TStack<unique:world, world> u3, v3;

11 /* TStack<unique, this> u4, v4; illegal! */

12

13 v1 = u1--; v2 = u2--; v3 = u3--; v2 = u3--;

14 s1 = u1--; s2 = u2--; s3 = u3--; s2 = u3--;

15

16 borrow (TStack<f, this> x1 = u1) { // x1 = u1--;

17 x1.push(...);

18 x1.pop(); }

19 TStack<f, this> x2 = x1;

10 x2.push(...);

21 x1.pop();

22 } // u1 = x1--;

23 }}

Figure 3-6: TStacks With Unique Pointers

code. By using the x-- construct, we are in effect shifting some checking from compile time
to runtime. If x is subsequently dereferenced before being reinitialized, the system will raise
a NullPointer exception at runtime.

A unique type with first parameter unique:o is a subtype of another unique type with first
parameter unique:o′ if (o º o′). A variable with a unique type t can be transferred to another
variable with a unique type t′ only if t is a subtype of t′. Thus, in Figure 3-6, u3 can be
transferred to u2, v2, and v3. Similarly, a unique type with first parameter unique:o is a
subtype of a regular type with first parameter o′ if (o º o′). A variable with a unique type
t can be transferred to a variable with a regular type t′ only if t is a subtype of t′. Thus, in
Figure 3-6, u3 can be transferred to s2 and s3.

The rules for subtyping with unique pointers are shown below. These rules are similar to
the rules for subtyping in Section 2.3.

[SUBTYPE C UNIQUE 1] P ; E ` cn〈unique:o o2..n〉 P ; E ` o º o′
P ; E ` cn〈unique:o o2..n〉 <: cn〈unique:o′ o2..n〉

[SUBTYPE C UNIQUE 2]

P ; E ` cn〈unique:o1 o2..n〉 P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...
P ; E ` cn〈unique:o1 o2..n〉 <: cn〈unique:f1 o∗〉 [o1/f1]..[on/fn]

Because SafeJava combines ownership types and unique pointers in a common framework,
it supports constructs that neither ownership types nor unique pointers alone can support,
while enforcing object encapsulation. Figure 3-7 provides an illustration. The example is
adopted from a stock quote server we had implemented in [26]. In the example, Stock-
QuoteHandler is initialized with an externally created Socket object, which is subsequently
encapsulated within the StockQuoteHandler.
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1 class StockQuoteHandler ... {

2 Socket<this> s;

3 StockQuoteHandler(Socket<unique> s) ... {

4 this.s = s--; // this.s = s; s = null;

5 } ...

6 }

7 class Main ... {

8 void serveQuotes(...) {

9 Socket<unique> s = ...;

10 StockQuoteHandler h = new StockQuoteHandler(s--);

11 ...

12 }}

Figure 3-7: Using Ownership Types and Unique Pointers to Enforce Encapsulation

Using Unique Pointers

Programmers often write code that creates temporary aliases to objects, e.g., by storing
pointers in loop variables or passing them to functions. To allow temporarily aliases to
objects with unique pointers, SafeJava allows a regular variable to temporarily borrow the
pointer in a unique variable [44]. In Figure 3-6, x1 borrows u1. This operation introduces a
fresh owner f where (this º f), introduces a fresh variable x1 owned by f, and transfers u1
to x1. Within the scope of the borrow, f owns x1 and the program can freely create aliases
to x1. Note that u1 is unusable within the scope of borrow; attempts to access u1 would
raise a NullPointer exception at runtime. At the end of the scope of borrow, the program
transfers x1 back to u1. All the other aliases to x1 are no longer usable because their owner
f is no longer in scope. u1 thus becomes the unique external pointer to that object. Note
that there can be other pointers to u1 from objects encapsulated within u1.

The static type checking rule for borrow is shown below. [44] contains a proof that borrow
preserves the external uniqueness property shown in Figure 3-5.

[EXP BORROW]

P ; E; R; W ` y : cn〈unique:o o2..n〉 P ; E, owner f , (o º f), cn〈f o2..n〉 x; R; W ` e : t
P ; E; R; W ` borrow (cn〈f o2..n〉 x = y) in {e} : t

3.4 Immutable Objects

Immutable objects have many advantages. Unlike mutable objects, they can be shared
across multiple aliases without complicating the task of understanding and reasoning about
correctness of programs. SafeJava is the first system that extends the notion of immutability
to object encapsulation. SafeJava statically enforces the immutability property shown in
Figure 3-5. Property SJ7 states that if an object is declared to be immutable, then the
program does not modify that object or objects encapsulated within that object. We
first combined ownership types with immutable objects in [26] to allow multiple threads
to access an immutable object and its encapsulated objects without synchronization and
without causing data races.

A variable (or field) x can be declared to be a pointer to an immutable object by instan-
tiating its type with immutable:o as the first parameter. o is an owner. If o is world, then
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om ::= immutable | immutable : owner
c ::= ... | cn〈om owner* 〉 | Object〈om owner* 〉 | c.cn〈om owner* 〉

Figure 3-8: Grammar Extensions to Support Immutable Objects

1 void m<sO,vO> (IntStack<sO> s, IntVector<vO> v) writes (s) reads (v) where !(v >= s) !(s >= v) {

2 int n = v.size(); s.push(3); assert(n == v.size());

3 }

4

5 IntVector<unique> v1 = new IntVector<unique>; borrow (IntVector<o> v2 = v1) { v1.init(); }

6 IntVector<immutable> v = v1--;

7 IntStack<world> s = new IntStack<world>; s.init();

8

9 m(s, v);

Figure 3-9: Using Immutable Objects

programmers can simply use immutable. For a type cn〈immutable:o1 o2, ..., on〉, SafeJava
statically checks that (oi º o1) for all i ∈ {1..n}. This restriction is necessary to enforce
object encapsulation in the presence of immutable objects.

The type checking rule for a valid immutable type is shown below.

[TYPE C IMMUTABLE]

P ` class cn〈f1..n〉... where constr∗ ... P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]
P ; E ` cn〈immutable:o1 o2..n〉

Figure 3-9 presents an example, that contains client code for IntStack and IntVector shown
in Figure 3-2. In the figure, the program first creates and initializes a IntVector object
that has a unique reference. The program then transfers the reference to a variable of
immutable type. In general, this is the mechanism SafeJava uses to support the initialization
of immutable objects.

The rule for subtyping with immutable objects are shown below.

[SUBTYPE C IMMUTABLE 1]

P ; E ` cn〈unique:o1 o2..n〉
P ; E ` cn〈unique:o1 o2..n〉 <: cn〈immutable:o1 o2..n〉

[SUBTYPE C IMMUTABLE 2]

P ; E ` cn〈immutable:o o2..n〉 P ; E ` o º o′
P ; E ` cn〈immutable:o o2..n〉 <: cn〈immutable:o′ o2..n〉

[SUBTYPE C IMMUTABLE 3]

P ; E ` cn〈immutable:o1 o2..n〉 P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...
P ; E ` cn〈immutable:o1 o2..n〉 <: cn〈immutable:f1 o∗〉 [o1/f1]..[on/fn]

A program cannot write to an immutable object or an encapsulated subobject of an im-
mutable object. A program can pass an immutable object o as an argument to a method
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only if it is not part of the write effects W of the method, that is, only if (o 6º W ) and
(W 6º o). In Figure 3-9, method m declares that it only writes s, and that (s 6º v) and
(v 6º s). Therefore, it is safe to pass the immutable v to m.

The rule for writing to an object field in the presence of immutable objects checks that the
program does not write any immutable objects. The rest of the rule is identical to that in
Section 2.3.

[EXP REF ASSIGN]

Immutable(z, E)
def
= E = E1, cn′〈immutable:o′1 o′2..n〉 z, E2

∀z Immutable(z, E) =⇒ (P ; E ` z 6º x)

P ; E; R; W ` x : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉 W = W1, w, W2 w º x
P ; E; R; W ` y : t [o1/f1]..[on/fn]

P ; E; R; W ` x.fd = y : t [o1/f1]..[on/fn]

The rule for invoking a method in the presence of immutable objects checks that the method
does not write any immutable objects. The rest of the rule is identical to that in Section 2.3.

[EXP INVOKE IMMUTABLE]

Immutable(z, E)
def
= E = E1, cn′〈immutable:o′1 o′2..n〉 z, E2

w′i = wi [o1/f1]..[om/fm]
∀z Immutable(z, E) =⇒ ∀i (P ; E ` z 6º w′i) ∧ (P ; E ` w′i 6º z)

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) reads(r1..r) writes(w1..w) where constr∗ {e})

P ; E; R; W ` x : cn〈o1..n〉 P ; E; R; W ` xj : tj [o1/f1]..[om/fm]
P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[om/fm]

P ; E ` R º r1..r [o1/f1]..[om/fm] P ; E ` W º w1..w [o1/f1]..[om/fm]
P ; E; R; W ` x.mn〈o(n+1)..m〉(x1..k) : t [o1/f1]..[om/fm]

Conclusions

This chapter presented extensions to the SafeJava type system that combine object en-
capsulation with effects clauses, unique pointers, and immutable objects. The subsequent
chapters of the thesis build on this type system to statically prevent several kinds of pro-
gramming errors.
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3.A Rules for Type Checking

This section formally presents the SafeJava type system that includes ownership types and
effects clauses. It builds on the type system presented in Appendix 2.A at the end of
Chapter 2.

The grammar for the type system is shown below.

P ::= defn* e
defn ::= class cn〈formal+〉 extends c where constr* {field* meth*}

c ::= cn〈owner+〉 | Object〈owner〉
owner ::= formal | world | this
constr ::= (owner º owner) | (owner 6º owner)
meth ::= t mn〈formal* 〉(arg* ) reads (owner* ) writes (owner* ) where constr* {e}
field ::= t fd
arg ::= t x

t ::= c | int
formal ::= f

e ::= new c | x | x = e | let (arg=e) in {e} | x.fd | x.fd = y | x.mn〈owner* 〉(y* )

cn ∈ class names
fd ∈ field names

mn ∈ method names
x,y ∈ variable names

f ∈ owner names

We first define a number of predicates used in the type system. These predicates are
based on similar predicates from [70]. We refer the reader to that paper for their precise
formulation.

Predicate Meaning
WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice in P
FieldsOnce(P) No class contains two fields, declared or inherited, with same name
MethodsOncePerClass(P) No class contains two methods with same name
OverridesOK(P) Overriding methods have the same return type and parameter

types as the methods being overridden. The read and write effects
of an overriding method must be superseded by those of the
overridden methods

The core of our type system is a set of rules for reasoning about the typing judgment:
P ; E; R; W ` e : t. P , the program being checked, is included here to provide information
about class definitions. E is an environment providing types for the free variables of e. R
and W must subsume the read and write effects of e. t is the type of e.

We define a typing environment as E ::= ∅ | E, t x | E, owner f | E, constr
The typing environment contains the declared types of variables, the declared owner pa-
rameters, and the declared constraints among owners.

We define read and write effects as R, W ::= o1..n

R and W contain the declared read and write effects.
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We define the type system using the following judgments. We present the typing rules for
these judgments after that.

Judgment Meaning
` P : t program P yields type t
P ` defn defn is a well-formed class
P ; E `owner o o is an owner
P ; E ` constr constraint constr is satisfied
P ; E ` X º Y effect X subsumes effect Y
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E ` wf typing environment E is well-formed
P ` field ∈ c class c declares/inherits field
P ` meth ∈ c class c declares/inherits meth
P ; E ` field field is a well-formed field
P ; E ` meth meth is a well-formed method
P ; E ` e : t expression e has type t
P ; E; R; W ` e : t expression e has type t and its read/write effects are subsumed by R/W

` P : t

[PROG]

WFClasses(P) ClassOnce(P) FieldsOnce(P)
MethodsOncePerClass(P) OverridesOK(P)

P = defn1..n e P ` defni P ; ∅; world; world ` e : t
` P : t

P ` defn

[CLASS]

E = cn〈f1..n〉 this, owner f1..n, fi º f1, constr∗
P ; E ` wf P ; E ` c′
P ; E ` fieldi P ; E ` methi

P ` class cn〈f1..n〉 extends c′ where constr∗
{field∗ meth∗}

P ; E ` constr

[CONSTR ENV]

E = E1, constr, E2

P ; E ` constr

[OWNER º]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLD º ]

P ; E `owner o
P ; E ` (world º o)

[REFL º]

P ; E `owner o
P ; E ` (o º o)

[TRANS º]

P ; E ` (o3 º o2)
P ; E ` (o2 º o1)
P ; E ` (o3 º o1)

P ; E ` X º Y

[X º Y ]

X = x1..n Y = y1..m

∀j∈{1..m} ∃i∈{1..n} (P ; E ` xi º yj)

P ; E ` (X º Y )

P ; E `owner o

[OWNER WORLD]

P ; E `owner world

[OWNER FORMAL]

E = E1, owner f , E2

P ; E `owner f

[OWNER THIS]

E = E1, c this, E2

P ; E `owner this

P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV X]

P ; E ` t
x /∈ Dom(E)
P ; E ` wf

P ; E, t x ` wf

[ENV OWNER]

f /∈ Dom(E)
P ; E ` wf

P ; E, owner f ` wf

[ENV CONSTR]

constr = (o′ º o) ∨ constr = (o′ 6º o)
P ; E ` wf P ; E `owner o, o′

E′ = E, constr
6 ∃x,y (P ; E′ ` y º x) ∧ (P ; E′ ` y 6º x)

P ; E, constr ` wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE OBJECT]

P ; E `owner o
P ; E ` Object〈o〉

[TYPE C]

P ` class cn〈f1..n〉... where constr∗ ...
P ; E `owner oi P ; E ` oi º o1 P ; E ` constr [o1/f1]..[on/fn]

P ; E ` cn〈o1..n〉
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P ; E ` t1 <: t2

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

P ; E ` field

[FIELD]

P ; E ` t
P ; E ` t fd

P ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` field ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field [o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` method

[METHOD] E′ = E, owner f1..n, constr∗, arg∗ P ; E′ ` wf P ; E′; r∗, w∗; w∗ ` e : t
P ; E ` t mn〈f1..n〉(arg∗) reads(r∗) writes(w∗) where constr∗ {e}

P ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth ...}
P ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P ` meth ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` meth [o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` e : t

[EXP TYPE]

P ; E; world; world ` e : t
P ; E ` e : t

P ; E; R; W ` e : t

[EXP SUB]

P ; E; R; W ` e : t′
P ; E; R; W ` t′ <: t
P ; E; R; W ` e : t

[EXP REF]

P ; E; R; W ` x : cn〈o1..n〉
P ` (t fd) ∈ cn〈f1..n〉
R = R1, r, R2 r º x

P ; E; R; W ` x.fd : t [o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E; R; W ` x : cn〈o1..n〉
P ` (t fd) ∈ cn〈f1..n〉

W = W1, w, W2 w º x
P ; E; R; W ` y : t [o1/f1]..[on/fn]

P ; E; R; W ` x.fd = y : t [o1/f1]..[on/fn]

[EXP NEW]

P ; E ` c
P ; E; R; W ` new c : c

[EXP LET]

arg = t x P ; E; R; W ` e : t
P ; E, arg; R; W ` e′ : t′

P ; E; R; W ` let (arg = e) in {e′} : t′

[EXP VAR ASSIGN]

P ; E; R; W ` x : t
P ; E; R; W ` e : t

P ; E; R; W ` x = e : t

[EXP VAR]

E = E1, t x, E2

P ; E; R; W ` x : t

[EXP INVOKE]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) reads(r1..r) writes(w1..w) where constr∗ ...) ∈ cn〈f1..n〉

P ; E; R; W ` x : cn〈o1..n〉 P ; E; R; W ` xj : tj [o1/f1]..[om/fm]
P ; E ` oi º o1 P ; E ` R º r1..r [o1/f1]..[om/fm]
P ; E ` constr [o1/f1]..[om/fm] P ; E ` W º w1..w [o1/f1]..[om/fm]

P ; E; R; W ` x.mn〈o(n+1)..m〉(x1..k) : t [o1/f1]..[om/fm]
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Chapter 4

Preventing Data Races and
Deadlocks

Multithreaded programming is becoming a mainstream programming practice. But mul-
tithreaded programming is difficult and error prone. Multithreaded programs synchronize
operations on shared mutable data to ensure that the operations execute atomically. Failure
to correctly synchronize such operations can lead to data races or deadlocks. A data race
occurs when two threads concurrently access the same data without synchronization, and
at least one of the accesses is a write. A deadlock occurs when there is a set of threads such
that every thread in the set is waiting on a lock held by another thread in the set. Synchro-
nization errors in multithreaded programs are timing-dependent, non-deterministic bugs,
and are among the most difficult programming errors to detect, reproduce, and eliminate.

SafeJava provides a new static type system for multithreaded programs; well-typed pro-
grams in SafeJava are guaranteed to be free of data races and deadlocks. The basic idea is
as follows. When programmers write multithreaded programs, they already have a locking
discipline in mind. SafeJava allow programmers to specify this locking discipline in their
programs in the form of type declarations. SafeJava statically verifies that a program is
consistent with its type declarations.

The SafeJava type system combines object encapsulation with safe multithreading. Object
encapsulation is useful for safe multithreading because the same lock that protects an object
can also protect the objects encapsulated within that object.

Preventing Data Races

To prevent data races, programmers associate every object with a protection mechanism
that ensures that accesses to the object never create data races. The protection mechanism
of an object can specify either the mutual exclusion lock that protects the object from
unsynchronized concurrent accesses, or that threads can safely access the object without
synchronization because either 1) the object is immutable, 2) the object is accessible to
a single thread, or 3) there is a unique pointer to the object. Unique pointers are useful
to support object migration between threads. The SafeJava type checker statically verifies
that a program uses objects only in accordance with their declared protection mechanisms.
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The SafeJava type system is significantly more expressive than previously proposed type
systems for preventing data races [68, 11]. In particular, SafeJava lets programmers write
generic code to implement a class, then create different objects of the class that have different
protection mechanisms. SafeJava does this by introducing a way of parameterizing classes
that lets programmers defer the protection mechanism decision from the time when a class
is defined to the times when objects of that class are created. Without this flexibility,
programmers often must either write a program that acquires redundant locks just to satisfy
the type checker, or unnecessarily duplicate code to produce multiple versions of the same
classes; these versions differ only in the code that implements the protection mechanisms.

One of the challenges in designing an effective type system is to make it powerful enough to
express common programming paradigms. One trivial way to guarantee race-free programs,
for example, is to require every thread to acquire the lock on every object before access-
ing the object. But that would introduce unnecessary synchronization overhead because
programmers often know from the logic of their programs that acquiring certain locks is
unnecessary.

SafeJava is expressive enough to verify the absence of races in many common situations
where a thread accesses an object without acquiring the lock on that object. In particular,
it accommodates the following cases:

• Thread-local objects: If an object is accessed by only one thread, it needs no
synchronization.

Consider, for example, a Vector class. In SafeJava, programmers can write a generic
Vector implementation. A program can then create some thread-local Vector objects—
these objects can be accessed without any synchronization. A program can also create
Vector objects that are shared between multiple threads—these objects contain their
own locks that a thread must acquire before it accesses the objects. Moreover, a
program can also create thread-local Vector objects containing only thread-local ele-
ments, and thread-local Vector objects containing shared elements, all from the same
generic Vector implementation.

With previous systems, the only way to do this is to have different versions of the
Vector class, one for each case. These versions contain the exact same code except for
synchronization operations.

• Objects contained within other objects: Sometimes, an object is contained
within an enclosing data structure. In such cases, it might be redundant to acquire
the lock on that object since the same lock that protects the enclosing data structure
also protects that object.

Consider, for example, a Stack implementation that internally uses a Vector. In Safe-
Java, a program can create a Vector object from the same generic Vector implemen-
tation such that the Vector object inherits the protection mechanism of the enclosing
Stack object. If the program then creates a Stack object that is thread-local, no syn-
chronization operations is necessary to access the Stack or the Vector. If the program
creates a shared Stack object, the same lock that protects the Stack also protects the
Vector.

Previous systems needed multiple Vector and Stack implementations to support these
different cases.
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• Objects migrating between threads: Some programs use serially-shared objects
that migrate from one thread to another. Although these objects are shared by
multiple threads, they are accessed only by a single thread at a time. Operations on
these objects can therefore execute without synchronization. SafeJava uses the notion
of unique pointers [108] to support this kind of sharing.

SafeJava also allows programs to build collection classes that contain unique objects.
For example, programmers can create a Queue of unique objects. This is useful to
support the producer-consumer paradigm where producer threads insert items into
the Queue and consumer threads extract them from the Queue.

• Immutable objects: Programs often use immutable objects that are initialized once
by a single thread, then read by multiple threads. Because none of the parallel threads
writes a immutable object after it is initialized, they can all access the object con-
currently without synchronization and without causing data races. SafeJava supports
this sharing pattern.

Because the SafeJava type system is expressive and yet guarantees race-freedom, program-
mers can apply efficient protection mechanisms without risking synchronization errors. For
example, the Java libraries contain two different classes to implement resizable arrays: the
Vector class and the ArrayList class. The methods of Vector are synchronized, therefore,
multiple threads can use Vector objects without creating data races. But Vectors always
incur a synchronization overhead, even when used in contexts where synchronization is un-
necessary. On the other hand, the methods of ArrayList are not synchronized, therefore,
ArrayLists do not incur any unnecessary synchronization overhead. But programs that use
ArrayLists risk data races because there is no mechanism in Java to ensure that programs ac-
cess ArrayLists with appropriate synchronization when they use ArrayLists in multithreaded
contexts. SafeJava enables programmers to implement a single generic resizable array class.
If a program creates a resizable array object to be concurrently shared between threads,
SafeJava ensures that accesses to the array are synchronized. If an array is not concurrently
shared, SafeJava allows the program to access the array without synchronization.

Finally, we note in passing that any type system that guarantees race freedom also elimi-
nates issues associated with the use of weak memory consistency models [117]. A detailed
explanation of this issue can be found in [11].

Preventing Deadlocks

To prevent deadlocks, programmers partition all the locks into a fixed number of lock levels
and specify a partial order among the lock levels. The SafeJava type checker statically
verifies that whenever a thread holds more than one lock, the thread acquires the locks in
the descending order of lock levels.

The SafeJava type system also provides the following features:

• Lock Level Polymorphism: SafeJava allows programmers write code that is poly-
morphic in lock levels. It also allows programmers to specify a partial order among
formal lock level parameters using where clauses [50, 112]. This enables programmers
to write code in which the exact levels of some locks are not known statically, but
only some ordering constraints among the unknown lock levels are known statically.
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• Support for Condition Variables: In addition to mutual exclusion locks, SafeJava
prevents deadlocks in the presence of condition variables. SafeJava statically enforces
the constraint that a thread can invoke e.wait only if the thread holds no locks other
than the lock on e. Since a thread releases the lock on e on executing e.wait, the above
constraint implies that any thread that is waiting on a condition variable holds no
locks. This in turn implies that there cannot be a deadlock that involves a condition
variable. SafeJava thus prevents the nested monitor problem [105].

• Partial-Orders Based on Mutable Trees: SafeJava also allows programmers to
use recursive tree-based data structures to further order the locks within a given lock
level. For example, programmers can specify that nodes in a tree must be locked in
the tree order. SafeJava allows mutations to the data structure that change the partial
order at runtime. The SafeJava type checker uses an intraprocedural intra-loop flow-
sensitive analysis to statically verify that the mutations do not introduce cycles in the
partial order, and that the changing of the partial order does not lead to deadlocks.
We do not know of any other sound static system for preventing deadlocks that allows
changes to the partial order at runtime.

• Partial-Orders Based on Monotonic DAGs: SafeJava also allows programmers
to use recursive DAG-based data structures to order the locks within a given lock
level. DAG edges cannot be modified once initialized. Only newly created nodes may
be added to a DAG by initializing the newly created nodes to contain DAG edges to
existing DAG nodes.

• Runtime Ordering of Locks: SafeJava supports imposing an arbitrary linear order
at runtime on locks within a given lock level. SafeJava also provides a primitive to
acquire such locks in the linear order.

Outline

This chapter extends the type system we presented in Chapter 2 to prevent data races
and deadlocks in multithreaded programs. The rest of this chapter is organized as follows.
Sections 4.1 and 4.2 presents our basic type system for preventing data races and deadlocks.
Section 4.3 provides a formal description of the type system. Sections 4.6 and 4.7 present
extensions to the basic type system.

SafeJava is primarily a static type system. However, languages like Java allow downcasts
that are checked at runtime. Section 4.4 describes an efficient technique for supporting safe
runtime downcasts in SafeJava.

Although SafeJava is explicitly typed in principle, it would be onerous to fully annotate ev-
ery method with the extra type information. Section 4.5 describes type inference techniques
that significantly reduce programming overhead.

To gain preliminary experience, we implemented several Java programs in SafeJava. Sec-
tion 4.8 describes our experience in using SafeJava.

Section 4.9 presents related work and Section 4.10 concludes.
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SJ1. Every object has an owner.

SJ2. The owner can either be another object or world or thisThread.

SJ3. The ownership relation forms a tree rooted at world.

SJ4. The owner of an object does not change over time.
(Except if there is a unique pointer to that object.)

SJ5. If object z owns y but z 6º x, then x cannot access y.
(Except if x is an inner class object of z.)

Figure 4-1: Ownership Properties

SJ8. Objects directly or transitively owned by a thisThread owner are local to the
corresponding thread. All other objects are potentially shared between threads.

SJ9. By default, every object is protected by the lock on the root owner of that
object. r is the root owner of an object o iff r º o and world directly owns r.
(An object can also be protected by an arbitrary lock. See Section 4.6.3.)

SJ10. To access to an object, a thread must hold the lock that protects that object.
Every thread implicitly holds the lock on the corresponding thisThread owner.
A thread can therefore access any object directly or transitively owned by its
corresponding thisThread owner without any synchronization.
(Immutable objects and objects with unique pointers can also be accessed with-
out synchronization. See Sections 4.6.4 and 4.6.5.)

Figure 4-2: Properties of Thread-Local and Shared Objects

4.1 Preventing Data Races

This section presents the basic SafeJava type system for preventing data races that supports
objects protected by mutual exclusion locks and thread-local objects. Section 4.6 extends
the basic type system to make it more expressive.

The key to SafeJava type system is the concept of object ownership. Every object has an
owner. Recall the ownership properties from Figure 2-4. To prevent data races, SafeJava
statically guarantees the properties in Figures 4-1 and 4-2. Properties SJ1 to SJ5 in Figure 4-
1 are similar to those in Figure 2-4, except that an object can also be owned by a special
per-thread owner called thisThread. Objects directly or transitively owned by thisThread
are local to the corresponding thread and cannot be accessed by any other thread. All other
objects are potentially shared between multiple threads.

Figure 4-3 presents an example ownership relation. We draw an arrow from object x to
object y if object x owns object y. In the figure, the thisThread owner of Thread 1 is the
root owner of objects o1, o2, and o3; the thisThread owner of Thread 2 is the root owner of
object o4; object o5 is the root owner of objects o5, o6, o7, and o8; and object o9 is the root
owner of objects o9 and o10. (Recall from Figure 4-2 that r is the root owner of an object
o iff r º o and world directly owns r.)
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Thread1 Objects Thread2 Objects Potentially Shared Objects

Figure 4-3: An Ownership Relation

Supporting Multithreading

To simplify the presentation of key ideas, we describe our type system as an extension
to the core SafeJava type system we presented in Section 2.2 in Chapter 2. A SafeJava
program is a sequence of class definitions followed by an initial expression. A predefined
class Object is the root of the class hierarchy. Figure 4-4 presents grammar extensions to
support multithreading.

Each object in SafeJava has an associated lock that has two states—locked and unlocked—
and is initially unlocked. The expression fork(x* ) {e} spawns a new thread with arguments
(x* ) to evaluate e. The evaluation is performed only for its effect; the result of e is never
used. Note that the Java mechanism of starting threads using code of the form {Thread
t=...; t.start();} can be expressed equivalently in SafeJava as {fork(t) {t.start();}}. The
expression synchronized (x) in {e} works as in Java. x should evaluate to an object. The
evaluating thread holds the lock on object x while evaluating e. The value of the synchro-
nized expression is the result of e. While one thread holds a lock, any other thread that
attempts to acquire the same lock blocks until the lock is released. A newly forked thread
does not inherit locks held by its parent thread.

Each variable and field declaration in SafeJava includes an initialization expression and
an optional final modifier. If the modifier is present, then the variable or field cannot be
updated after initialization. Other SafeJava constructs are similar to the corresponding
constructs in Java.

4.1.1 Owner Polymorphism

Figure 4-5 presents extensions to the grammar shown in Figures 2-5 and 2-6 to prevent
data races. (Appendix 4.A at the end of this Chapter presents the complete grammar.)
Figure 4-7 shows an example TStack program.1 For simplicity, all examples in this thesis
use a language that is syntactically close to Java. A TStack is a stack of T objects. It is
implemented using a linked list.

Every class definition in SafeJava is parameterized with one or more owners. The first
owner parameter is special: it identifies the owner of the corresponding object. The other

1The example shows type annotations written explicitly. However, many of them can be automatically
inferred. We discuss type inference in Section 4.5.
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field ::= [final]opt t fd = e
arg ::= [final]opt t x

e ::= ... | synchronized (x) in {e} | fork (x* ) {e}

Figure 4-4: Grammar Extensions to Support Multithreading

owner parameters are used to propagate ownership information. Parameterization allows
programmers to implement a generic class whose objects have different owners. As we
described in Section 2.2, an owner can be instantiated with this, with world, or with another
owner parameter; in addition, an owner can also be instantiated with thisThread.

In Figure 4-7, the TStack class is parameterized by stackOwner and TOwner. stackOwner
owns the TStack object. (Recall that the first owner parameter always owns the correspond-
ing object.) TOwner owns the T objects contained in the TStack. The code specifies that
the TStack object owns the nodes in the list; therefore the list nodes cannot be accessed
from outside the TStack object. In case of s1, the owner thisThread is used for both the
parameters to instantiate the TStack class. It means that TStack s1 as well as all the T
objects contained in the TStack are local to the main thread. In case of s2, the TStack is
local to the main thread but the T objects contained in the TStack are potentially shared
between multiple threads. In case of s3, both the TStack and the T objects contained in the
TStack are potentially shared between multiple threads. The objects s2 and s3 are therefore
protected by their own locks. (Note that every Java object has an associated lock.) The
ownership relation for the TStack objects s1, s2, and s3 is depicted in Figure 4-8 (assuming
the stacks contains two elements each). This example illustrates how different TStacks with
different protection mechanisms can be created from the same TStack implementation.

Constraints on Owners

As before, for every type cn〈o1, ..., on〉 with multiple owners, SafeJava statically enforces
the constraint that (oi º o1) for all i ∈ {1..n}. For a method m〈on+1, ..., ok〉(...){...} of an
object of type cn〈o1, ..., on〉, the constraint is that (oi º oi) for all i ∈ {1..k}. In addition to
enforcing object encapsulation, these constraints prevents thread-local objects from being
accessible from objects local to other threads and thread-shared objects. Thus, the type of
TStack s4 in Figure 4-7 is illegal because (thisThread 6º world).

The rule for declaring a subtype is as before, that the first owner parameter of the supertype
must be the same as that of the subtype and the supertype must satisfy owner constraints.

4.1.2 Requires Clauses

Methods in SafeJava can contain requires clauses to specify the assumptions that hold at
method boundaries. Methods specify the objects they access that they assume are protected
by externally acquired locks. Callers are required to hold the locks on the root owners of
the objects specified in the requires clause before they invoke a method. Consider a method
that contains a requires(o1, ..., on) clause. The method can then safely read or write any
object x (or call methods that read or write x) where (oi º x) for some i ∈ {1..n}. Callers
are required to hold the locks on the root owners of o1, ..., on before they invoke the method.

In the example, the push and pop methods in the TStack class assume that the callers hold
the lock on the root owner of the this TStack object. Without the requires clause, the push
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owner ::= formal | this | world | thisThread
meth ::= t mn〈formal* 〉(arg* ) requires (x* ) where constr* {e}

Figure 4-5: Grammar Extensions to Prevent Data Races

1 class Account<accountOwner> {

2 int balance = 0;

3

4 int balance() requires (this) { return balance; }

5 void deposit(int x) requires (this) { balance += x; }

6 void withdraw(int x) requires (this) { balance -= x; }

7 }

8

9 Account<thisThread> a1 = new Account<thisThread>;

10 a1.deposit(10);

11

12 Account<world> a2 = new Account<world>;

13 fork (a2) { synchronized (a2) in { a2.deposit(10); } }

14 fork (a2) { synchronized (a2) in { a2.deposit(10); } }

Figure 4-6: Account

and pop methods would not have been well-typed. All the threads that call the pop method
on s2 first acquire the lock on s2. For s1, however, the main thread implicitly holds the lock
on the thisThread owner that owns s1. Hence it does not explicitly acquire any locks before
calling the pop method on s1.

The requires clauses are similar to the reads and writes clauses we presented in Section 3.1—
the requires clauses specify the objects the method reads or writes; and they use the name
of an object o to denote all the objects (reflexively and transitively) owned by o. However,
the requires clauses are different in that they only have to specify the objects the method
reads or writes that are protected by externally held locks. Therefore, if a method acquires
the lock that protects an object before reading or writing the object, then the method does
not have to specify that object in its requires clause. Similarly, if a method reads or writes
a thread-local object, the method does not have to specify that object in its requires clause.

Figure 4-6 presents another example that shows an Account class. The program creates
two Account objects a1 and a2. Account object a1 is declared to be thread-local. Account
object a2 is declared to be shared between multiple threads and so it is protected by its own
lock. The methods of the Account class each have an requires clause that specifies that the
methods access the this Account object without synchronization. To prevent data races, the
callers of an Account method must hold the lock that protects the corresponding Account
object before the callers can invoke the Account methods. Without the requires clauses, the
Account methods would not have been well-typed. In the example, all the threads that call
the deposit method on a2 first acquire the lock on a2. For a1, however, the main thread
implicitly holds the lock on the thisThread owner that owns a1. Hence, it does not explicitly
acquire any locks before calling the deposit method on a1.
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3

4 void push(T<TOwner> value) {

5 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head);

6 head = newNode;

7 }

8 T<TOwner> pop() {

9 if (head == null) return null;

10 T<TOwner> value = head.value(); head = head.next();

11 return value;

12 }

13 }

14

15 class TNode<nodeOwner, TOwner> {

16 TNode<nodeOwner, TOwner> next; T<TOwner> value;

17

18 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) {

19 this.value = v; this.next = n;

20 }

21 T<TOwner> value() { return value; }

22 TNode<nodeOwner, TOwner> next() { return next; }

23 }

24

25 class T<TOwner> { }

26

27

28 TStack<thisThread, thisThread> s1;

29 TStack<thisThread, world> s2;

30 TStack<world, world> s3;

31 /* TStack<world, thisThread> s4; illegal! */

32

33

34 s1.pop();

35

36 fork (s2) { synchronized (s2) in { s2.pop(); } }

37 fork (s2) { synchronized (s2) in { s2.pop(); } }

Figure 4-7: Stack of T Objects

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)
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s3.head.next

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

world

thisThread

Figure 4-8: Ownership Relation for TStacks s1, s2, s3
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defn ::= class cn〈formal+〉 extends c where constr* {level* field* meth*}
owner ::= formal | this | thisThread | world:cn.l

level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*
meth ::= t mn〈formal* 〉(arg* ) requires (x* ) locks (cn.l* [x ]opt) where constr* {e}

l ∈ lock level names

Figure 4-9: Grammar Extensions to Prevent Deadlocks

SJ11. The lock levels form a partial order.

SJ12. Every lock belongs to some lock level. The lock level of a lock does not change
over time.
(Except if there is a unique pointer to that lock.)

SJ13. To acquire a new lock of lock level l, the levels of all the locks that the thread
currently holds must be greater than l.
(Except if the locks in the lock level l are further ordered. See Section 4.7.)

SJ14. A thread may also acquire a lock that it already holds. The lock acquire oper-
ation is redundant in that case.

Figure 4-10: Lock Level Properties

4.2 Preventing Deadlocks

This section presents the basic SafeJava type system for preventing both data races and
deadlocks. To prevent deadlocks, programmers specify a partial order among all the locks.
The type checker statically verifies that whenever a thread holds more than one lock, the
thread acquires the locks in the descending order. This section only describes our basic type
system that allows programmers to partition the locks into a fixed number of equivalence
classes and specify a partial order among the equivalence classes. Our system also allows
programmers to use recursive tree-based data structures to describe the partial order—we
describe extensions to our basic type system in Section 4.7.

4.2.1 Static Lock Levels

Figure 4-9 presents grammar extensions to statically prevent deadlocks. (Appendix 4.A at
the end of this Chapter presents the complete grammar.) SafeJava allows programmers to
define lock levels in class definitions. A lock level is like a static field in Java—a lock level is
a per-class entity rather than a per-object entity. But unlike static fields in Java, SafeJava
uses lock levels only for compile-time type checking and does not preserve them at runtime.
Programmers can specify a partial order among the lock levels using the < and > syntax in
the lock level declarations. Since a program has a fixed number of lock levels, SafeJava can
statically verify that the lock levels do indeed form a partial order. Every lock in SafeJava
belongs to some lock level. Note that the set of locks in the language we describe so far is
exactly the set of objects that are directly owned by world. A lock is, therefore, an object
that has world as its first owner. In SafeJava, every world owner is augmented with the
lock level that the corresponding lock belongs to. The properties of our lock levels are
summarized in Figure 4-10.
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1 class CombinedAccount<immutable> {

2 LockLevel savingsLevel = new;

3 LockLevel checkingLevel < savingsLevel;

4

5 final Account<world:savingsLevel> savingsAccount = new Account;

6 final Account<world:checkingLevel> checkingAccount = new Account;

7 ...

8 void transfer(int x) locks(savingsLevel) {

9 synchronized (savingsAccount) {

10 synchronized (checkingAccount) {

11 savingsAccount.withdraw(x); checkingAccount.deposit(x);

12 }}}

13 int creditCheck() locks(savingsLevel) {

14 synchronized (savingsAccount) {

15 synchronized (checkingAccount) {

16 return savingsAccount.balance() + checkingAccount.balance();

17 }}}

18 }

Figure 4-11: Combined Account

Figure 4-11 presents a CombinedAccount class that uses the Account class shown in Figure 4-
6.2 The program declares the CombinedAccount class to be immutable. A CombinedAccount
may not be modified after initialization. The CombinedAccount class contains two Account
fields—savingsAccount and checkingAccount. These two Account objects have world as their
first owner—these objects are therefore locks. To prevent deadlocks, the CombinedAccount
class defines two lock levels—savingsLevel and checkingLevel; and declares that checkingLevel
is less than savingsLevel. It further declares that savingsAccount belongs to savingsLevel and
checkingAccount belongs to checkingLevel. In the example, both the methods of Com-
binedAccount acquire locks in the descending order of lock levels by acquiring the lock on
savingsAccount before acquiring the lock on checkingAccount.

4.2.2 Locks Clauses

Methods in SafeJava can have locks clauses in addition to requires clauses to specify assump-
tions at method boundaries. A locks clause contains a set of lock levels. These lock levels are
the levels of locks that the corresponding method may acquire. To ensure that a program
is free of deadlocks, a thread that calls the method can only hold locks that are of a higher
level than the levels specified in the locks clause. In the example in Figure 4-11, both the
methods of CombinedAccount contain a locks(savingsLevel) clause. A thread that invokes
either of these methods can only hold locks whose levels are greater than savingsLevel.

A locks clause can also contain a lock in addition to lock levels. If a locks clause contains an
object l, then a thread that invokes the corresponding method may already hold the lock on
object l. Re-acquiring the lock within the method would be redundant in that case. This is
useful to support the case where a synchronized method of a class calls another synchronized
method of the same class. Figure 4-12 shows part of a self-synchronized Vector implemented
in SafeJava. (A self-synchronized class is a class that has world as its first owner instead of a

2As we mentioned before, all the examples in this thesis use an extended language even though we present
our formalism in the context of a core language.
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1 class Vector<world:Vector.l, elementOwner> {

2 LockLevel l = new;

3 ...

4 int elementCount = 0;

5 int size() locks (this) { synchronized (this) { return elementCount; } }

6 boolean isEmpty() locks (this) { synchronized (this) { return (size() == 0); } }

7 }

Figure 4-12: Self-Synchronized Vector

formal owner parameter. Methods of a self-synchronized class can assume that world owns
the this object—they can therefore synchronize on this and access the this object without
requiring external locks using the requires clause. Section 4.6.1 has more details on self-
synchronized classes.) In the example, the isEmpty method acquires the lock on this and
invokes size which also acquires the lock on this. The second lock acquire is redundant so it
does not violate our condition that threads must acquire locks in the descending order.

4.3 Formal Description

The previous sections presented our grammar. This section describes some of the important
rules for type checking. The full set of rules and the complete grammar can be found in
Appendix 4.A at the end of this Chapter.

The core of our type system is a set of rules for reasoning about the typing judgment: P ;
E; ls; lmin ` e : t. P , the program being checked, is included here to provide information
about class definitions. E is an environment providing types for the free variables of e. ls
describes the set of locks held before e is evaluated. lmin is the minimum level among the
levels of all the locks held before e is evaluated. t is the type of e. The judgment P ; E `
e : t states that e is of type t, while the judgment P ; E; ls; lmin ` e : t states that e is of
type t provided ls contains the necessary locks to safely evaluate e and lmin is greater that
the levels of all the locks that are newly acquired when evaluating e.

The typing environment E contains the declared types of variables, the declared owner
parameters, the declared constraints among owners, and the declared locks clause. We
define the typing environment as follows:

E ::= ∅ | E, [final]opt t x | E, owner f | E, constr | E, locksclause

We define a lock set as follows, where L(e) is the lock that protects e and x.lock is the lock
field stored in the Java object x.

ls ::= thisThread | ls, xfinal.lock | ls, L(efinal)

We define a minimum lock level as follows, where LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k:

lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk)

Note that L(x) and LUB(...) are not computed—they are expressions used as such for type
checking. The lock level ∞ denotes that the thread currently holds no locks.
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The rule for fork(x1..n) e checks the expression e using a lock set that contains thisThread and
is otherwise empty since a new thread does not inherit locks held by its parent. Moreover,
the environment E might have some types that contain thisThread. But the owner thisThread
in the parent thread is not the same as the owner thisThread in the child thread. So, all
the thisThread owners in the environment have to be changed to something else; we use the
special owner otherThread for that.

[EXP FORK]

P ; E; ls; lmin ` xi : ti gi = final ti[otherThread/thisThread] xi P ; g1..n; thisThread; ∞ ` e : t
P ; E; ls; lmin ` fork (x1..n) {e} : int

The rule for acquiring a redundant lock x simply checks that x is in the lock set ls. The
rule for acquiring a new lock using synchronized x in e checks that x is a lock of some level
cn.l that is less than lmin. If the enclosing method has a locks clause that contains a lock
x′, then the rule checks that either x is the same object as x′, or the level of x is less than
the level of x′. The rule then type checks e in an extended lock set that includes x and
with lmin set to cn.l. A lock is a final variable that is owned by world. The value of a final
variable does not change after it has been initialized.

[EXP SYNC]

P ; E `final x : cn′〈world:cn.l ...〉 P ` cn.l < lmin

(E = E1, locks(... x′), E2) =⇒ (P ; E ` cn.l < level(x′)) ∨ (x′ = x)
P ; E; ls, x; cn.l ` e : t

P ; E; ls; lmin ` synchronized x in e : t

[EXP SYNC REDUNDANT]

x ∈ ls
P ; E; ls; lmin ` e : t

P ; E; ls; lmin ` synchronized x in e : t

Before we proceed further with the rules, we give a formal definition for Lock(e), which is
the lock that protects the object e. In the SafeJava type system we described so far, every
object is protected by the lock on the root owner of that object. Recall from Figure 4-2
that r is the root owner of an object o iff r º o and world directly owns r. The root owner
of an object could be thisThread or an object owned by world.

[LOCK THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` Lock(e) = thisThread

[LOCK WORLD]

P ; E ` e : cn〈world:cn′.l′ o∗〉
P ; E ` Lock(e) = e.lock

[LOCK THIS]

P ; E ` e : cn〈this o2..n〉
P ; E ` Lock(e) = Lock(this)

If the owner of an expression is a formal owner parameter, then we cannot determine the
root owner of the expression from within the static scope of the enclosing class. In that
case, we use L(e) to denote the root owner of e.

[LOCK FORMAL] P ; E ` e : cn〈o1..n〉 E = E1, owner o1, E2

P ; E ` Lock(e) = L(e)

The rule for accessing field e.fd checks that e is a well-typed expression of some type
cn〈o1..n〉. It verifies that the class cn with formal parameters f1..n declares or inherits a
field fd of type t. If the field is not final, the thread must hold the lock on the root owner
of e. Since t is declared inside the class, it might contain occurrences of this and the formal
class parameters. When t is used outside the class, the rule renames this with the expression
e, and the formal parameters with their corresponding actual parameters.
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[EXP REF] P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` Lock(e) = r
(P ` (t fd) ∈ cn〈f1..n〉 ∧ (r ∈ ls)) ∨ (P ` (final t fd) ∈ cn〈f1..n〉)

P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` Lock(e) = r P ` (t fd) ∈ cn〈f1..n〉 ∧ (r ∈ ls)
P ; E; ls; lmin ` e′ : t[e/this][o1/f1]..[on/fn]

P ; E; ls; lmin ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments are of the right type and that
the thread holds the locks on the root owners of all final expressions in the requires clause
of the method. The rule ensures that lmin is greater than all the levels specified in the
locks clause of the method. If the locks clause contains a lock l, the rule ensures that either
the level of l is less than lmin, or the level of l is equal to lmin and l is in the lock set (in
which case re-acquiring l within the method is redundant). The rule appropriately renames
expressions and types used outside their declared context.

[EXP INVOKE]

Renamed(α)
def
= α[e/this][o1/f1]..[om/fm][e1/y1]..[ek/yk]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) requires(x∗) locks(cn.l∗ [x′]opt) where constr∗ ...) ∈ cn〈f1..n〉

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` oi º o1 P ; E ` Renamed(constr)

P ; E; ls; lmin ` ej : Renamed(tj) P ; E ` Lock(Renamed(xi)) = ri ri ∈ ls

P ` cni.li < lmin x′′ = Renamed(x′) P ; E ` (level(x′′) < lmin) ∨ (level(x′′) = lmin) ∧ (x′′ ∈ ls)
P ; E; ls; lmin ` e.mn〈o(n+1)..m〉(e1..k) : Renamed(t)

The rule for type checking a method assumes that the thread holds the locks on the root
owners of all the final expressions specified in the requires clause. The rules also assumes
that for each lock held by the thread, the level of the lock is greater than all the levels
specified in the locks clause. If the locks clause of the method contains a lock l, the rule
assumes that for each lock held by the thread, either the level of the lock is greater than
the level of l, or the lock is the same object as l. The rule then type checks the method
body under these assumptions.

P ; E ` method

[METHOD]

E′ = E, owner f1..n, constr∗, arg1..n, locks(... [x ]opt) P ; E′ ` wf P ; E′ `final x : t′

∀i∈{1..r} (P ; E′ `final xi : ti ∧ P ; E′ ` Lock(xi) = ri)

P ; E′; thisThread, r1..r; LUB(cnj .lj
j∈1..k) ` e : t

P ; E ` t mn〈f1..n〉(arg1..n) requires(x1..r) locks(cnj .lj
j∈1..k [x ]opt) where constr∗ {e}

The rule for subtyping is the same as in Section 2.3.

P ; E ` t1 <: t2

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t
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4.4 Safe Runtime Downcasts

In SafeJava, programmers parameterize classes and methods with owners. This enables the
writing of generic code that can be used in many different contexts. SafeJava is a primarily
static type system. The type checker uses the ownership type annotations to statically
ensure the absence of certain classes of errors, but it is usually unnecessary to preserve
the ownership information at runtime. However, languages like Java [77] are not purely
statically typed languages. Java allows downcasts that are checked at runtime. To support
safe runtime downcasts, we must preserve some ownership information at runtime when our
type system is used in the context of a language like Java.

There are primarily three techniques for implementing parametric polymorphism in a lan-
guage like Java. The type erasure approach [29, 32] is based on the idea of deleting type
parameters (so Stack〈T〉 erases to Stack). But this approach does not preserve ownership
information at runtime, so it is unsuitable for supporting safe runtime downcasts with
ownership types. In the code duplication approach [3], polymorphism is supported by cre-
ating specialized classes/methods, each supporting a different instantiation of a parametric
class/method. But since the parameters in ownership types are usually objects, this ap-
proach will lead to an unacceptably large number of classes/methods. In the type passing
approach [112, 132, 131], information on type parameters is explicitly stored in objects
and passed to code requiring them. But if the system stores the owners of every object at
runtime, this approach has the potential drawback of adding a per-object space overhead.
Java objects are typically small, so adding even a single field to every object increases the
size of most objects by a significant fraction.

This section describes an efficient technique for supporting safe runtime downcasts with
ownership types. This technique uses the type passing approach, but avoids the associ-
ated significant space overhead by storing only the runtime ownership information that is
potentially needed to support safe downcasts. It does not use any interprocedural anal-
ysis, so it preserves the separate compilation model of Java. Moreover, our approach is
JVM-compatible: our implementation translates programs to bytecodes that can be run on
regular JVMs [101].

Figure 4-13 presents grammar extensions to support runtime casts. We present the static
type checking rules for casts below. Casting an object to a supertype of its declared type
is always safe. Casting to a subtype of the declared type requires runtime checking. (We
presented the rule for subtyping at the end of Section 4.3.)

[EXPRESSION UPCAST]

P ; E; ls ` e : c2 P ; E ` c2 <: c1
P ; E; ls ` (c1) e : c1

[EXPRESSION DOWNCAST (REQUIRES RUNTIME CHECK)]

P ; E; ls ` e : c1 P ; E ` c2 <: c1
P ; E; ls ` (c2) e : c2

To support downcasts, SafeJava stores information on type parameters explicitly in objects
and passes the information to code requiring the information. Our technique for supporting
downcasts efficiently is based on two key observations about the nature of parameterization
in ownership types. The remainder of this section is organized as follows. Sections 4.4.1
and 4.4.2 describe the key observations that enable us to support downcasts efficiently.
Section 4.4.3 presents our technique for supporting safe downcasts.
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e ::= ... | (cn〈o1..n〉) e

Figure 4-13: Grammar Extensions to Support Runtime Casts

4.4.1 Downcasts to Types With Single Owners

A key observation that enables efficient implementation of downcasts is as follows. Consider
the code in Figure 4-14. In Line 18, object o1 of declared type Object〈thisThread〉 is downcast
to type T〈thisThread〉, where the owner of the declared type of o1 matches the owner of the
type that o1 is being downcast into. Hence, this downcast is safe iff o1 belongs to class T
at runtime. It is unnecessary to check ownership information at runtime for this downcast.

In general, for any subtype declaration where all the formal owner parameters in the subtype
are included in the supertype, it is not necessary to check ownership information at runtime
when an object is downcast from the supertype to the subtype. If the owners of the
supertype match the owners of the subtype, then the downcast will be safe iff the object
belongs to the appropriate class at runtime (e.g., Lines 18 and 24 in Figure 4-14). If the
owners do not match, the downcast will always fail (e.g., Lines 19 and 25 in Figure 4-14).

The primary benefit of this observation is that whenever an object is downcast into a type
with a single owner, it is unnecessary to check ownership information at runtime to ensure
that the downcast is safe. Since a vast majority of classes in a system with ownership types
have single owners, this implies that it is unnecessary to check ownership information at
runtime for most of the downcasts. The only classes that usually have multiple owners are
collection classes. The only times when it might be necessary to check ownership information
at runtime to ensure that the downcast is safe is when an object is downcast into a type
with multiple owners (e.g., Lines 21 and 22 in Figure 4-14).

4.4.2 Anonymous Owners

Another key observation that enables efficient implementation of downcasts is as follows.
Consider the code in Figure 4-7. The TStack class in the figure is parameterized by stack-
Owner and TOwner. However, the owner parameter stackOwner is not used in the static
scope where it is visible. Similarly, the owner parameter TOwner for class T is not used
in the body of class T. If an owner parameter is not used, it is unnecessary to name the
parameter. Our system allows programmers to use 〈-〉 for such anonymous owner param-
eters. Figure 4-15 shows grammar extensions to support anonymous owner parameters.
Figure 4-18 shows the TStack example in Figure 4-7 implemented using anonymous owners.

The primary benefit of having anonymous owners is that if an owner parameter of a class is
not named, it is unnecessary to store the owner parameter of the class at runtime, or pass
the owner parameter to code that uses the class at runtime. In a system with ownership
types, the only classes that usually have named owners are collection classes with multiple
owners. Examples include Vector〈-,elementOwner〉, Hashtable〈-,keyOwner,valueOwner〉, etc.
But most classes have single owners that are anonymous. It is unnecessary to store own-
ership information for those classes, or pass ownership information to code that uses those
classes. Thus, our system incurs a runtime space and time overhead only for code that uses
classes with named owner parameters like the collection classes. The rest of the code has
no overhead in our system.
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1 class T<stackOwner> {...}

2 class TStack <stackOwner, TOwner> {...}

3 class TStack2<stackOwner, TOwner> extends TStack<stackOwner, TOwner> {...}

4

5 Locklevel l = new;

6

7 Object<thisThread> o1, o2, o3;

8 ...

9 T<thisThread> t1;

10 T<world:l> t2;

11 ...

12 TStack<thisThread, thisThread> s1;

13 TStack<thisThread, world:l> s2;

14 ...

15 TStack2<thisThread, thisThread> q1;

16 TStack2<thisThread, world:l> q2;

17 ...

18 t1 = (T<thisThread>) o1; // Safe iff o1 belongs to class T

19 t2 = (T<world:l>) o2; // Compile time error

20 ...

21 s1 = (TStack<thisThread, thisThread>) o3; // Requires checking runtime ownership

22 s2 = (TStack<thisThread, world:l>) o3; // Requires checking runtime ownership

23 ...

24 q1 = (TStack2<thisThread, thisThread>) s1; // Safe iff s1 belongs to class TStack2

25 q2 = (TStack2<thisThread, world:l>) s1; // Compile time error

Figure 4-14: TStack Client Code With Runtime Downcasts

defn ::= ... | class cn〈- formal* 〉 extends c where constr* {level* field* meth*}

Figure 4-15: Grammar Extensions to Support Anonymous Owners

4.4.3 Preserving Ownership Information at Runtime

This section describes how SafeJava preserves ownership information at runtime for classes
and methods with named owner parameters. The previous sections presented our grammar.
Appendix 4.A at the end of this Chapter also presents the grammar, with extensions in
Figures 4-13 and 4-15. This section presents the rules for translating a SafeJava program
into an equivalent program in a Java-like language without ownership types. If we did not
have to support safe runtime downcasts, the translation process would have been simple.
We could have converted a SafeJava program into an equivalent Java-like program by simply
removing the owner parameters and the effects clauses. However, to support safe runtime
downcasts, we must preserve some ownership information in the translation process.

The core of our translation is a set of rules of the form: (T [[C]] P E) = C ′. The rule translates
a code fragment C to a code fragment C ′. P , the program being checked, is included
here to provide information about class definitions. E is an environment containing the
formal owner parameters in scope in C. The translated code uses the $Owner class shown
in Figure 4-16. The $Owner class contains two static methods that return objects that
represent the thisThread owner and the world owner respectively. The translation rules are
presented in Figure 4-17.
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1 public class $Owner {

2 public static Object WORLD(String level) { return level.intern(); }

3 public static Object THISTHREAD() { return Thread.currentThread(); }

4 }

Figure 4-16: The $Owner Class

Implementation

This section illustrates with examples how our implementation preserves ownership infor-
mation at runtime for classes and methods with named owner parameters. If a SafeJava
program is well-typed with respect to the rules for static type checking, our implementation
translates the program into an equivalent Java program. (Actually, our implementation
translates a SafeJava program into Java bytecodes directly. But for ease of presentation,
we will describe an equivalent translation into Java code.) The translation mechanism is
illustrated in Figures 4-18, 4-19, 4-20, and 4-21. Figure 4-18 shows a TStack class with
anonymous owners. Figure 4-19 shows client code that uses the TStack class. Figures 4-20
and 4-21 show the translation of the TStack code and the client code.

Classes: Classes in the translated code contain extra owner fields, one for each named
owner parameter. For example, in Figure 4-20, the translated TStack class has an extra
$TOwner field. The translated TNode class has two extra fields: $thisOwner and $TOwner.
The translated T class has no extra fields because the T class does not have any named
owner parameters.

Constructors: Constructors in the translated code contain extra owner arguments, one for
each named owner parameter of the class. The constructors in the translated code initialize
the owner fields of the class with the owner arguments of the constructor. For example, in
Figure 4-20, the constructor for TStack has an extra $TOwner argument. The constructor
initializes the $TOwner field of the TStack object from the $TOwner argument.

Allocation Sites: Allocation sites in the translated code must pass extra owner arguments
to constructors, one for each named owner parameter of the corresponding class. If the
owner is an expression that evaluates to an object, the client code passes the object to
the constructor. For example, in Figure 4-20, the push method in TStack passes the this
object as the first argument to the TNode constructor. If the owner is a formal parameter,
the client code passes the value of the formal parameter stored in one of its extra owner
fields. For example, in Figure 4-20, the push method in TStack passes the value stored
in the $TOwner field as the second argument to the TNode constructor. If the owner is
thisThread or world:l, the client code passes the object returned by $Owner.THISTHREAD()
or $Owner.WORLD("l") to the constructor. For example, in Figure 4-21, the client code
creates TStacks s1 and s2 by passing $Owner.THISTHREAD() and $Owner.WORLD("l") to
the TStack constructor respectively.

Methods: SafeJava handles parameterized methods similar to parameterized classes. It
passes owner parameters of methods explicitly as method arguments in the translated code.

Casts: Casts in the translated code not only check that the Java types match, but also
that the owners match. For example, in Figure 4-21, in Line 15, the translated code not
only checks that o1 is of Java type TStack, but also checks that the owner of the T elements
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(T [[P ]]) = (T [[defn* e]])
= (T [[defn]] P )* (T [[e]] P ∅)

(T [[defn]] P ) = (T [[class cn〈f1..n〉 extends cn′〈o1..n′ 〉 where constr* {level* field* meth*}]] P )
= class cn extends cn′ {Object $f1..n (T [[field ]] P [f1..n])* (T [[method ]] P [f1..n])*}

(T [[defn]] P ) = (T [[class cn〈- f2..n〉 extends cn′〈o1..n′ 〉 where constr* {level* field* meth*}]] P )
= class cn extends cn′ {Object $f2..n (T [[field ]] P [f2..n])* (T [[method ]] P [f2..n])*}

(T [[meth]] P E) = (T [[t mn〈f1..n〉(arg* ) requires (x* ) locks (cn.l* [x ]opt) where constr* {e}]] P E)
= (T [[t]] P E) mn (Object $f1 ... Object $fn (T [[arg]] P E)*) {(T [[e]] P E)}

(T [[field ]] P E) = (T [[[final]opt t fd = e]] P E)
= [final]opt (T [[t]] P E) fd = (T [[e]] P E)

(T [[arg]] P E) = (T [[[final]opt t fd ]] P E)
= [final]opt (T [[t]] P E) fd

(T [[t]] P E) = (T [[cn〈owner+〉]] P E)
= cn

(T [[t]] P E) = (T [[int]] P E)
= int

(T [[e]] P E) = (T [[(cn〈o1..n〉) e]] P E)
= {$temp = (cn) (T [[e]] P E);

if ($temp.$f2 != (O[[o2]] P E)) throw new ClassCastException;
...;
if ($temp.$fn != (O[[on]] P E)) throw new ClassCastException;
$temp}

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f1 = (O[[o1]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}
where (class cn〈f1..n〉 ...) ∈ P

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f2 = (O[[o2]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}
where (class cn〈- f2..n〉 ...) ∈ P

(T [[e]] P E) = (T [[e1.mn〈o1..n〉(e*)]] P E)
= (T [[e1]] P E).mn((O[[o1]] P E) ... (O[[on]] P E) (T [[e]] P E)*)

(O[[o]] P E) = (O[[thisThread]] P E) = $Owner.THISTHREAD()
(O[[o]] P E) = (O[[world:cn.l ]] P E) = $Owner.WORLD("cn.l")
(O[[o]] P E) = (O[[this]] P E) = this
(O[[o]] P E) = (O[[f ]] P [... f ...]) = $f

(T [[e]] P E) = (T [[x]] P E) = x
(T [[e]] P E) = (T [[x = e]] P E) = x = (T [[e]] P E)
(T [[e]] P E) = (T [[let (arg=e1) in {e}]] P E) = let (arg=(T [[e1]] P E)) in {(T [[e]] P E[arg])}
(T [[e]] P E) = (T [[e.fd ]] P E) = (T [[e]] P E).fd
(T [[e]] P E) = (T [[e1.fd = e]] P E) = (T [[e1]] P E).fd = (T [[e]] P E)
(T [[e]] P E) = (T [[synchronized (x) in {e}]] P E) = synchronized ((T [[x]] P E)) in {(T [[e]] P E)}
(T [[e]] P E) = (T [[fork (x*) {e}]] P E) = fork (x*) {(T [[e]] P E)}

Figure 4-17: Translation Function
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1 class TStack<-, TOwner> {

2

3 TNode<this, TOwner> head = null;

4

5 TStack() {}

6 void push(T<TOwner> value) requires (this) {

7 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head);

8 head = newNode;

9 }

10 T<TOwner> pop() requires (this) {

11 T<TOwner> value = head.value(); head = head.next(); return value;

12 }

13 }

14

15 class TNode<thisOwner, TOwner> {

16

17 T<TOwner> value; TNode<thisOwner, TOwner> next;

18

19 TNode(T<TOwner> v, TNode<thisOwner, TOwner> n) requires (this) {

20 this.value = v; this.next = n;

21 }

22 T<TOwner> value() requires (this) { return value; }

23 TNode<thisOwner, TOwner> next() requires (this) { return next; }

24 }

25

26 class T<-> { int x=0; }

Figure 4-18: TStack With Anonymous Owners

1 class T<-> {...}

2 class TStack<-, TOwner> {...}

3 class TStack2<-, TOwner> extends TStack<-, TOwner> {...}

4 Locklevel l = new;

5 Object<thisThread> o1;

6 Object<thisThread> o2;

7 ...

8 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;

9 TStack<thisThread, world:l> s2 = new TStack<thisThread, world:l>;

10 ...

11 TStack2<thisThread, thisThread> q1;

12 TStack2<thisThread, world:l> q2;

13 ...

14 s1 = (TStack<thisThread, thisThread>) o1;

15 s2 = (TStack<thisThread, world:l>) o2;

16 ...

17 q1 = (TStack2<thisThread, thisThread>) s1;

18 q2 = (TStack2<thisThread, world:l>) s2;

19 ...

20 boolean b1 = (o1 instanceof TStack<thisThread, thisThread>);

21 boolean b2 = (o2 instanceof TStack<thisThread, world:l>);

Figure 4-19: Client Code for TStack
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1 class TStack {

2 Object $TOwner;

3 TNode head = null;

4

5 TStack(Object $TOwner) { this.$TOwner = $TOwner; }

6 void push(T value) {

7 TNode newNode = new TNode(this, $TOwner, value, head);

8 head = newNode;

9 }

10 T pop() {

11 T value = head.value(); head = head.next(); return value;

12 }

13 }

14

15 class TNode {

16 Object $thisOwner, $TOwner;

17 T value; TNode next;

18

19 TNode(Object $thisOwner, Object $TOwner, T v, TNode n) {

20 this.$thisOwner = $thisOwner; this.$TOwner = $TOwner;

this.value = v; this.next = n;

21 }

22 T value() { return value; }

23 TNode next() { return next; }

24 }

25

26 class T { int x=0; }

Figure 4-20: Translation of TStack in Figure 4-18

1 class T {...}

2 class TStack {...}

3 class TStack2 extends TStack {...}

4

5 Object o1;

6 Object o2;

7 ...

8 TStack s1 = new TStack($Owner.THISTHREAD());

9 TStack s2 = new TStack($Owner.WORLD("l"));

10 ...

11 TStack2 q1;

12 TStack2 q2;

13 ...

14 s1 = (TStack) o1;

if (s1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();

15 s2 = (TStack) o2;

if (s2.$TOwner != $Owner.WORLD("l")) throw new ClassCastException();

16 ...

17 q1 = (TStack2) s1;

if (q1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();

18 q2 = (TStack2) s2;

if (q2.$TOwner != $Owner.WORLD("l")) throw new ClassCastException();

19 ...

20 boolean b1 = (o1 instanceof TStack) && (((TStack) o1).$TOwner == $Owner.THISTHREAD());

21 boolean b2 = (o2 instanceof TStack) && (((TStack) o2).$TOwner == $Owner.WORLD("l"));

Figure 4-21: Translation of TStack Client Code in Figure 4-19
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1 class A<oa1, oa2> {...};

2 class B<ob1, ob2, ob3> extends A<ob1, ob3> {...};

3

4 class C<oc1> {

5 void m(B<this, oc1, thisThread> b) {

6 A a1;

7 B b1;

8 b1 = b;

9 a1 = b1;

10 }}

Figure 4-22: Incompletely Typed Method

in the TStack is thisThread. In Line 16, the translated code not only checks that o2 is of
Java type TStack, but also checks that the owner of the T elements in the TStack is world:l.

InstanceOf: The instanceof operation in the translated code returns true iff the Java types
match and the owners match. For example, in Figure 4-21, in Line 20, instanceof returns true
iff o1 is of Java type TStack and the owner of the T elements in the TStack is thisThread.
In Line 21, instanceof returns true iff o2 is of Java type TStack and the owner of the T
elements in the TStack is self.

Arrays: The technique described here does not support safe runtime downcasts to array
types. This is because we cannot add extra owner fields to array objects in the trans-
lated code and yet remain JVM-compatible. If a programmer wants to downcast from
java.lang.Object to an array type in our system, the programmer can create a wrapper
object that contains the array object and perform the downcast on the wrapper object.

4.5 Type Inference

Although SafeJava is explicitly typed in principle, it would be onerous to fully annotate
every program with the extra type information that SafeJava requires compared to Java.
Instead, SafeJava uses a combination of inference and well-chosen defaults to significantly
reduce the number of annotations needed in practice. We emphasize that the SafeJava
approach to inference is purely intraprocedural and it does not infer method signatures or
types of instance variables. Rather, it uses a default completion of partial type specifications
in those cases. This approach permits separate compilation.

4.5.1 Intraprocedural Type Inference

In SafeJava, it is usually unnecessary to explicitly augment the types of method-local vari-
ables with their owner parameters. A simple inference algorithm can automatically deduce
the owner parameters for otherwise well-typed programs. We illustrate our algorithm with
an example. Figure 4-22 shows a class hierarchy and an incompletely-typed method m.
The types of local variables a1 and b1 inside m do not contain their owner parameters
explicitly. The inference algorithm works by first augmenting such incomplete types with
the appropriate number of distinct, unknown owner parameters. For example, since a1 is
of type A, the algorithm augments the type of a1 with two owner parameters. Figure 4-23
shows augmented types for the example in Figure 4-22. The goal of the inference algorithm
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6 A<x1, x2> a1;

7 B<x3, x4, x5> b1;

Statement 8 ==> x3 = this, x4 = oc1, x5 = thisThread

Statement 9 ==> x1 = x3, x2 = x5

Figure 4-23: Types Augmented With Unknown Owners and Constraints on Owners

is to find known owner parameters that can be used in place of the unknown parameters
such that the program becomes well-typed.

The inference algorithm treats the body of the method as a bag of statements. The al-
gorithm works by collecting constraints on the owner parameters for each assignment or
function invocation in the method body. Figure 4-23 shows the constraints imposed by
Statements 8 and 9 in the example in Figure 4-22. Note that all the constraints are of
the form of equality between two owner parameters. Consequently, the constraints can be
solved using the standard Union-Find algorithm in almost linear time [45]. If the solution
is inconsistent, that is, if any two known owner parameters are constrained to be equal to
one another by the solution, then the inference algorithm returns an error and the program
does not type check. Otherwise, if the solution is incomplete, that is, if there is no known
parameter that is equal to an unknown parameter, then the algorithm replaces all such
unknown parameters with thisThread.

4.5.2 Default Types

In addition to supporting intraprocedural type inference, SafeJava provides well-chosen
defaults to reduce the number of annotations needed in many common cases. SafeJava also
allows user-defined defaults to cover specific sharing patterns that might occur in user code.
The following are some default types SafeJava currently provides.

If a programmer declares a class to be default-single-threaded, SafeJava adds the following
default type annotations wherever they are not explicitly specified by the programmer. If
the type of any instance variable in the class or any method argument or return value is
not explicitly parameterized, SafeJava augments the type with an appropriate number of
thisThread owner parameters. If a method in the class does not contain a requires or locks
clause, SafeJava adds an empty requires or locks clause to the method. With these default
types, single-threaded programs require no extra type annotations.

If a programmer declares a class to be default-self-synchronized, SafeJava adds the following
default type annotations wherever they are not explicitly specified by the programmer. If
the type of any instance variable is not explicitly parameterized, SafeJava augments the
type with an appropriate number of this owner parameters. If the type of any method
argument or return value is not explicitly parameterized, SafeJava augments the type with
fresh formal owner parameters. If a method in the class does not contain a requires clause,
SafeJava adds a requires clause that contains all the method arguments. If a method in the
class does not contain a locks clause, SafeJava adds a locks(this) clause. With these default
types, many self-synchronized classes require almost no extra type annotations.
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defn ::= ... |
class cn〈thisThread formal* 〉 extends c where constr* {level* field* meth*} |
class cn〈world〉 extends c where constr* {level* field* meth*}

Figure 4-24: Grammar Extensions to Support Self-Synchrinized and Thread-Local Classes

1 class SharedAccount<world:SharedAccount.l> {

2 LockLevel l = new;

3 int balance = 0;

4 int balance() requires () locks(l) { synchronized (this) { return balance; } }

5 void deposit(int x) requires () locks(l) { synchronized (this) { balance += x; } }

6 void withdraw(int x) requires () locks(l) { synchronized (this) { balance -= x; } }

7 }

8

9 SharedAccount<world:SharedAccount.l> a = new SharedAccount<world:SharedAccount.l>;

10 fork (a) { a.deposit(10); }

11 fork (a) { a.deposit(10); }

Figure 4-25: Self-Synchronized Account

4.6 Extensions for Preventing Data Races

This section presents extensions to our basic race-free type system to make it more expres-
sive.

4.6.1 Self-Synchronized Classes

Sometimes, programmers want to specify in a class declaration that instances of the class
are always protected by their own locks. Consider, for example, a SharedAccount class in
Figure 4-25 where the deposit method is synchronized, so that the callers of the deposit
method do not have to acquire any locks. If a SharedAccount object was owned by some
other object, then it would have been necessary to hold the lock on the root owner of the
SharedAccount object to access the SharedAccount object. This is because some other thread
might acquire the lock on the root owner and access the balance field of the SharedAccount
object directly. Thus, the deposit method with the empty requires clause type checks only
if the SharedAccount class is declared to be always owned by world. To enable this, SafeJava
allows the first parameter in a class declaration to be world. This feature lets us implement
self-synchronized classes in SafeJava. Figures 4-12 and 4-25 show examples.

Note that it is highly unusual to have a type system where a constant value is used instead
of a formal parameter. But it is necessary in our case because the first parameter in our
system is special, in that it owns the this object.

4.6.2 Thread-Local Classes

SafeJava also allows the first parameter in a class declaration to be thisThread. Such a
class can only be instantiated with thisThread as the first owner. All instances of such
classes would be thread-local. Figure 4-24 presents grammar extensions to support self-
synchronized classes and thread-local classes.
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owner ::= formal | this | world | thisThread | efinal.lock

Figure 4-26: Grammar Extensions to Support Objects Protected by Arbitrary Locks

1 class Data<f> { int x = 0; int get reads(this) {return x;} }

2 Locklevel l = new;

3 final DataLock<world:l> dl = new DataLock;

4

5 Data<dl.lock> data;

6 fork(data,dl) { synchronized (dl) { data.get(); } }

7 fork(data,dl) { synchronized (dl) { data.get(); } }

Figure 4-27: Object Protected by an Arbitrary Lock

4.6.3 Objects Protected By Arbitrary Locks

In type system we described so far, every (unencapsulated) object owned by world is pro-
tected by its own lock (Property SJ9 in Figure 4-2). We chose this as a default because
it matches the common programming practice in Java. However, programmers sometimes
want to protect an unencapsulated object by an arbitrary lock. To support this, SafeJava
allows the owner of an object o to be instantiated by e.lock. It means that the object o
is owned by world but is protected by the lock on object e. Figure 4-26 presents grammar
extensions to support this. e must be a final expression owed by world. A final expression
is either a final variable, or a field e′.f d where e′ is a final expression and fd is a final field.
Figure 4-27 shows an unencapsulated object data is protected by an arbitrary lock dl.

4.6.4 Objects With Unique Pointers

We did not discuss unique pointers in this chapter for clarity of presentation of the key
ideas. But as we presented in Section 3.3 of Chapter 2, SafeJava supports objects with
unique pointers. If a thread has a unique (external) pointer to an object, SafeJava allows
the thread to read or write the object without any synchronization.

Issues Related to the Java Memory Model

Note that synchronization operations in Java are used not just for mutual exclusion, but
also to enforce visibility in multiprocessor machines [117]. Therefore, if Thread 1 creates or
updates an object x and passes the unique reference to x to Thread 2 without using syn-
chronization, then updates made by Thread 1 are not guaranteed to be visible to Thread 2.
But this is not a problem in SafeJava because the only way Thread 1 can pass the unique
reference to x to Thread 2 is by writing the unique reference into a shared data structure
that can be subsequently read by Thread 2. But since the shared data structure can only be
accessed with synchronization, the updates made by Thread 1 will be visible to Thread 2.

4.6.5 Immutable Objects

As described in Sections 3.4 and 3.1, SafeJava supports immutable objects and reads/writes
clauses. SafeJava allows a thread to read an immutable object without synchronization.
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formal ::= f | world:v
locklevel ::= cn.l | v

constr ::= ... | (locklevel > locklevel)*
locksclause ::= locks (locklevel* [lock ]opt)

v ∈ formal lock level names

Figure 4-28: Grammar Extensions to Support Lock Level Polymorphism

1 class Stack<world:v, elementOwner> where (v > Vector.l) {

2 Vector<world:Vector.l, elementOwner> vec = new Vector;

3 ...

4 int size() locks(this) {

5 synchronized (this) { return vec.size(); }

6 }}

Figure 4-29: Self-Synchronized Stack Implemented Using Vector

4.7 Extensions for Preventing Deadlocks

This section presents extensions our basic deadlock-free type system to make it more ex-
pressive.

4.7.1 Lock Level Polymorphism

This section describes how our type system supports polymorphism in lock levels. In the
type system described in Section 4.2, the level of each lock is known at compile-time. But
programmers sometimes want to write code where the exact levels of some locks are not
known statically—only some ordering constraints among the unknown lock levels are known
statically. Lock level polymorphism enables this kind of programming. Figure 4-28 shows
the grammar extensions to support lock level polymorphism. Programmers can parame-
terize classes with formal lock level parameters in addition to formal owner parameters.
Programmers can specify ordering constraints among the lock level parameters using where
clauses. Figure 4-29 shows part of a self-synchronized Stack implemented using the self-
synchronized Vector in Figure 4-12. The lock level of the this Stack object is a formal
parameter v. The where clause constrains v to be greater than Vector.l. It is therefore legal
for the synchronized Stack.size method to call the synchronized Vector.size method. The
type checker verifies that the program acquires the locks in the descending order.

4.7.2 Condition Variables

This section describes how SafeJava prevents deadlocks in the presence of condition vari-
ables. Java provides condition variables in the form of wait and notify methods on Object.
Since a thread can wait on a condition variable as well as on a lock, it is possible to have a
deadlock that involves condition variables as well as locks. There is no simple rule like the
ordering rule for locks that can avoid this kind of deadlock. The lock ordering rule depends
on the fact that a thread must be holding a lock to keep another thread waiting for that
lock. In the case of conditions, the thread that will notify cannot be distinguished in such
a simple way.
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locksclause ::= locks ([∞]opt locklevel* [lock ]opt)

e ::= ... | e.wait | e.notify

Figure 4-30: Grammar Extensions to Support Condition Variables

field ::= [final]opt [tree]opt t fd = e

Figure 4-31: Grammar Extensions to Support Tree Ordering

Figure 4-30 shows the grammar extensions to support condition variables. The expression
e.wait and e.notify are similar to the wait and notifyAll methods in Java. e must be a final
expression that evaluates to an object, and the current thread must hold the lock on e. On
executing wait, the current thread releases the lock on e and suspends itself. The thread
resumes execution when some other thread invokes notify on the same object. The thread
re-acquires the lock on e before resuming execution after wait.

To prevent deadlocks in the presence of condition variables, SafeJava enforces the following
constraint. A thread can invoke e.wait only if the thread holds no locks other than the
lock on e. Since a thread releases the lock on e on executing e.wait, the above constraint
implies that any thread that is waiting on a condition variable holds no locks. This in turn
implies that there cannot be a deadlock that involves a condition variable. To statically
verify that a program respects the above constraint, SafeJava requires that any method m
that contains a call to e.wait must have a locks (∞) clause or a locks (∞ e) clause. The
former locks clause indicates that a thread holds no locks when it invokes m, while the later
locks clause indicates that a thread can only hold the lock on e when it invokes m. Within
the method, SafeJava ensures when type checking e.wait that the lock set only contains the
lock on e. The rules for type checking are shown below.

[EXP WAIT]

E = E1, locks(∞ [e]opt), E2 P ; E `final e ls = {e}
P ; E; ls; lmin ` e.wait : int

[EXP NOTIFY]

P ; E `final e e ∈ ls
P ; E; ls; lmin ` e.notify : int

4.7.3 Tree-Based Partial Orders

This section describes how SafeJava supports tree-based partial orders. Figure 4-31 shows
the grammar extensions to support tree-based partial orders. Programmers can declare
fields in objects to be tree fields. If object x has a tree field fd that contains a pointer to
object y, we say that there is a tree edge fd from x to y. x is the parent of y and y is a
child of x. SafeJava ensures that the graph induced by the set of all tree edges in the heap
is indeed a forest of trees. Any data structure that has a tree backbone can be used to
describe the partial order in our system. This includes doubly linked lists, trees with parent
pointers, threaded trees, and balanced search trees.

Locks that belong to the same lock level are further ordered according to the tree order.
Suppose x and y are two locks (that is, they are objects that are owned by world) that
belong to the same lock level. Suppose a thread t holds the lock on x and reads a tree field
fd of x to get a pointer to y. So y is a child of x. SafeJava then allows thread t to also
acquire the lock on y while holding the lock on x. Note that as long as t holds the lock
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1 class BalancedTree {

2 LockLevel l = new;

3 Node<world:l> root = new Node;

4 }

5 class Node<world:k> {

6 tree Node<world:k> left, right;

7

8 // this this

9 // / \ / \

10 // ... x ... v

11 // / \ --> / \

12 // v y u x

13 // / \ / \

14 // u w w y

15

16 synchronized void rotateRight() locks(this) {

17 final Node x = this.right; if (x == null) return;

18 synchronized (x) {

19 final Node v = x.left; if (v == null) return;

20 synchronized (v) {

21 final Node w = v.right;

22 v.right = null;

23 x.left = w;

24 this.right = v;

25 v.right = x;

26 }}} ...

27 }

Figure 4-32: Balanced Tree

on x, no other thread can modify x, so no other thread can make y not a child of x. The
type checking rule is shown below, assuming that for every pair of final variables x and y,
environment E contains information about whether the objects x and y are related by tree
edges.

[EXP SYNC CHILD]

∀y∈ls P ; E ` (level(y) > lmin) ∨ (y is an ancestor of x)

x′ ∈ ls P ; E ` x is a child of x′ P ; E ` level(x) = level(x′) = lmin

P ; E; ls, x; lmin ` e : t
P ; E; ls; lmin ` synchronized x in e : t

Figure 4-32 presents an example with a tree-based partial order. The Node class is self-
synchronized, that is, the this Node object is owned by world. The lock level of the this Node
object is the formal parameter k. A Node has two tree fields left and right. The Nodes left
and right own themselves and also belong to lock level k. Nodes left and right are therefore
ordered less than the this Node object in the partial order. In the example, the rotateRight
method acquires the locks on Nodes this, x, and v in the tree order.

SafeJava allows a limited set of mutations on trees at runtime. The type checker uses a
simple intraprocedural intra-loop flow-sensitive analysis to check that the mutations do not
introduce cycles in the trees. We illustrate our flow-sensitive analysis using the example
in Figure 4-32. The type checker keeps the following additional information in the envi-
ronment E for every pair of final variables x and y: 1) If the objects x and y are related
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Stmt # Information in Environment After Checking That
Statement in Figure 4-32

21 x=this.right, v=x.left, w=v.right
22 x=this.right, v=x.left w is Root (this, x, v) not in Tree(w)
23 x=this.right, w=x.left v is Root (this, x, w) not in Tree(v)
24 v=this.right, w=x.left x is Root (this, v) not in Tree(x)
25 v=this.right, w=x.left, x=v.right

Figure 4-33: Illustration of Flow-Sensitive Analysis

field ::= [final]opt [tree]opt t fd = e | final dag t fd = e

Figure 4-34: Grammar Extensions to Support DAG Ordering

by a tree edge, 2) If x is the root of a tree, and 3) If x is a root and y is not in the tree
rooted at x. Figure 4-33 contains the information stored in the environment after the type
checking of various statements in the rotateRight method in Figure 4-32. Since the analysis
is flow-sensitive, the environment changes after checking each statement.

The rules for mutating a tree are as follows. Deleting a tree edge (for example, setting a
tree field to null or over-writing a tree field) requires no extra checking. A tree edge from
x to x′ may be added only if x′ is the root of a tree and x is not in the tree rooted at x′.
The rule is shown below. Note that if x′ is a unique pointer to an object (for example, x′ is
newly created), then x′ is trivially a root. Similarly, if a local variable x contains a unique
pointer, then x cannot be in the tree rooted at x′.

[EXP TREE ASSIGN]

P ` (tree t fd) ∈ cn〈f1..n〉 P ; E; ls; lmin ` x : cn〈o1..n〉 P ; E ` RootOwner(x) = r r ∈ ls

P ; E; ls; lmin ` x′ : t[x/this][o1/f1]..[on/fn]

P ; E ` x′ is Root P ; E ` x not in Tree(x′)
P ; E; ls; lmin ` x.fd = x′ : t[x/this][o1/f1]..[on/fn]

4.7.4 DAG-Based Partial Orders

SafeJava also allows programmers to use directed acyclic graphs (DAGs) to describe the
partial order. Figure 4-34 shows the grammar extensions to support DAG-based partial
orders. Programmers can declare fields in objects to be dag fields. SafeJava ensures that
no object can be both part of a tree and part of a DAG. Locks that belong to the same
lock level are further ordered according to the DAG-order. DAGs used for partial orders
are monotonic. DAG fields cannot be modified once initialized. Only newly created nodes
may be added to a DAG by initializing the newly created nodes to contain DAG edges to
existing DAG nodes. The rule is shown below.

[EXP DAG ASSIGN]

P ; E; ls; lmin ` x : cn〈o1..n〉 P ` (dag t fd) ∈ cn〈f1..n〉 P ; E ` RootOwner(x) = r r ∈ ls

P ; E; ls; lmin ` x′ : t[x/this][o1/f1]..[on/fn]

P ; E ` x is newly created
P ; E; ls; lmin ` x.fd = x′ : t[x/this][o1/f1]..[on/fn]
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defn ::= class cn〈formal+〉 defn′ | class cn〈- formal* 〉 defn′ |
class cn〈thisThread formal* 〉 defn′ | class cn〈world〉 defn′

defn′ ::= extends c [implements Dynamic]opt where constr* {level* field* meth*}

e ::= ... | synchronized (x+) in {e}

Figure 4-35: Grammar Extensions to Support Runtime Ordering

1 class Account implements Dynamic {

2 int balance = 0;

3

4 int balance() requires (this) { return balance; }

5 void deposit(int x) requires (this) { balance += x; }

6 void withdraw(int x) requires (this) { balance -= x; }

7 }

8

9 void transfer(Account<world:v> a1, Account<world:v> a2, int x) locks(v) {

10 synchronized (a1, a2) { a1.withdraw(x); a2.deposit(x); }

11 }

Figure 4-36: Runtime Ordered Accounts

4.7.5 Runtime Ordering of Locks

In the type system we described so far, the partial order between locks is known statically.
However, programmers sometimes want to write code where the order cannot be determined
statically. For example, consider a transfer method that receives two self-synchronized Ac-
count objects a1 and a2. The transfer method acquires the locks on a1 and a2 and transfers
money from a1 to a2. But the ordering between a1 and a2 may not be known statically
within the transfer method. To avoid deadlocks in such programs, SafeJava supports im-
posing an arbitrary linear order at runtime on a group of unordered locks. SafeJava also
provides a primitive to acquire such locks in the linear order.

Figure 4-35 shows the grammar extensions to support runtime ordering of locks. Program-
mers can declare a class to be a subtype of Dynamic. Objects of such classes cannot contain
tree or dag edges to other objects. The SafeJava runtime imposes an arbitrary linear order
on Dynamic objects by assigning a unique id to each of them. The runtime stores the unique
id in every Dynamic object.

Locks of type Dynamic that belong to the same lock level are further ordered based on
the linear order. SafeJava provides a primitive to acquire multiple Dynamic locks of the
same lock level: synchronized(l1, ..., ln). To prevent deadlocks, the runtime sorts the locks
l1...ln based on the linear order and acquires the locks in the sorted order.3 For example,
in Figure 4-36, the locks a1 and a2 are of type Dynamic and belong to the same lock level.
The synchronized statement acquires the locks in the linear order and thus avoids causing
deadlocks.

3Our implementation of this feature runs on regular JVMs. We translate a synchronized statement with
multiple locks into code that acquires the locks individually in the linear order. We also translate the code
in constructors of Dynamic objects to store the unique ids in the objects.
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Program Lines of Code Lines Changed
Multithreaded Server Programs

SMTP 2105 46
POP3 Mail 1364 31
elevator 0523 15
http 0563 26
chat 0308 22
stock quote 0242 12
game 0087 11
phone 0302 10

Collection Classes
java.util.Vector 0992 35
java.util.ArrayList 0533 18
java.util.Hashtable 1011 53
java.util.HashMap 0852 46

Other Library Classes
java.io.PrintStream 568 14
java.io.FilterOutputStream 148 05
java.io.OutputStream 134 03
java.io.BufferedWriter 253 09
java.io.OutputStreamWriter 266 11
java.io.Writer 177 06

Figure 4-37: Programming Overhead

4.8 Programming Experience

We have a prototype implementation of our type system. Our implementation is JVM-
compatible. It translates well-typed programs into bytecodes that can run on regular JVMs.

One of the challenges in designing an effective type system is to make it expressive enough to
support common programming paradigms. To gain preliminary experience, we implemented
a number of Java programs in SafeJava including several classes from the Java libraries.
We also implemented some multithreaded server programs including an SMTP server from
apache, a POP3 Mail server from Apache, elevator, a real time discrete event simulator [133,
38], an http server, a chat server, a stock quote server, a game server, and phone, a database-
backed information sever. These programs exhibit a variety of sharing patterns. We found
that SafeJava is expressive enough to support the above-mentioned programs. In each case,
once we determined the sharing pattern of the program, adding the extra type annotations
was fairly straight-forward.

Figure 4-37 shows the lines of code that needed explicit type annotations for some of the
programs we implemented in SafeJava. As described in Section 4.5.1, SafeJava infers the
owner parameters of method-local variables. Moreover, the defaults provided by the system
(described in Section 4.5.2) are sufficient in most cases. On average, we had to annotate
about one in thirty lines of code.

In our experience, we found that threads rarely need to hold multiple locks at the same
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time. In cases where they do, the threads usually acquire the multiple locks as they cross
abstraction boundaries. For example, in elevator, threads acquire the lock on a Floor object
and then invoke synchronized methods on a Vector object. Even though such programs use
an unbounded number of locks, these locks can be classified into a small number of lock
levels. These programs are therefore easily expressed in SafeJava.

We also note that in cases where threads do hold multiple locks simultaneously, it is usu-
ally because of conservative programming. For example, in the PrintStream class in Sun’s
implementation, the print(String) method acquires the lock on the PrintStream object and
then calls a method that acquires the lock on a BufferedWriter object contained within
the PrintStream object. Acquiring the second lock is unnecessary and our implementation
avoids this. As another example, in the elevator example mentioned above, the Vector ob-
ject is contained within the Floor object. Acquiring the lock on the Vector object is thus
unnecessary. In fact, programmers can use an ArrayList instead of a Vector.

The reason many Java programs are conservative is because there is no mechanism in
Java to prevent data races or deadlocks. For example, Java programs that use ArrayLists
risk data races because ArrayLists may be accessed without appropriate synchronization in
shared contexts. But because SafeJava guarantees data race freedom and deadlock freedom,
programmers can employ aggressive locking disciplines without sacrificing safety.

Limitations

Our experience suggests that SafeJava is sufficiently expressive to accommodate the com-
monly used synchronization patterns. However, we did encounter the following limitations.

Static Variables:
Java has global (static) variables that are accessible to all threads. If a program accesses
static variables without synchronization, SafeJava cannot verify that this will not lead to
data races. Therefore, in SafeJava, a thread can access a static variable only when it holds
the lock on the Java class that contains the static variable.

Multithreaded Scientific Programs:
We looked at some scientific programs like barnes and water from the SPLASH-2 benchmark
set [136]. These programs proceed through phases that are separated by barriers. Within
each phase, there are unsynchronized accesses to disjoint elements of the same array by
different threads. SafeJava does not support these synchronization patterns. To accommo-
date such programs, a type system would have to provide a way for expressing temporal
properties—like the fact that two consecutive phases in the program do not overlap in time.

4.9 Related Work

There has been much research on approaches to detect or prevent data races and deadlocks
in multithreaded programs.

Static Tools:
Tools like Warlock [127] and Sema [92] use annotations supplied by programmers to stati-
cally detect potential data races and deadlocks in a program. The Extended Static Checker
for Java (ESC/Java) [57] is another annotation based system that uses a theorem prover
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to statically detect many kinds of errors including data races and deadlocks. [63] assumes
bugs to be deviant behavior to statically extract and check correctness conditions that a
system must obey without requiring programmer annotations. While these tools are useful
in practice, they are not sound, in that they do not certify that a program is race-free or
deadlock-free. For example, ESC/Java does not always verify that a partial order of locks
declared in a program is indeed a partial order.

Dynamic Tools:
There are many systems that detect data races and deadlocks dynamically. These include
systems developed in the scientific parallel programming community [59, 35], tools like
Eraser [123], and tools for detecting data races in Java programs [133, 38]. Eraser dy-
namically monitors all lock acquisitions to test whether a linear order exists among the
locks that is respected by every thread. Dynamic tools have the advantage that they can
check unannotated programs. However, they are not comprehensive—they may fail to de-
tect certain errors due to insufficient test coverage. Besides, annotated programs are easier
to understand and maintain because they explicitly contain the design decisions made by
programmers.

Language Mechanisms:
To our knowledge, Concurrent Pascal is the first race-free programming language [31].
Programs in Concurrent Pascal use synchronized monitors to prevent data races. But
monitors in Concurrent Pascal are restricted in that threads can share data with monitors
only by copying the data. A thread cannot pass a pointer to an object to a monitor.

More recently, researchers have proposed type systems for object-oriented programs that
guarantee that any well-typed program is free of data races [68, 66, 67, 11]. The work on
Race Free Java [68] is closest to ours. Race Free Java extends the static annotations in
Esc/Java into a formal type system. It also supports the use of thread-local objects by
providing thread-local classes. Instances of thread-local classes need no synchronization.
SafeJava builds on this by letting programmers write generic code to implement a class,
and create different objects of the same class that have different protection mechanisms.
For example, in SafeJava, programmers can write a generic Queue implementation, then
create Queue objects that have different protection mechanisms. These different objects
could include thread-local Queue objects, shared Queue objects, Queue objects contained
within other enclosing data structures, Queue objects containing thread-local items, Queue
objects containing shared items, and Queue objects containing items enclosed within other
data structures. In Race Free Java, one needed a different Queue implementation to support
each of the above cases. Race Free Java also does not support objects with unique pointers
or immutable objects that can be accessed without synchronization.

Guava [11] is another dialect of Java for preventing data races. It allows programmers
to access objects without synchronization in many common cases where the absence of
synchronization does not lead to data races. Guava splits the class hierarchy into three
distinct sub-hierarchies. Instances of Monitor classes are self-synchronized shared objects
that correspond to the roots of ownership trees in our system. Instances of Object classes are
either thread-local or contained within some Monitor. These instances correspond to objects
that are either owned by thisThread or by some other object in our system. Instances of
Value classes are somewhat analogous to objects with unique pointers in our system. Again,
the primary difference between the Guava approach and our approach is that our system
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lets programmers to write generic code, then create objects that have different protection
mechanisms from the same generic code.

None of the above type systems prevent deadlocks. SafeJava statically prevents both data
races and deadlocks in multithreaded programs.

Synchronization Removal:
There has been a lot of work recently on compiler analysis techniques to eliminate unnec-
essary synchronizations [5, 15, 16, 37, 119, 135]. In SafeJava, the natural way to implement
most library classes (like a Hashtable, for example) is to require external synchronization.
This has the effect of moving synchronization operations up the call chain. This in turn
helps programmers structure their programs such that locks are acquired only when neces-
sary. Syntactic sugar can be provided to make it more convenient to acquire the lock on an
object before invoking a method on it. Thus, SafeJava provides an alternate way to reduce
the number of unnecessary synchronization operations in a program without risking data
races.

Message Passing Systems:
There are several systems that statically check for data races and deadlocks in message
passing systems [88, 34]. These systems, however, use a different programming model. For
example, programs in these systems do not access shared objects in a heap.

4.10 Conclusions

Multithreaded programming is difficult and error prone. This chapter describes how Safe-
Java statically prevents data races and deadlocks in multithreaded programs. SafeJava
combines object encapsulation and safe multithreading in a unified type system framework.

To prevent data races, programmers associate every object with a protection mechanism that
ensures that accesses to the object never create data races. The SafeJava type system for
preventing data races is significantly more expressive than previous proposed type systems.
In particular, it lets programmers write generic code to implement a class, then create
different objects from the same class that have different protection mechanisms.

To prevent deadlocks, SafeJava allows programmers to partition the locks into a fixed num-
ber of lock levels and specify a partial order among the lock levels. SafeJava also allows
programmers to use recursive tree-based data structures to further order locks within a
given lock level. SafeJava statically verifies that mutations to trees used for describing the
partial order do not introduce cycles in the partial order, and that the changing of the
partial order does not lead to deadlocks. We do not know of any other sound static system
for preventing deadlocks that allows changes to the partial order at runtime.

SafeJava uses an efficient mechanism for supporting safe runtime downcasts.

SafeJava provides type inference and default types that significantly reduce the burden of
writing the extra type annotations. In particular, single-threaded programs require almost
no programming overhead.

We implemented several multithreaded Java programs in our system. Our experience in-
dicates that SafeJava is sufficiently expressive to express common sharing patterns and
requires little programming overhead.
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4.A Rules for Type Checking

This section formally presents our basic type system for preventing data races and deadlocks.
It builds on the type system presented in Appendix 2.A at the end of Chapter 2. The
grammar for the type system is shown below.

P ::= defn* e
defn ::= class cn〈formal+〉 extends c where constr* {level* field* meth*}

c ::= cn〈owner+〉 | Object〈owner〉
owner ::= formal | this | world:cn.l | thisThread
constr ::= (owner º owner) | (owner 6º owner)

level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*
meth ::= t mn〈formal* 〉(arg* ) requires (x* ) locks (cn.l* [x ]opt) where constr* {e}
field ::= [final]opt t fd = e
arg ::= [final]opt t x

t ::= c | int
formal ::= f

e ::= new c | x | x = e | let (arg=e) in {e} | e.fd | e.fd = e | e.mn〈owner* 〉(e* ) |
synchronized (x) in {e} | fork (x* ) {e}

cn ∈ class names
fd ∈ field names

mn ∈ method names
x,y ∈ variable names

f ∈ owner names
l ∈ lock level names

We first define a number of predicates used in the type system. These are based on similar
predicates from [70, 68]. We refer the reader to those papers for their precise formulation.

Predicate Meaning
WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice in P
FieldsOnce(P) No class contains two fields, declared or inherited, with same name
MethodsOncePerClass(P) No class contains two methods with same name
OverridesOK(P) Overriding methods have the same return type and parameter

types as the methods being overridden. The read and write effects
of an overriding method must be superseded by those of the
overridden methods

LockLevelsOK(P) There are no cycles in the lock levels

We define the typing environment as follows:

E ::= ∅ | E, [final]opt t x | E, owner f | E, constr | E, locksclause

The typing environment contains the declared types of variables, the declared owner pa-
rameters, the declared constraints among owners, and the declared locks clause.

We define a lock set as follows: ls ::= thisThread | ls, xfinal.lock | ls, L(efinal)
L(e) is the lock that protects e. x.lock is the lock field stored in the Java object x.

We define a minimum lock level as follows: lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk);
where LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k

Note that L(x) and LUB(...) are not computed—they are expressions used as such for type
checking. The lock level ∞ denotes that the thread currently holds no locks.
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We define the type system using the following judgments. We present the typing rules for
these judgments after that.

Judgment Meaning
` P : t program P yields type t
P ` defn defn is a well-formed class
P ; E `owner o o is an owner
P ; E ` constr constraint constr is satisfied
P ; E ` X º Y effect X subsumes effect Y
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E ` wf typing environment E is well-formed
P ` field ∈ c class c declares/inherits field
P ` meth ∈ c class c declares/inherits meth
P ; E ` field init field init is a well-formed field initializer
P ; E ` meth meth is a well-formed method
P `level cn.l cn.l is a well-formed lock level
P ` cn1.l1 < cn2.l2 cn1.l1 is less than cn2.l2 in the partial order formed by lock levels
P ` cn.l < lmin cn.l is less than lmin in the partial order formed by lock levels
P ; E ` level(e) = cn.l e is a final expression owned by world and the lock level of e is cn.l
P ; E ` level(e) < lmin e is a final expression owned by world and the lock level of e is less

than lmin

P ; E ` Lock(e) = r r is the lock that protects the final expression e
P ; E `final e : t e is a final expression with type t
P ; E ` e : t expression e has type t
P ; E; ls; lmin ` e : t expression e has type t and evaluating e will not create data races

or deadlocks

` P : t

[PROG]

WFClasses(P) ClassOnce(P) FieldsOnce(P) MethodsOncePerClass(P) OverridesOK(P) LockLevelsOK(P)

P = defn1..n e P ` defni P ; ∅; thisThread; ∞ ` e : t
` P : t

P ` defn

[CLASS]

E = final cn〈f1..n〉 this, owner f1..n, fi º f1, constr∗
P ; E ` wf P ; E ` c′ P ; E ` fieldi P ; E ` methi

P ` class cn〈f1..n〉 extends c′ where constr∗ {level∗ field∗ meth∗}

P ; E ` X º Y

[X º Y ]

X = x1..n Y = y1..m

∀j∈{1..m} ∃i∈{1..n} (P ; E ` xi º yj)

P ; E ` (X º Y )

P ; E ` constr

[CONSTR ENV]

E = E1, constr, E2

P ; E ` constr

[OWNER º]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLD º ]

P ; E `owner o
P `level cn.l

P ; E ` (world:cn.l º o)

[REFL º]

P ; E `owner o
P ; E ` (o º o)

[TRANS º]

P ; E ` (o3 º o2)
P ; E ` (o2 º o1)
P ; E ` (o3 º o1)

P ; E `owner o

[OWNER WORLD]

P `level cn.l
P ; E `owner world:cn.l

[OWNER THREAD]

P ; E `owner thisThread
P ; E `owner otherThread

[OWNER FORMAL]

E = E1, owner f , E2

P ; E `owner f

[OWNER THIS]

E = E1, c this, E2

P ; E `owner this
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P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV X]

P ; E ` t
x /∈ Dom(E)
P ; E ` wf

P ; E, [final]opt t x ` wf

[ENV OWNER]

f /∈ Dom(E)
P ; E ` wf

P ; E, owner f ` wf

[ENV CONSTR]

constr = (o′ º o) ∨ constr = (o′ 6º o)
P ; E ` wf P ; E `owner o, o′

E′ = E, constr
6 ∃x,y (P ; E′ ` y º x) ∧ (P ; E′ ` y 6º x)

P ; E, constr ` wf

[ENV LOCKSCLAUSE]

locksclause = locks(... [e]opt)
P ; E ` wf

P ; E, locksclause ` wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE OBJECT]

P ; E `owner o
P ; E ` Object〈o〉

[TYPE C]

P ` class cn〈f1..n〉... where constr∗ ...
P ; E `owner oi P ; E ` oi º o1

P ; E ` constr [o1/f1]..[on/fn]
P ; E ` cn〈o1..n〉

P ; E ` t1 <: t2

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ; E ` cn〈o1..n〉 <: cn′〈f1 o∗〉 [o1/f1]..[on/fn]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

P ; E ` level(e) = cn.l

[LEVEL(EXP)]

P ; E `final e : cn′〈world:cn.l ...〉
P ; E ` level(e) = cn.l

P `level cn.l

[LEVEL]

P ` class cn... {... LockLevel l ...}
P `level cn.l

P ; E ` level(e) < lmin

[LEVEL < LEVEL MIN]

P ; E ` level(e) = cn.l
P ` cn.l < lmin

P ; E ` level(e) < lmin

P ` cn1.l1 < cn2.l2

[LEVEL <]

P ` class cn1... {... LockLevel l1 < ... cn2.l2 ...}
P ` cn1.l1 < cn2.l2

[LEVEL >]

P ` class cn2... {... LockLevel l2 > ... cn1.l1 ...}
P ` cn1.l1 < cn2.l2

P ` cn.l < lmin

[LEVEL < INFTY]

lmin = ∞
P `level cn.l

P ` cn.l < lmin

[LEVEL < LUB]

lmin = LUB(... cn.l ...)
P `level cn.l

P ` cn.l < lmin

[LEVEL < CN.L]

lmin = cn′.l′
P ` cn.l < cn′.l′
P ` cn.l < lmin

[LEVEL TRANS]

P ` cn′.l′ < lmin

P ` cn.l < cn′.l′
P ` cn.l < lmin

P ; E ` Lock(e) = r

[LOCK THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` Lock(e) = thisThread

[LOCK OTHERTHREAD]

P ; E ` e : cn〈otherThread o∗〉
P ; E ` Lock(e) = otherThread

[LOCK WORLD]

P ; E ` e : cn〈world:cn′.l′ o∗〉
P ; E ` Lock(e) = e.lock

[LOCK FORMAL]

P ; E ` e : cn〈o1..n〉 E = E1, owner o1, E2

P ; E ` Lock(e) = L(e)

[LOCK THIS]

P ; E ` e : cn〈this o2..n〉
P ; E ` Lock(e) = Lock(this)

P ; E ` field init

[FIELD INIT]

P ; E; thisThread; ∞ ` e : t
P ; E ` [final]opt t fd = e

P ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` field ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field [o1/f1]..[on/fn] ∈ cn′〈g1..m〉
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P ; E ` method

[METHOD]

E′ = E, owner f1..n, constr∗, arg1..n, locks(... [x ]opt) P ; E′ ` wf P ; E′ `final x : t′

∀i∈{1..r} (P ; E′ `final xi : ti ∧ P ; E′ ` Lock(xi) = ri)

P ; E′; thisThread, r1..r; LUB(cnj .lj
j∈1..k) ` e : t

P ; E ` t mn〈f1..n〉(arg1..n) requires(x1..r) locks(cnj .lj
j∈1..k [x ]opt) where constr∗ {e}

P ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth ...}
P ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P ` meth ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` meth [o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` e : t

[EXP TYPE]

∃ls P ; E; ls; ∞ ` e : t
P ; E ` e : t

P ; E `final e

[FINAL VAR]

P ; E ` wf
E = E1, final t x, E2

P ; E `final x : t

P ; E; ls; lmin ` e : t

[EXP SUB]

P ; E; ls; lmin ` e : t′
P ; E; ls; lmin ` t′ <: t
P ; E; ls; lmin ` e : t

[EXP NEW]

P ; E ` c
P ; E; ls; lmin ` new c : c

[EXP VAR ASSIGN]

P ; E; ls; lmin ` x : t
P ; E; ls; lmin ` e : t

P ; E; ls; lmin ` x = e : t

[EXP VAR]

E = E1, t x, E2

P ; E; ls; lmin ` x : t

[EXP LET]

arg = [final]opt t x
P ; E; ls; lmin ` e : t

P ; E, arg; ls; lmin ` e′ : t′
P ; E; ls; lmin ` let (arg = e) in {e′} : t′

[EXP FORK]

P ; E; ls; lmin ` xi : ti
gi = final ti[otherThread/thisThread] xi

P ; g1..n; thisThread; ∞ ` e : t
P ; E; ls; lmin ` fork (x1..n) {e} : int

[EXP SYNC]

P ; E ` level(x) = cn.l < lmin

(E = E1, locks(... x′), E2) =⇒ (P ; E ` cn.l < level(x′)) ∨ (x′ = x)
P ; E; ls, x; cn.l ` e : t

P ; E; ls; lmin ` synchronized x in e : t

[EXP SYNC REDUNDANT]

x ∈ ls
P ; E; ls; lmin ` e : t

P ; E; ls; lmin ` synchronized x in e : t

[EXP REF] P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` Lock(e) = r
(P ` (t fd) ∈ cn〈f1..n〉 ∧ (r ∈ ls)) ∨ (P ` (final t fd) ∈ cn〈f1..n〉)

P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` Lock(e) = r P ` (t fd) ∈ cn〈f1..n〉 ∧ (r ∈ ls)
P ; E; ls; lmin ` e′ : t[e/this][o1/f1]..[on/fn]

P ; E; ls; lmin ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

[EXP INVOKE]

Renamed(α)
def
= α[e/this][o1/f1]..[om/fm][e1/y1]..[ek/yk]

P ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) requires(x∗) locks(cn.l∗ [x′]opt) where constr∗ ...) ∈ cn〈f1..n〉

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` oi º o1 P ; E ` Renamed(constr)

P ; E; ls; lmin ` ej : Renamed(tj) P ; E ` Lock(Renamed(xi)) = ri ri ∈ ls

P ` cni.li < lmin x′′ = Renamed(x′) P ; E ` (level(x′′) < lmin) ∨ (level(x′′) = lmin) ∧ (x′′ ∈ ls)
P ; E; ls; lmin ` e.mn〈o(n+1)..m〉(e1..k) : Renamed(t)

100



Chapter 5

Enabling Safe Software Upgrades
in Persistent Object Stores

This chapter describes how SafeJava enables software upgrades in persistent object stores
to be defined modularly and implemented efficiently.

Persistent object stores provide a simple yet powerful programming model that allows appli-
cations to store objects reliably so that they can be used again later and shared with other
applications. Providing a satisfactory way of upgrading objects in a persistent object store
has been a long-standing challenge. A natural way to define upgrades is for programmers
to provide a transform function [138] for each class whose objects need to be upgraded. A
transform function initializes the new form of an object using its current state. The system
carries out the upgrade by using the transform functions to transform all objects whose
classes are being replaced.

This way of handling upgrades introduces two problems:

1. The system must provide good semantics that let programmers reason about their
transform functions locally, thus making it easy to design correct upgrades.

2. The system must run upgrades efficiently, both in space and time.

We provide solutions to both problems.

We first introduce a set of upgrade modularity conditions that constrain the behavior of an
upgrade system. Any upgrade system that satisfies the conditions guarantees that when
a transform function runs, it encounters only object interfaces and invariants that existed
when its upgrade was defined. The conditions thus allow transform functions to be defined
modularly: a transform function can be considered an extra method of the class being
replaced, and can be reasoned about like the rest of the class. This is a natural assumption
that programmers would implicitly make in any upgrade system—our conditions provide
a grounding for this assumption. This way an upgrade system provides good semantics to
programmers who design upgrades.

We then show how upgrades implemented in SafeJava can execute efficiently, while satisfy-
ing the upgrade modularity conditions. Previous approaches do not provide a satisfactory
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solution to this problem. An upgrade system could satisfy the conditions by keeping old
versions of all objects, since old versions preserve old interfaces and old object states. How-
ever versions are expensive, and to be practical, an upgrade system must avoid them most
of the time. Some earlier systems [116, 13, 100] avoid versions by severely limiting the
expressive power of upgrades (e.g., transform functions are not allowed to make method
calls); others [8, 114] limit the number of versions using a stop-the-world approach that
shuts down the system for upgrade and discards the versions when the upgrade is complete;
yet others [138] do not satisfy the upgrade modularity conditions that enable programmers
to reason about their upgrades locally.

Our approach provides an efficient solution to this problem. We perform upgrades lazily;
we don’t prevent application access to persistent objects by stopping the world but instead
transform objects just before they are accessed by an application. We do this without
requiring the use of versions most of the time. Also, we impose no limitations on the
expressive power of transform functions. Yet we provide good semantics: our upgrade
system satisfies the upgrade modularity conditions and thus supports local reasoning.

Our approach exploits the fact most transform functions are well behaved : they access only
the object being transformed and its encapsulated objects. SafeJava statically checks if
transform functions are well behaved. If they are, the runtime system provides an efficient
way to enforce the upgrade modularity conditions without maintaining versions. If they
aren’t, we provide an additional mechanism, triggers, which can be used to control the
order of transform functions to satisfy the conditions. If even triggers are insufficient, we
use versions but only in cases where they are needed.

The rest of this chapter is organized as follows. Section 5.1 presents our upgrade modularity
conditions. Section 5.2 describes how our system executes upgrades. Section 5.3 shows that
our system satisfies the upgrade modularity conditions. Section 5.4 presents related work,
and Section 5.5 concludes.

5.1 Semantics of Upgrades

This section describes the upgrade model. It also defines the upgrade modularity conditions
and explains why they make it easy for programmers to reason about upgrades.

5.1.1 System Model

We assume a persistent object store (e.g., an object-oriented database) that contains conven-
tional objects similar to what one might find in an object-oriented programming language
such as Java. Objects refer to one another and interact by calling one another’s methods.
The objects belong to classes that define their representation and methods. Each class
implements a type. Types are arranged in a hierarchy. A type can be a subtype of one or
more types. A class that implements a type implements all supertypes of that type.

We assume that applications access persistent objects within atomic transactions, since this
is necessary to ensure consistency for the stored objects; transactions allow for concurrent
access and they mask failures. An application transaction consists of calls on methods of
persistent objects as well as local computation. A transaction terminates by committing
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or aborting. If the commit succeeds, changes become persistent. If instead the transaction
aborts, none of its changes affect the persistent objects.

Upgrades in a persistent object store can be used to improve an object’s implementation, to
make it run faster, or to correct an error; to extend the object’s interface, e.g., by providing
it with additional methods; or even to change the object’s interface in an incompatible way,
so that the object no longer behaves as it used to, e.g., by removing one of its methods or
redefining what a method does. Incompatible upgrades are probably not common but they
can be important in the face of changing application requirements.

5.1.2 Defining Upgrades

An upgrade is defined by describing what should happen to classes that need to be changed.
The information for a class that is changing is captured in a class-upgrade. A class-upgrade
is a tuple:

〈old-class, new-class, TF〉

A class-upgrade indicates that all objects belonging to old-class should be transformed,
through use of the transform function, TF, into objects of new-class. TF takes an old-class
object and a newly allocated new-class object and initializes the new-class object from the
old-class object. The upgrade system causes the new-class object to take over the identity
of the old-class object, so that all objects that used to refer to the old-class object now refer
to the new-class object.

This mechanism preserves object state and identity. The preservation is crucial, because the
whole point of a persistent store is to maintain object state. When objects are upgraded,
their state must survive, albeit in a modified form as needed in the new class. Furthermore,
a great deal of object state is captured in the web of object relationships. This information
is expressed by having objects refer to other objects. When an object is upgraded it must
retain its identity so that objects that referred to it prior to the upgrade still refer to it.

An upgrade is a set of one or more class-upgrades. When an upgrade changes the interface
of a class C incompatibly, so that its objects no longer behave as they used to, this may affect
other classes, including subclasses of C and classes that use types C no longer implements.
All affected classes have to be upgraded as well, so that the new system as a whole remains
type correct. A complete upgrade contains class-upgrades for all classes that need to change
due to some class-upgrade already in the upgrade [8, 51, 60, 138]. Completeness is checked
using rules analogous to type checking.

Our system accepts an upgrade only if it is complete. At this point we say the upgrade is
installed. Once an upgrade has been installed, it is ready to run. An upgrade is executed by
running transform functions on all affected objects, i.e., all objects belonging to old classes.

5.1.3 Upgrade Modularity Conditions

As we mentioned in the introduction of this chapter, an upgrade system must guarantee that
when a transform function runs, it encounters only interfaces that existed at the time its
upgrade was installed and states that satisfy its object’s invariants. This guarantee means
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the transform function writer need not be concerned, when reasoning about correctness of
upgrades, with object interfaces and object invariants that existed in the past or will exist
in the future. Instead, the transform function can be thought of as an extra method of the
old-class: the writer can assume the same invariants and interfaces as are assumed for the
other methods.

The job of the upgrade system is to run upgrades in a way that supports this modularity
property. There are two different problems that must be solved. First is the question of
how to order upgrades relative to application transactions and to other upgrades. Second
is the issue of how to order the transform functions belonging to a single upgrade.

Ordering Upgrades

The requirement for ordering of entire upgrades is simple: upgrades are transactions and
thus must be serialized relative to application transactions and to one another: a later
upgrade must appear to run after an earlier one.

An upgrade transaction transforms all objects of old-classes. We view each transform func-
tion as running in its own transaction; each such transform transaction is the execution of
a transform function on one object. The entire upgrade transaction thus consists of the
execution of all the transform transactions for that upgrade.

Now we can state the serializability requirement. A similar condition is given in [138]. We
use the notation [A1; A2] to mean that A1 ran before A2.

M1. If we have [A; TF(x)], where A is either an application transaction that is serialized
after TF’s upgrade is installed, or A is a transform function from a later upgrade, this
has the same effect as [TF(x); A].

An upgrade system that stops the world to run an upgrade transaction and only allows
application transactions to continue after that transaction completes (e.g., [8, 114]) satisfies
this condition trivially, since the order [A; TF(x)] won’t occur for either later application
transactions or later upgrades. An upgrade system that doesn’t stop the world will have
to ensure that when it runs A before some transform that must be serialized before A, the
effect will be the same as if they ran in the opposite order.

Order within Upgrades

Condition M1 says nothing about how the upgrade system chooses the ordering of trans-
forms within an upgrade. The following two conditions constrain this order.

M2. If TF(x) and TF(y) are from the same upgrade and TF(x) (transitively) uses y and
we have [TF(y);TF(x)], this has the same effect as [TF(x); TF(y)].

M3. If TF(x) and TF(y) are from the same upgrade and TF(x) does not (transitively) use
y and TF(y) does not (transitively) use x, then [TF(y); TF(x)] has the same effect as
[TF(x); TF(y)].
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Here TF(x) uses y if TF(x) reads/writes a field of y or calls a method of y. Transitively
uses means that this action may occur via uses of intermediate objects, e.g., TF(x) calls a
method of z, which calls a method of y.

Condition M2 states that if transform function TF(x) uses object y, the behavior of the
system must be the same as if TF(x) ran before TF(y). Condition M3 states that for
unrelated objects, the behavior of the system must be independent of the order in which
their transforms ran; the upgrade system can then choose any order for the two transforms.

Some upgrade systems satisfy Condition M2 by using versions (so that when TF(x) runs it
sees the old version of y); this is the approach taken in [8, 114]. Others avoid the problem
altogether by limiting the expressive power of transforms so that they cannot make method
calls, as in [116, 13, 100]. A third possibility (and the direction we follow) is to satisfy M2
by controlling the order of transforms so that when TF(x) uses y, x is transformed before
y.

Conditions M1-M3 together ensure upgrade modularity: transform functions encounter the
expected interfaces and object invariants because upgrades run in upgrade order, application
transactions do not interfere with transform functions, transform functions of unrelated
objects do not interfere with each other, and transform functions of related objects appear
to run in a pre-determined order (namely an object appears to be transformed before
its subobjects). Thus these conditions allow transform functions to be reasoned about
locally, as extra methods of old classes. Writers of transform functions can assume the
same invariants and interfaces as are assumed for the other methods of old classes.

5.2 Executing Upgrades

This section describes our lazy upgrade system.

Stopping the world to run an upgrade is undesirable since it can make the system unavailable
to applications for a long time. Our system avoids delaying applications by running the
upgrade incrementally just in time.

The system runs each transform function as an individual transaction. These transactions
are interleaved with application transactions. When an application transaction A is about
to use an object that is due to be transformed, the system interrupts A and runs the
transform function at that point; this way we ensure that application transactions never
observe untransformed objects.

The transform transaction T must be serialized before A in the commit order since A uses
the transformed object initialized by T . Therefore, if T reads or modifies an object modified
by A or if T modifies an object read by A, the system aborts A. A is highly unlikely to
abort, however; we discuss how our techniques avoid having to abort A in Sections 5.3.2
and 5.3.3.

When T finishes executing, it commits. Then the system continues running A, or if A was
aborted, it reruns A.

Our system does not require that an earlier upgrade complete before a later upgrade starts
since this might delay the later upgrade for a long time. Instead many upgrades can be in
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progress at once and several transforms may be pending for an object. The system runs
pending transforms for an object in upgrade order. While running transform transaction T ,
the system might encounter an object that has pending transforms from upgrades earlier
than the one that defined T ; in this case, the system interrupts T (just as it interrupted A)
to run the pending transforms.

5.3 Enforcing Upgrade Modularity Conditions

The lazy approach described in Section 5.2 ensures that transforms of individual objects
run in upgrade order and that applications running after an upgrade never observe objects
that need to be transformed. But it does not enforce the upgrade modularity conditions
discussed in Section 5.1.3, and thus it does not provide the desired semantics that allow
programmers to reason locally about their transform functions. For example, it’s possible
that application transaction A1 uses object x causing it to be transformed and changing its
interface incompatibly; later A2 uses y and when TF(y) runs it uses x and encounters the
unexpected interface.

For the system to provide good semantics, we must prevent this kind of occurrence. Our
approach is based on object encapsulation. This section shows how upgrades implemented
in SafeJava can execute efficiently without needing versions, while satisfying the upgrade
modularity conditions.

5.3.1 Object Encapsulation and Upgrades

Object encapsulation enables local reasoning about program correctness in object-oriented
programs. Object encapsulation also facilitates modular upgrades in our system because it
imposes an order on transforms. If y is encapsulated within x, applications must access x
before y and therefore x will be transformed before y. This means that when TF(x) runs
it will see the proper interface for y.

However, if TF(x) accesses some object z referred to by x (directly or indirectly) but not
encapsulated within x, it might encounter an unexpected interface or state. Our system
provides good semantics without using versions for transforms that don’t do this. Such
transforms satisfy Condition E:

E. TF(x) only uses x and objects that x encapsulates.

We say such transforms are well behaved.

Condition E can be statically checked by the SafeJava compiler. We presented the SafeJava
type system for enforcing object encapsulation and checking side effects of methods in
Chapter 2. The same type system that we presented in Section 3.A at the end of Chapter 3
can also check Condition E.

5.3.2 Ensuring Upgrade Modularity

This section shows that SafeJava can ensure Conditions M1-M3, assuming Condition E
holds for all TFs.

For any object x affected by an upgrade, our system guarantees that x is accessed before
any object encapsulated within x. Thus the system ensures the following conditions:
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S1. TF(x) runs before A uses x or any object encapsulated within x, where A is either an
application transaction that ran after TF’s upgrade was installed, or A is a transform
function from a later upgrade.

S2. If TF(x) and TF(y) are in the same upgrade and y is encapsulated within x, then
TF(x) runs before TF(y).

Note that our system handles inner classes specially to ensure Condition S1 and S2. When
a upgrade affects a class, we attach triggers to its inner classes; this is done automatically as
part of installing the upgrade. Then when an inner class object is used, the trigger causes
the outer object to be transformed.

Now we give informal proofs that when E holds, S1 and S2 ensure that Conditions M1-M3
hold. Our proofs consider only adjacent transactions, but this is sufficient because M1-M3
can be used to reorder sequences containing intervening transactions to achieve adjacency.

M1: If we have [A; TF(x)], where A is either an application transaction that is serialized
after TF’s upgrade is installed, or A is a transform function from a later upgrade, this has
the same effect as [TF(x); A].

Proof: Since A ran before TF(x), we know from S1 that A does not use x or any object
x encapsulates. Furthermore, we know from E that TF(x) only uses x and objects x
encapsulates. Therefore the read/write sets of A and TF(x) have no object in common and
thus the effect is the same as if TF(x) ran before A.

M2: If TF(x) and TF(y) are from the same upgrade and TF(x) (transitively) uses y and
we have [TF(y);TF(x)], this has the same effect as [TF(x); TF(y)].

Proof: Since TF(x) (transitively) uses y, we know from E that x encapsulates y. Therefore,
we know from S2 that TF(x) runs before TF(y). Thus the condition holds trivially because
the order [TF(y); TF(x)] will not occur.

M3: If TF(x) and TF(y) are from the same upgrade and TF(x) does not (transitively) use
y and TF(y) does not (transitively) use x, then [TF(x); TF(y)] is equivalent to [TF(y);
TF(x)].

Proof: TF(x) and TF(y) can commute unless there is some object z that is read by one
TF and modified by the other. If such an object exists, we know from E that both x and
y must encapsulate it. Therefore the existence of z implies that either y is encapsulated
within x and z is encapsulated within y, or x is encapsulated within y and z is encapsulated
within x. But we know from S2 that an encapsulating object is used before any object it
encapsulates. Therefore whichever object encapsulates the other, the TF for that object
must use the other before using z, which violates the assumption that neither TF uses the
other object.

When E holds we also get another benefit. Recall from Section 5.2 that our system will
abort an interrupted transaction if it has a read/write conflict with a TF. However, when
E holds there will be no conflicts. This is because the interrupted transaction cannot use
any object that a pending transform function will use without first causing that pending
transform function to run.
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5.3.3 Triggers and Versions

Now we consider what happens when a TF violates Condition E. Condition E states that
TF(x) can only use x and objects encapsulated within x. There are two reasons why the
condition might not hold.

Violations of Condition E

The first reason is that a TF(x) might use objects that x does not depend on (directly or
transitively). For example, the depends-on relation in Section 5.3.1 is intentionally limited
to not include immutable subobjects, since correctness does not require encapsulation of
such subobjects. However, if the subobjects are no longer immutable after an upgrade and
if a transform function reads such subobjects, Condition E would be violated. But such
upgrades are unlikely to happen in practice.

The second reason Condition E may not hold is that an object might not encapsulate
subobjects it depends on. This might occur with cyclic objects. It also might occur in the
case of iterators [104, 71] and other similar constructs.

Consider, for example, an iterator over a set s. The iterator’s job is to return a different
element of the set each time its next method is called until all elements of the set have
been returned. To do this job efficiently, the iterator needs direct access to the objects
that represent s, e.g., if s is implemented using a linked list, the iterator must be able to
access the nodes in the linked list directly. But the iterator cannot be encapsulated within
s because we would like it to be used by objects outside s.

To allow efficient implementation of iterators, a set object does not encapsulate the linked
list, even though it depends on it. This is because the iterator is an outside object that can
access the list. In fact, what is really happening with iterators is that more than one object
depends on some shared subobject. For example, both s and iterators over s depend on the
linked list.

Encapsulation violations of this sort do not prevent local reasoning in object-oriented pro-
grams, so long as all the code with the shared dependencies is in the same module. If the
code is modularized like this, correctness can still be reasoned about locally, by considering
the module as a whole. For example, as we explained in Chapter 2, the iterator could
be implemented as an inner class of the set class, and modular reasoning would still be
possible [24]. However, such encapsulation violations can lead to a violation of E.

Handling Violations of Condition E

When E is violated there are two possible solutions: explicitly order the transform functions
so that Conditions M1-M3 are not violated, or use versions. Since the decision about which
approach to use requires an understanding of program behavior, the programmer must
instruct the system about what to do.

Explicit ordering of transform functions is possible when x and all the unencapsulated
objects used by TF(x) are encapsulated within a containing object. For example, suppose
the linked list class is being upgraded incompatibly, and as a result a set and all its iterators
must also be transformed. If a containing object encapsulates both the set object and its
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iterator objects, we can force the set and the iterators to be transformed before the linked
list by attaching a trigger to the class of the containing object.

A trigger is a function that takes an object as an argument and returns a list of objects
needing to be upgraded. Triggers are defined as part of an upgrade (in addition to the
class-upgrades); such a definition identifies the class being triggered and provides the code
for the trigger. The system runs the trigger when an object of the class is first used (after
the upgrade is installed); then it processes the list (in list order) and runs any pending
transform functions on the objects in the list. SafeJava statically checks that the trigger on
an object x uses only objects that x depends on and furthermore to only reads those objects.
The uses restriction ensures that the trigger itself can be reasoned about modularly; the
read-only restriction guarantees that the trigger cannot affect system state. Given these
restrictions, triggers provide M1-M3 because they control order: they provide M1 and M2
because [A; TF(x)] and [TF(y); TF(x)] cannot occur.

When there is no containing object, or when there is no way to ensure a correct order for
transforms (e.g., because a group of objects with cyclic dependencies is being transformed),
we have to fall back on versions. In this case, we keep old versions for any unencapsulated
object used by the offending transform function TF(x); for each such object z, we also
keep versions for all objects it depends on. SafeJava statically enforces the restriction
that transform functions do not modify old versions of objects. Given this restriction on
transform functions, versions provide M1-M3, because immutable versions preserve the old
interfaces and object states.

Triggers and versions also ensure that a transform does not conflict with interrupted trans-
actions. Furthermore, the system can interact with the user prior to installing an upgrade
to help the user include needed triggers and versions. Therefore our system makes it highly
unlikely that running a transform will cause interrupted transactions to abort.

Implementation

This section discusses implementation issues for supporting upgrades. We only describe the
general strategy here. The complete details of how the implementation works within the
Thor object-oriented database can be found in [25].

Thor is a client-server system. Persistent objects reside at servers; application transactions
run at client machines on cached copies of persistent objects. Thor uses optimistic concur-
rency control [1]. Client machines track objects used and modified by a transaction. When
a transaction attempts to commit, the client sends a commit request containing informa-
tion about used objects and states of new and modified objects to one of the servers. The
server decides whether the transaction can commit (using two-phase commit if the trans-
action used objects at more than one server) and informs the client of its decision. More
information about Thor can be found in [102, 33, 1, 20].

Installing Upgrades

Upgrades are installed by interacting with one of the servers. This server checks the upgrade
for completeness. It interacts with the user to determine whether Condition E holds; if it
doesn’t, this may result in a trigger or version being added to the upgrade. If versions are
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needed, these are also described by class-upgrades, marked as requiring versions. When
all needed information has been added to the upgrade, the server notifies clients and other
servers about the new upgrade.

Information about transforms, triggers, and versions is attached to class objects of old-
classes. E.g., the old-class object points to the transform function.

Running Upgrades

As mentioned, we interrupt application transactions and transform transactions when we
encounter objects that need to be upgraded or have triggers attached to them. This pro-
cessing involves the following steps:

1. Each time an application transaction, AT, or a transform transaction, TT, uses an
object, we check whether that object needs to be transformed or has an attached
trigger. If so, we interrupt AT or TT and start a transaction T to run the transform
code on that object. This step insures that application code encounters only fully
upgraded objects, and pending transforms encounter objects of expected versions.

2. We run transaction T. If T conflicts with an interrupted transaction (reads or modifies
a modified object or modifies a read object) we abort all the interrupted transactions
including AT.

3. When T completes, we create a version for objects it modifies, if that is indicated.

4. If T has triggered some other transforms we run them provided they are defined by
upgrades no later than the upgrade that caused T to run. Note that T is finished
executing at this point; we don’t interrupt it to run these additional transforms.

5. When there are no triggered transforms left to run, we continue running the inter-
rupted AT or TT, unless these were aborted.

6. When processing is complete (either because the AT is ready to commit, or because
the AT was forced to abort), we commit all completed transactions in their completion
order. If some transaction’s commit fails, we abort those that haven’t committed yet
and then rerun them in the same order as before. Then we rerun the application
transaction if it aborted.

Implementation in Thor and Performance Results

Details on the Thor upgrade implementation can be found in [25]. The paper also sketches
an alternative approach for implementing upgrades that can be used in other persistent
object systems.

The paper also presents results of a performance study indicating the upgrade infrastructure
has low cost. It has negligible impact (less than 1% overhead) on applications that do not
use objects that need to be upgraded. We expect this to be the common case because
upgrades are likely to be rare (e.g., once a week or once a day). The results also show that
when upgrades are needed, the overhead of transforming an object is small.
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5.4 Related Work

There has been much research on software upgrades and data transformation covering a
broad range of research topics. The work on schema or class versioning (e.g., [49, 125, 40])
considers multiple co-existing versions of a schema or class. The work on object instance
evolution (e.g., [14, 61]) considers selective transformation of some but not all objects in a
class. The work on hot-swapping of modules (e.g., [83, 62, 85]) is concerned with updating
a class while there is executing code that is using objects of the class; this work considers
issues of type safe access to the same object via multiple potentially incompatible interfaces
but does not enforce the upgrade modularity conditions that allow programmers to reason
locally about the correctness of their upgrades.

Here we focus on work on schema evolution in persistent object stores (such as object-
oriented databases), since this is the work most closely related to our own. In these systems
the database has one logical schema to which modifications of class definitions are applied;
all object instances are converted (eagerly or lazily, but once and forever) to conform to
the latest schema. The schema evolution approach is used in Orion [13], OTGEN [100],
O2 [58, 138], GemStone [30, 116], Objectivity/DB [115], Versant [130], and PJama [9, 8]
systems, and is the only approach available in commercial RDBMS. An extensive survey of
the previous schema evolution systems can be found in [60].

None of the previous schema evolution systems provide a way of executing upgrades effi-
ciently both in space and time, while allowing programmers to reason locally about the
correctness of their upgrades. To be practical, systems must avoid keeping old versions of
objects most of the times. Some earlier systems [116, 13, 100] avoid versions by severely
limiting the expressive power of upgrades (e.g., transform functions are not allowed to make
method calls). Others [8, 114] limit the number of versions using a stop-the-world approach
that shuts down the system for upgrade and discards the versions when the upgrade is
complete

Very few systems support lazy conversion and complex (fully expressive) transforms. The
work on O2 [58, 138] was the first to identify the problem posed by deferred complex trans-
forms and incompatible upgrades. This work introduced an upgrade modularity condition
that is based on the equivalence of lazy and eager conversion. This condition is weaker than
our Conditions M1-M3 because it does not consider the interleavings of transforms from
the same upgrade.

O2 ensures type safety for deferred complex transforms using a “screening” approach similar
to versioning. Unlike our approach, however, analysis in O2 does not take encapsulation
into account. When an incompatible upgrade occurs after a complex transform is installed,
O2 either activates an eager conversion or avoids transform interference by keeping versions
for all objects. This approach is unnecessarily conservative (it switches to eager execution
even when E holds). Also, O2 does not solve the problem of applications modifying objects
that are then used by transforms from earlier upgrades; this is unsafe because it violates
Condition M1.

Implementation details for commercial systems supporting lazy conversion with complex
transforms are generally not available. We found limited information for O2, e.g., we found
no information about the mechanisms for supporting the atomicity of individual transforms,
or about the performance impact of upgrade support on normal case operation. The O2
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screening approach co-locates versions of upgraded objects physically near the new version
of the object [64]. This requires database reorganization when versions are created. In
contrast, our system does not require co-location of object versions; this allows us to preserve
clustering of non-upgraded objects without database reorganization and furthermore, we
are often able to preserve clustering for upgraded objects as well. Preserving clustering is
important for system performance because of its impact on disk access [65].

Some implementation issues caused by complex user-defined transforms arise in eager as
well as lazy systems, e.g., either has to support arbitrary order of transforms and access
to potentially incompatible transformed objects. The PJama system [8, 60] keeps old and
new versions to solve this problem. To provide recoverability and reduce memory demands
when converting large datasets, it performs incremental partitioned conversion that creates
partitions with old and new versions, and at the end of conversion deletes the old copies
by copying the converted partitions. Like our system, PJama uses write-ahead logging to
support conversion atomicity and recoverability.

5.5 Conclusions

Persistent object stores provide a simple yet powerful programming model that allows ap-
plications to store objects reliably so that they can be used again later and shared with
other applications. Providing a satisfactory way of upgrading objects in a persistent object
store has been a long-standing challenge. Upgrades must be performed in a way that is
efficient both in space and time, and that does not stop application access to the store. In
addition, however, the approach must be modular: it must allow programmers to reason
locally about the correctness of their upgrades similar to the way they would reason about
regular code. This chapter provides solutions to both problems.

This chapter defines upgrade modularity conditions that any upgrade system must satisfy
to support local reasoning about upgrades. These conditions are more general than earlier
definitions [138]: they apply to both lazy and stop-the-world upgrade systems; they also
apply to both systems that use versions and systems that don’t.

The chapter then shows how upgrades implemented in SafeJava can execute efficiently, while
satisfying the upgrade modularity conditions. The approach exploits object encapsulation
properties in a novel way. The chapter proves that our upgrade system satisfies the upgrade
modularity conditions when transforms are well behaved. We also show that the conditions
hold through the use of triggers and versions.

We have a prototype implementation that supports fully expressive, modular, lazy upgrades.
The implementation is done in Thor [102, 20]. We also have an alternate implementation
approach that can be used in any persistent object system.

The results of our performance study indicate that the infrastructure has low cost. It has
negligible impact on applications that do not use objects that need to be upgraded. We
expect this to be the common case because upgrades are likely to be rare (e.g., once a week
or once a day). The results also show that when upgrades are needed, the overhead of
transforming an object is small.

Our approach thus provides a complete solution to the problem of upgrading persistent
objects.
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Chapter 6

Enabling Safe Region-Based
Memory Management

The Real-Time Specification for Java (RTSJ) [18] provides a framework for building real-
time systems. The RTSJ allows a program to create real-time threads with hard real-time
constraints. These real-time threads cannot use the garbage-collected heap because they
cannot afford to be interrupted for unbounded amounts of time by the garbage collec-
tor. Instead, the RTSJ allows these threads to use objects allocated in immortal memory
(which is never garbage collected) or in regions [128]. Region-based memory management
systems structure memory by grouping objects in regions under program control. Memory
is reclaimed by deleting regions, freeing all objects stored therein. The RTSJ uses runtime
checks to ensure that deleting a region does not create dangling references and that real-time
threads do not access heap references.

SafeJava introduces a new static type system for writing real-time programs in Java. Safe-
Java guarantees that the RTSJ runtime checks will never fail for well-typed programs.
SafeJava thus serves as a front-end for the RTSJ platform. It offers two advantages to real-
time programmers. First, it provides an important safety guarantee that a program will
never fail because of a failed RTSJ runtime check. Second, it allows RTSJ implementations
to remove the RTSJ runtime checks and eliminate the associated overhead.

Our approach is applicable even outside the RTSJ context; it could be adapted to provide
safe region-based memory management for other real-time languages as well.

The SafeJava type system makes several important technical contributions over previous
type systems for region-based memory management. For object-oriented programs, it com-
bines region types [39, 48, 80, 128] and ownership types [23, 24, 26, 41, 43] in a unified
type system framework. Region types statically ensure that programs never follow dangling
references. Ownership types statically enforce object encapsulation and enable modular
reasoning about program correctness in object-oriented programs. Consider, for example,
a Stack object s that is implemented using a Vector object v. To reason locally about the
correctness of the Stack implementation, a programmer must know that v is not directly
accessed by objects outside s. With ownership types, one can declare that s owns v. The
type system then statically ensures that v is encapsulated within s.
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In an object-oriented language that only has region types (e.g., [39]), the types of s and
v would declare that they are allocated in some region r. In an object-oriented language
that only has ownership types, the type of v would declare that it is owned by s. SafeJava
provides a simple unified mechanism to declare both properties. The type of s can declare
that it is allocated in r and the type of v can declare that it is owned by s. SafeJava then
statically ensures that both objects are allocated in r, that there are no pointers to v and s
after r is deleted, and that v is encapsulated within s. SafeJava thus combines the benefits
of region types and ownership types.

SafeJava extends region types to multithreaded programs by allowing explicit memory man-
agement for objects shared between threads. It allows threads to communicate through ob-
jects in shared regions in addition to the heap. A shared region is deleted when all threads
exit the region. However, programs in a system with only shared regions (e.g., [79]) will have
memory leaks if two long-lived threads communicate by creating objects in a shared region.
This is because the objects will not be deleted until both threads exit the shared region. To
solve this problem, SafeJava introduces subregions within a shared region. A subregion can
be deleted more frequently, for example, after each loop iteration in the long-lived threads.

SafeJava introduces typed portal fields in subregions to serve as a starting point for inter-
thread communication. Portals also allow typed communication, so threads do not have to
downcast from Object to more specific types. SafeJava therefore avoids any dynamic type
errors associated with these downcasts. SafeJava also introduces user-defined region kinds
to support subregions and portal fields.

SafeJava extends region types to real-time programs by statically ensuring that real-time
threads do not interfere with the garbage collector. SafeJava augments region kind decla-
rations with region policy declarations. It supports two policies for creating regions as in
the RTSJ. A region can be an LT (Linear Time) region, or a VT (Variable Time) region.
Memory for an LT region is preallocated at region creation time, so allocating an object in
an LT region only takes time proportional to the size of the object (because all the bytes
have to be zeroed). Memory for a VT region is allocated on demand, so allocating an object
in a VT region takes variable time. SafeJava checks that real-time threads do not use heap
references, create new regions, or allocate objects in VT regions.

SafeJava also prevents an RTSJ priority inversion problem. In the RTSJ, any thread
entering a region waits if there are threads exiting the region. If a regular thread exiting
a region is suspended by the garbage collector, then a real-time thread entering the region
might have to wait for an unbounded amount of time. SafeJava statically ensures that this
priority inversion problem cannot happen.

Finally, we note that most previous region type systems allow programs to create, but not
follow, dangling references. Such references can cause a safety problem when used with
copying garbage collectors. SafeJava, on the other hand, prevents a program from creating
dangling references in the first place.

Outline

This chapter extends the type system we presented so far to support safe region-based
memory management. The rest of this chapter is organized as follows. Sections 6.1, 6.2,
and 6.3 describe the SafeJava type system. Section 6.4 presents some of the important rules
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SJ1. Every object has an owner.

SJ2. The owner can either be another object or a region.

SJ3. The ownership relation forms a forest of trees.

SJ4. The owner of an object does not change over time.
(Except if there is a unique pointer to that object.)

SJ5. If object z owns y but z 6º x, then x cannot access y.
(Except if x is an inner class object of z.)

Figure 6-1: Ownership Properties

SJ8. Objects directly or transitively owned by a thread-local region are local to the
corresponding thread. All other objects are potentially shared between threads.

SJ9. By default, every object is protected by the lock on the root owner of that
object. ro is the root owner of an object o iff ro º o and some region directly
owns ro.
An object can also be protected by an arbitrary lock.

SJ10. To access to an object, a thread must hold the lock that protects that object.
A thread can however access thread-local objects (that are owned directly or
transitively by thread-local regions) without any synchronization.
Immutable objects and objects with unique pointers can also be accessed with-
out synchronization.

Figure 6-2: Properties of Thread-Local and Shared Objects

for typechecking. The complete set of rules are in the appendix at the end of this chapter.
Section 6.5 describes type inference techniques. Section 6.6 describes how programs written
in SafeJava are translated to run on our RTSJ platform. Section 6.7 describes our experience
in using SafeJava. Section 6.8 presents related work and Section 6.9 concludes.

6.1 Regions for Object-Oriented Programs

This section presents the SafeJava type system for safe region-based memory management
in single-threaded object-oriented programs.

Ownership Relation

Objects in SafeJava are allocated in regions. As before, the key to the SafeJava type system
is the concept of object ownership. Recall the ownership properties from Figure 4-1 and
properties of thread-local and shared objects from Figure 4-2. In this chapter, we extend
the properties as shown in Figures 6-1 and 6-2.

Every object has an owner. An object can be owned by another object, or by a region. As
before, objects owned by another object are encapsulated within that object. Objects owned
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SJ15. If region r º object x, then x is allocated in r.

SJ16. For any region r, heap ºr r and immortal ºr r.

SJ17. x º y =⇒ x ºr y.

SJ18. If region r1 º object o1, region r2 º object o2, and r2 6ºr r1, then o1 cannot
contain a pointer to o2.

Figure 6-3: Properties of Regions

by a region are unencapsulated and correspond to objects owned by world or thisThread from
previous chapters. Objects directly or transitively owned by a thread-local region are local
to the corresponding thread. All other objects are potentially shared between threads.

SafeJava statically ensures the properties shown in Figure 6-3 for regions. Recall from
Section 2.2 that we write o1 º o2 if o1 directly or transitively owns o2 or if o1 is the same as
o2. The relation º is thus the reflexive transitive closure of the owns relation. Property SJ15
states that if an object is owned by a region, then that object and all its subobjects are
allocated in that region.

Figure 6-7 shows an example ownership relation. We draw a solid line from x to y if x owns
y. Region r2 owns s1, s1 owns s1.head and s1.head.next, etc.

Outlives Relation

SafeJava allows programs to create regions. It also provides two special regions: the garbage
collected region heap, and the “immortal” region immortal. The lifetime of a region is the
time interval from when the region is created until it is deleted. If the lifetime of a region r1

includes the lifetime of region r2, we say that r1 outlives r2, and write r1 ºr r2. The relation
ºr is thus reflexive and transitive. We extend the outlives relation to include objects. We
define that x º y implies x ºr y. The extension is natural: if object o1 owns object o2 then
o1 outlives o2 because o2 is accessible only through o1. Also, if region r owns object o then
r outlives o because o is allocated in r.

Our outlives relation has the properties shown in Figure 6-3. SJ16 states that heap and
immortal outlive all regions. SJ16 states that the outlives relation includes the ownership
relation. SJ17 states our memory safety property, that if object o1 in region r1 contains a
pointer to object o2 in region r2, then r2 outlives r1. SJ17 implies that there are no dangling
references in SafeJava. Figure 6-7 shows an example outlives relation. We draw a dashed
line from region x to region y if x outlives y. In the example, region r1 outlives region r2,
and heap and immortal outlive all regions.

The following lemmas follow trivially from the above definitions:

Lemma 3. If object o1 ºr object o2, then o1 º o2.

Lemma 4. If region r ºr object o, then there exists a unique region r’ such that r ºr r ′ and
r ′ º o.
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P ::= defn ∗ e
defn ::= class cn 〈formal+〉 extends c where constr ∗ {field ∗ meth∗}

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion | heap | immortal
constr ::= owner owns owner | owner outlives owner

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) where constr ∗ { e }

t ::= c | int | RHandle〈r〉
formal ::= k fn

k ::= Owner | ObjOwner | rkind
rkind ::= Region | GCRegion | NoGCRegion | LocalRegion

e ::= new c | v | let v = e in { e } | v.fd | v.fd = v | v.mn 〈owner ∗〉(v∗) | (RHandle〈r〉 h) { e }
h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers

Figure 6-4: Grammar to Support Regions in Object-Oriented Programs

Grammar

To simplify the presentation of key ideas, we describe our type system as an extension to the
core SafeJava type system we presented in Section 2.2 in Chapter 2. A SafeJava program
is a sequence of class definitions followed by an initial expression. A predefined class Object
is the root of the class hierarchy. Figure 6-4 presents grammar to support regions.

Owner Polymorphism

Every class definition is parameterized with one or more owners. An owner can be an
object or a region. Parameterization allows programmers to implement a generic class
whose objects can have different owners. The first formal owner is special: it owns the
corresponding object; the other owners propagate the ownership information. Methods can
also declare an additional list of formal owner parameters. Each time new formals are
introduced, programmers can specify constraints between them using where clauses [50].
The constraints have the form “o1 owns o2” (i.e., o1 º o2) and “o1 outlives o2” (i.e., o1 ºr o2).

Each formal has an owner kind. There is a subkinding relation between owner kinds,
resulting in the kind hierarchy from the upper half of Figure 6-5. The hierarchy is rooted in
Owner, that has two subkinds: ObjOwner (owners that are objects; we avoid using Object
because it is already used for the root of the class hierarchy) and Region. Region has two
subkinds: GCRegion (the kind of the garbage collected heap) and NoGCRegion (the kind
of other regions). Finally, NoGCRegion has a single subkind, LocalRegion. (At this point,
there is no distinction between NoGCRegion and LocalRegion. We will add new kinds in the
next section.)

Region Creation

The expression “(RHandle〈r〉 h) {e}” creates a new region and introduces two identifiers
r and h that are visible inside the scope of e. r is an owner of kind LocalRegion that
is bound to the newly created region. h is a runtime value of type RHandle〈r〉 that is

117



1

Region

NoGCRegion GCRegion

user defined region kinds

Owner

2

ObjOwner

SharedRegionLocalRegion

Figure 6-5: Owner Kind Hierarchy

bound to the handle of the region r. The region name r is only a compile-time entity; it
is erased (together with all the ownership and region type annotations) immediately after
typechecking. However, the region handle h is required at runtime when we allocate objects
in region r (object allocation is explained in the next paragraph).

The newly created region is outlived by all regions that existed when it was created; it
is destroyed at the end of the scope of e. This implies a “last in first out” order on
region lifetimes. As we mentioned before, in addition to the user created regions, we have
special regions: the garbage collected region heap (with handle hheap) and the “immortal”
region immortal (with handle himmortal). Objects allocated in the immortal region are never
deallocated. heap and immortal are never destroyed; hence, they outlive all regions.

We also allow methods to allocate objects in the special region initialRegion, which denotes
the most recent region that was created before the method was called. We use runtime
support to acquire the handle of initialRegion.

Object Creation

New objects are created using the expression “new cn 〈o1..n〉”. o1 is the owner of the new
object. (Recall that the first owner parameter always owns the corresponding object.) If o1

is a region, the new object is allocated there; otherwise, it is allocated in the region where
the object o1 is allocated. For the purpose of typechecking, region handles are unnecessary.
However, at runtime, we need the handle of the region we allocate in. The typechecker
checks that we can obtain such a handle (more details are in Section 6.4). If o1 is a region r,
the handle of r must be in the environment. Therefore, if a method has to allocate memory
in a specific region that is passed to it as an owner parameter, then it also needs to receive
the corresponding region handle as an argument.

A formal owner parameter can be instantiated with an in-scope formal, a region name, or the
this object. For every type cn 〈o1..n〉 with multiple owners, SafeJava statically enforces the
constraint that oi ºr o1, for all i ∈ {1..n}. In addition, if an object of type cn 〈o1..n〉 has a
method mn , and if a formal owner parameter of mn is instantiated with an object obj , then
SafeJava ensures that obj ºr o1. These constraints are necessary to statically enforce object
encapsulation (as illustrated in Figure 2-14 in Chapter 2) and prevent dangling references
(as illustrated at the end of Section 6.1) in the presence of subtyping.

Example

We illustrate our type system with the example in Figure 6-6. A TStack is a stack of
T objects. It is implemented using a linked list. The TStack class is parameterized by
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1 class TStack<Owner stackOwner, Owner TOwner> {

2 TNode<this, TOwner> head = null;

3

4 void push(T<TOwner> value) {

5 TNode<this, TOwner> newNode = new TNode<this, TOwner>;

6 newNode.init(value, head); head = newNode;

7 }

8

9 T<TOwner> pop() {

10 if(head == null) return null;

11 T<TOwner> value = head.value; head = head.next;

12 return value;

13 }

14 }

15

16 class TNode<Owner nodeOwner, Owner TOwner> {

17 T<TOwner> value;

18 TNode<nodeOwner, TOwner> next;

19

20 void init(T<TOwner> v, TNode<nodeOwner, TOwner> n) {

21 this.value = v; this.next = n;

22 }

23 }

24

25 (RHandle<r1> h1) {

26 (RHandle<r2> h2) {

27 TStack<r2, r2> s1;

28 TStack<r2, r1> s2;

29 TStack<r1, immortal> s3;

30 TStack<heap, immortal> s4;

31 TStack<immortal, heap> s5;

32 /* TStack<r1, r2> s6; illegal! */

33 /* TStack<heap, r1> s7; illegal! */

34 }}

Figure 6-6: Stack of T Objects

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

r2

immortalheap

r1

Figure 6-7: Ownership and Outlives Relations for TStacks s1, s2, s3
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stackOwner and TOwner. stackOwner owns the TStack object and TOwner owns the T
objects contained in the TStack. The code specifies that the TStack object owns the nodes
in the list; therefore the list nodes cannot be accessed from outside the TStack object.

The program creates two regions r1 and r2 such that r1 outlives r2. The program declares
several TStack variables: the type of TStack s1 specifies that it is allocated in region r2 and
so are the T objects in s1; TStack s2 is allocated in region r2 but the T objects in s2 are
allocated in region r1; etc. Note that the type of s6 is illegal. This is because s6 is declared
as TStack〈r1,r2〉, and r2 6ºr r1. (Recall that in any legal type cn 〈o1..n〉 with multiple owners,
oi ºr o1 for all i ∈ {1..n}.)
Figure 6-7 presents the ownership and the outlives relations from this example (assuming
the stacks contain two elements each). We use circles for objects, rectangles for regions,
solid arrows for ownership, and dashed arrows for the outlives relation between regions.

Safety Guarantees

The following two theorems state our safety guarantees. Part 1 of Theorems 5 and 6 state
the object encapsulation property. Note that objects owned by regions are not encapsulated
within other objects. Part 2 of Theorem 5 states the memory safety property.

Theorem 5. If objects o1 and o2 are allocated in regions r1 and r2 respectively, and field
fd of o1 points to o2, then

1. Either owner of o2 º o1, or owner of o2 is a region.

2. Region r2 outlives region r1.

Proof. Suppose class cn〈f1..n〉{... T 〈x1, ...〉 fd ...} is the class of o1. Field fd of type
T 〈x1, ...〉 contains a reference to o2. x1 must therefore own o2. x1 can be either 1) heap, or
2) immortal, or 3) this, or 4) fi, a class formal. In the first two cases, (owner of o2) = x1 is a
region, and r2 = x1 ºr r1. In Case 3, (owner of o2) = o1 º o1, and r2 = r1 ºr r1. In Case
4, we know that fi ºr f1, since all owners in a legal type outlive the first owner. Therefore,
(owner of o2) = x1 = fi ºr f1 ºr this = o1. If (owner of o2) is an object, we know from
Lemma 3 that (owner of o2) º o1. This also implies that r2 = r1 ºr r1. If the (owner of
o2) is a region, we know from Lemma 4 that there exists region r such that (owner of o2)
ºr r and r º o1. Therefore r2 = r ºr r1.

Theorem 6. If a variable v in a method mn of an object o1 points to an object o2, then

1. Either owner of o2 º o1, or owner of o2 is a region.

Proof. Similar to the proof of Theorem 5, except that (owner of o2) can now also be: 5)
a region declared within the method, or 6) a formal method parameter that is a region or
initialRegion (that is not required to outlive o1), or 7) a formal method parameter that is
an object. In Cases 5 and 6, (owner of o2) is a region. In Case 7, (owner of o2) º o1. The
first four cases are identical.

120



1 class Foo<q> { int x = 0; void accessMe() { x++; } }

2

3 class SuperType<r> { void m() {} }

4

5 class SubType<r,q> extends SuperType<r> {

6 Foo<q> region_q_contains_me;

7 SubType(Foo<q> x) {region_q_contains_me = x;}

8 void m() {region_q_contains_me.accessMe();}

9 }

10

11

12 (RHandle<r> hr) {

13 SuperType<r> s;

14

15 (RHandle<q> hq) {

16 Foo<q> f = new Foo<q>();

17 s = new SubType<r,q>(f); // SubType<r,q> is an illegal type in SafeJava

18 } // because q does not outlive r

19

20 s.m(); // Violates memory safety

21 }

Figure 6-8: Violation of Memory Safety in an Unsound Type System

Most previous region type systems allow programs to create, but not follow, dangling ref-
erences. Such references can cause a safety problem when used with copying collectors.
SafeJava therefore prevents a program from creating dangling references in the first place.
Part 2 of Theorem 5 prevents object fields from containing dangling references. Even though
Theorem 6 does not have a similar Part 2, we can prove, using lexical scoping of region
names, that local variables cannot contain dangling references either.

Note that to have a sound type system that statically prevents dangling references, it is
necessary to have the constraint that in any legal type cn 〈o1..n〉 with multiple owners,
oi ºr o1 for all i ∈ {1..n}. Figure 6-8 illustrates this point with an example in a type
system without this constraint. In the figure, the program creates a Foo object in region q,
stores a pointer to it in object s, and deletes the region q, thus creating a dangling reference
from s to the Foo object. The program then invokes a method s.m which tries to access the
Foo object, thus violating memory safety.

6.2 Regions for Multithreaded Programs

This section describes how we support multithreaded programs. Figure 6-9 presents the
language extensions. A fork instruction spawns a new thread that evaluates the invoked
method. The evaluation is performed only for its effect; the parent thread does not wait
for the completion of the new thread and does not use the result of the method call. Our
unstructured concurrency model (similar to Java’s model) is incompatible with the regions
from Section 6.1 whose lifetimes are lexically bound. Those regions can still be used for
allocating thread-local objects (hence the name of the associated region kind, LocalRegion),
but objects shared by multiple threads require shared regions, of kind SharedRegion.
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P ::= defn ∗ srkdef ∗ e
srkdef ::= regionKind srkn 〈formal ∗〉 extends srkindwhere constr ∗ { field ∗ subsreg ∗ }
rkind ::= ... as in Figure 6-4 ... | srkind

srkind ::= srkn 〈owner ∗〉 | SharedRegion
subsreg ::= srkind rsub

e ::= ... as in Figure 6-4 ... |
fork v.mn 〈owner ∗〉(v∗) | (RHandle〈rkind r〉 h) { e } | (RHandle〈r〉 h = [new]opt h.rsub ) { e } |
h.fd | h.fd = v

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Figure 6-9: Grammar Extensions to Support Regions in Multithreaded Programs

Shared Regions

“(RHandle〈rkind r〉 h) {e}” creates a shared region (rkind specifies the region kind of r;
region kinds are explained later in this section). Inside expression e, the identifiers r and h
are bound to the region and the region handle, respectively. Inside e, r and h can be passed
to child threads. The objects allocated inside a shared region are not deleted as long as
some thread can still access them. To ensure this, each thread maintains a stack of shared
regions it can access, and each shared region maintains a counter of how many such stacks it
is an element of. When a new shared region is created, it is pushed onto the region stack of
the current thread and its counter is initialized to one. A child thread inherits all the shared
regions of its parent thread; the counters of these regions are incremented when the child
thread is forked. When the scope of a region name ends (the names of the shared regions
are still lexically scoped, even if the lifetimes of the regions are not), the corresponding
region is popped off the stack and its counter is decremented. When a thread terminates,
the counters of all the regions from its stack are decremented. When the counter of a region
becomes zero, the region is deleted. The typing rule for a fork expression checks that objects
allocated in local regions are not passed to the child thread as arguments; it also checks
that local regions and handles to local regions are not passed to the child thread.

Subregions and Portals

Shared regions provide the basis for inter-thread communication. However, in many cases,
they are not enough. E.g., consider two long-lived threads, a producer and a consumer, that
communicate through a shared region in a repetitive way. In each iteration, the producer
allocates some objects in the shared region and the consumer subsequently uses the objects.
These objects become unreachable after each iteration. However, these objects are not
deleted until both threads terminate and exit the shared region. To prevent this memory
leak, we allow shared regions to have subregions. In each iteration, the producer and the
consumer can enter a subregion of the shared region and use it for communication. At the
end of the iteration, both the threads exit the subregion and the reference count of the
subregion goes to zero—the objects in the subregion are thus deleted after each iteration.

We must also allow the producer to pass references to objects it allocates in the subregion
in each iteration to the consumer. Note that storing the references in the fields of a “hook”
object is not possible: objects allocated outside the subregion cannot point to objects in
the subregion (otherwise, those references would result in dangling references when objects
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in the subregion are deleted), and objects allocated in the subregion do not survive between
iterations and hence cannot be used as “hooks”. To solve this problem, we allow (sub)regions
to contain portal fields. A thread can store the reference to an object in a portal field; other
threads can then read the portal field to obtain the reference.

Region Kinds

In practice, programs can declare several shared region kinds. Each kind extends another
shared region kind and can declare several portal fields and subregions (see grammar rule
for srkdef in Figure 6-9). The resulting shared region kind hierarchy has SharedRegion as its
root. The owner kind hierarchy now includes both Areas 1 and 2 from Figure 6-5. Similar
to classes, shared region kinds can be parameterized with owners; however, unlike objects,
regions do not have owners so there is no special meaning attached to the first owner.

Expression “(RHandle〈r2〉 h2 = [new]opt h1.rsub) {e}” evaluates e in an environment where
r2 is bound to the subregion rsub of the region r1 that h1 is the handle of, and h2 is bound to
the handle of r2. In addition, if the keyword new is present, r2 is a newly created subregion,
distinct from the previous rsub subregion.

If h is the handle of region r, the expression “h.fd” reads r’s portal field fd , and “h.fd =
v” stores a value into that field. The rule for portal fields is the same as that for object
fields: a portal field of a region r is either null or points to an object allocated in r or in a
region that outlives r.

Flushing Subregions

When all the objects in a subregion become inaccessible, the subregion is flushed, i.e., all
objects allocated inside it are deleted. We do not flush a subregion if its counter is positive.
Furthermore, we do not flush a subregion r if any of its portal fields is non-null (to allow
some thread to enter it later and use those objects) or if any of r’s subregions has not been
flushed yet (because the objects in those subregions might point to objects in r). Recall
that subregions are a way of “packaging” some data and sending it to another thread; the
receiver thread looks inside the subregion (starting from the portal fields) and uses the data.
Therefore, as long as a subregion with non-null portal fields is reachable (i.e., a thread may
obtain its handle), the objects allocated inside it can be reachable even if no thread is
currently in the subregion.

Example

Figure 6-10 contains an example that illustrates the use of subregions and portal fields.
The main thread creates a shared region of kind BufferRegion and then starts two threads,
a producer and a consumer, that communicate through the shared region. In each iteration,
the producer enters subregion b (of kind BufferSubRegion), allocates a Frame object in it,
and stores a reference to the frame in subregion’s portal field f. Next, the producer exits
the subregion and waits for the consumer. The subregion is not flushed because the portal
field f is non-null. The consumer then enters the subregion, uses the frame object pointed
to by its portal field f, sets f to null, and exits the subregion. Now, the subregion is flushed
(because its counter is zero and all its fields are null) and a new iteration starts. (We do
not discuss synchronization issues here in this Chapter.)
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1 regionKind BufferRegion extends SharedRegion {

2 BufferSubRegion b;

3 }

4

5 regionKind BufferSubRegion extends SharedRegion {

6 Frame<this> f;

7 }

8

9 class Producer<BufferRegion r> {

10 void run(RHandle<r> h) {

11 while(true) {

12 (RHandle<BufferSubRegion r2> h2 = h.b) {

13 Frame<r2> frame = new Frame<r2>;

14 get_image(frame);

15 h2.f = frame;

16 }

17 ... // wake up the consumer

18 ... // wait for the consumer

19 }}}

20

21 class Consumer<BufferRegion r> {

22 void run(RHandle<r> h) {

23 while(true) {

24 ... // wait for the producer

25 (RHandle<BufferSubRegion r2> h2 = h.b) {

26 Frame<r2> frame = h2.f;

27 h2.f = null;

28 process_image(frame);

29 }

30 ... // wake up the producer

31 }}}

32

33 (RHandle<BufferRegion r> h) {

34 fork (new Producer<r>).run(h);

35 fork (new Consumer<r>).run(h);

36 }

Figure 6-10: Producer Consumer Example

6.3 Regions for Real-Time Programs

A real-time program consists of a set of real-time threads, a set of regular threads, and
a special garbage collector thread. (This is a conceptual model; actual implementations
might differ.) A real-time thread has strict deadlines for completing its tasks.1

Figure 6-11 presents the language extensions to support real-time programs. The expression
“RT fork v.mn 〈owner ∗〉(v∗)” spawns a new real-time thread to evaluate mn . Such a thread
cannot afford to be interrupted for an unbounded amount of time by the garbage collector—
the rest of this section explains how SafeJava statically ensures this property.

1Our terminology is related, but not identical to the RTSJ terminology. E.g., our real-time threads are
similar to (and more restrictive than) the RTSJ NoHeapRealtimeThreads.
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meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ {e}
effects ::= accesses owner ∗
owner ::= ... as in Figure 6-4 ... | RT

subsreg ::= srkind :rpol tt rsub
rpol ::= LT(size) | VT

tt ::= RT | NoRT
k ::= ... as in Figure 6-4 ... | rkind :LT

e ::= ... as in Figure 6-9 ... |
(RHandle〈rkind :rpol r〉 h) { e } | RT fork v.mn 〈owner ∗〉(v∗)

Figure 6-11: Grammar Extensions to Support Regions in Realtime Programs

Effects

The garbage collector thread must synchronize with any thread that creates or destroys
heap roots, i.e., references to heap objects, otherwise it might end up collecting reachable
objects. Therefore, we must ensure that the real-time threads do not read or overwrite
references to heap objects. (The last restriction is needed to support copying collectors.)
To statically check this, we allow methods to declare effects clauses [106]. In our system, the
effects clause of a method lists the owners (some of them regions) that the method accesses.
Accessing a region means allocating an object in that region. Accessing an object means
reading or overwriting a reference to that object or allocating another object owned by that
object. Note that we do not consider reading or writing a field of an object as accessing
that object. If a method’s effects clause consists of owners o1..n, then any object or region
accessed by that method, the methods it invokes, and the threads it spawns (transitively)
is guaranteed to be outlived by oi, for some i ∈ {1..n}.
The typing rule for an RT fork expression checks all the constraints of a regular fork ex-
pression. In addition, it checks that references to heap objects are not passed as arguments
to the new thread, and that the effects clause of the method evaluated in the new thread
does not contain the heap region or any object allocated in the heap region. If an RT fork
expression typechecks, the new real-time thread cannot receive any heap reference. Fur-
thermore, it cannot create a heap object, or read or overwrite a heap reference in an object
field—the type system ensures that in each of the above cases, the heap region or an object
allocated in the heap region appears in the method effects.

Region Allocation Policies

A real-time thread cannot create an object if this operation requires allocating new memory,
because allocating memory requires synchronization with the garbage collector. A real-time
thread can, however, create an object in a preallocated memory region.

SafeJava supports two allocation policies for regions. One policy is to allocate memory on
demand (potentially in large chunks), as new objects are created in the region. Allocating
a new object can take unbounded time or might not even succeed (if a new chunk is needed
and the system runs out of memory). Flushing the region frees all the memory allocated
for that region. Following the RTSJ terminology, we call such regions VT (Variable Time)
regions.

The other policy is to allocate all the memory for a region at region creation time. The
programmer must provide an upper bound for the total size of the objects that will be
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allocated in the region. Allocating an object requires sliding a pointer—if the region is
already full, the system throws an exception to signal that the region size was too small.
Allocating a new object takes time linear in its size: sliding the pointer takes constant time,
but we also have to set to zero each allocated byte. Flushing the region simply resets a
pointer, and, importantly, does not free the memory allocated for the region. We call regions
that use this allocation policy LT (Linear Time) regions. Once we have an LT subregion,
threads can repeatedly enter it, allocate objects in it, exit it (thus flushing it), and re-enter
it without having to allocate new memory. This is possible because flushing an LT region
does not free its memory. LT subregions are thus ideal for real-time threads: once such a
subregion is created (with a large enough size), all object creations will succeed, in linear
time; moreover, the subregion can be flushed and reused without memory allocation.

We allow users to specify the region allocation policy (LT or VT) when a new region is
created. The policy for subregions is declared in the shared region kind declarations. When
a user specifies an LT policy, the user also has to specify the size of the region (in bytes).
An expression “(RHandle〈rkind :rpol r〉 h) {e}” creates a region with allocation policy rpol
and allocates memory for all its (transitive) LT (sub)regions (including itself). SafeJava
checks that a region has a finite number of transitive subregions.

If a method enters a VT region or a top level region (i.e., a region that is not a subregion),
the typechecker ensures that the method contains the heap region in its effects clause. This
is to prevent real-time threads from invoking such methods. However, a method that does
not contain the heap region in its effects clause can still enter an existing LT subregion,
because no memory is allocated in that case.

Preventing the RTSJ Priority Inversion

So far, we presented techniques for checking that real-time threads do not create or destroy
heap references, create new regions, or allocate objects in VT regions. However, there are
two other subtle ways a thread can interact with the garbage collector.

First, the garbage collector needs to know all locations that refer to heap objects, including
locations that are inside regions. Suppose a real-time thread uses an LT region that contains
such heap references (created by a non-real-time thread). The real-time thread can flush the
region (by exiting it) thus destroying any heap reference that existed in the region. If we use
a copying garbage collector, the real-time thread has to interact with the garbage collector
to inform it about the destruction of those heap references. Therefore, we should prevent
regions that can be flushed by a real-time thread from containing any heap reference (even
if the reference is not explicitly read or overwritten by the real-time thread). Note that
this restriction is relevant only for subregions: a real-time thread cannot create a top-level
region and hence cannot flush a top-level region either.

Second, when a thread enters or exits a subregion, it needs to do some bookkeeping. To pre-
serve the integrity of the runtime region implementation, some synchronization is necessary
during this bookkeeping. E.g., when a thread exits a subregion, the test that the subregion
can be flushed and the actual flushing have to be executed atomically, without allowing
any thread to enter the subregion “in between”. If a regular thread exiting a subregion is
suspended by the garbage collector, then a real-time thread entering the subregion might
have to wait for an unbounded amount of time.
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The above priority inversion problem occurs even in the RTSJ. To prevent these subtle
interactions, we impose the restriction that real-time threads and regular threads cannot
share subregions. Subregions used by real-time threads thus cannot contain heap references,
and real-time threads never have to wait for unbounded amounts of time.

For each subregion, programmers specify in the region kind definitions whether the sub-
region will be used only by real-time threads (RT subregions) or only by regular threads
(NoRT subregions). Note that real-time and regular threads can still communicate using
top-level regions. Any method that enters an RT subregion must contain the special effect
RT in its effects clause. Any method that enters a NoRT subregion must contain the heap
region in its effects clause. The type system checks that no regular thread can invoke a
method that has an RT effect, and no real-time thread can invoke a method that has a heap
effect.

6.4 Formal Description

Previous sections presented the grammar for our core language in Figures 6-4, 6-9, and 6-11.
This section presents some sample typing rules. Appendix 6.A at the end of this chapter
contains all the rules.

The core of our type system is a set of typing judgments of the form P; E; X; rcr ` e : t.
P, the program being checked, is included to provide information about class definitions.
The typing environment E provides information about the type of the free variables of e
(t v, i.e., variable v has type t), the kind of the owners currently in scope (k o, i.e., owner
o has kind k), and the two relations between owners: the “ownership” relation (o2 º o1,
i.e., o2 owns o1) and the “outlives” relation (o2 ºr o1, i.e., o2 outlives o1). More formally,
E ::= ∅ | E, t v | E, k o | E, o2 º o1 | E, o2 ºr o1. rcr is the current region. X must
subsume the effects of e. t is the type of the expression e.

A useful auxiliary rule is E ` X1 ºr X2, i.e., the effects X1 subsume the effects X2: ∀o ∈ X2,
∃g ∈ X1, s.t. g ºr o. To prove constraints of the form g ºr o, g º o etc. in a specific
environment E, the checker uses the constraints from E, and the properties of ºr and º:
transitivity, reflexivity, º implies ºr, and the fact that the first owner from the type of an
object owns the object.

The expression “(RHandle〈r〉 h) {e}” creates a local region and evaluates e in an environ-
ment where r and h are bound to the new region and its handle respectively. The associated
typing rule is presented below:

[EXPR LOCAL REGION]

E2 = E, LocalRegion r, RHandle〈r〉 h, (re ºr r)∀re∈Regions(E)

P `env E2 P; E2; X, r; r ` e : t E ` X ºr heap
P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

The rule starts by constructing an environment E2 that extends the original environment
E by recording that r has kind LocalRegion and h has type RHandle〈r〉. As r is deleted at
the end of e, all existing regions outlive it; E2 records this too (Regions(E) denotes the set
of all regions from E). e should typecheck in the context of the environment E2 and the
permitted effects are X, r (the local region r is a permitted effect inside e). Because creating
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a region requires memory allocation, X must subsume heap. The expression is evaluated
only for its side-effects and its result is never used. Hence, the type of the entire expression
is int.

The rule for a field read expression “v.fd” first finds the type cn 〈o1..n〉 for v. Next, it
verifies that fd is a field of class cn ; let t be its declared type. The rule obtains the type of
the entire expression by substituting in t each formal owner parameter fni of cn with the
corresponding owner oi:

[EXPR REF READ] P; E; X; rcr ` v : cn 〈o1..n〉 P ` (t fd ) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

((t′ = int) ∨ (t′ = cn′〈o′1..m〉 ∧ E ` X ºr o′1))
P; E; X; rcr ` v.fd : t′

The last line of the rule checks that if the expression reads an object reference (i.e., not an
integer), then the list of effects X subsumes the owner of the referenced object.

For an object allocation expression “new cn 〈o1..n〉”, the rule first checks that class cn is
defined in P:

[EXPR NEW] class cn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ... ∈ P
∀i = 1..m, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi ºr o1)

∀i = 1..c, E ` constr i[o1/fn1]..[om/fnm]
E ` X ºr o1 E `av RH(o1)

P; E; X; rcr ` new cn 〈o1..n〉 : cn 〈o1..n〉

Next, it checks that each formal owner parameter fni of cn is instantiated with an owner
oi of appropriate kind, i.e., the kind k ′i of oi is a subkind of the declared kind ki of fni. It
also checks that in E, each owner oi outlives the first owner o1, and each constraint of cn
is satisfied. Allocating an object means accessing its owner; therefore, X must subsume o1.
The new object is allocated in the region o1 (if o1 is a region) or in the region that o1 is
allocated in (if o1 is an object). The last part of the precondition, E `av RH(o1), checks
that the handle for this region is available. To prove facts of this kind, the type system uses
the following rules:

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2

E `av RH(r)

[AV THIS]

E `av RH(this)

[AV TRANS1]

E ` o1 º o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o1 º o2 E `av RH(o1)
E `av RH(o2)

The rule [AV HANDLE] looks for a region handle in the environment. The environment
always contains handles for heap and immortal; in addition, it contains all handle identifiers
that are in scope. The rule [AV THIS] reflects the fact that our runtime is able to find the
handle of the region where an object (this in particular) is allocated. The last two rules
use the fact that all objects are allocated in the same region as their owner. Therefore, if
o1 º o2 and the region handle for one of them is available, then the region handle for the
other one is also available. Note that these rules do significant reasoning, thus reducing
annotation burden; e.g., if a method allocates only objects (transitively) owned by this, it
does not need an explicit region handle argument.

We end this section with the typing rule for fork. The rule first checks that the method
call is well-typed. (see rule [EXPR INVOKE] in Appendix 6.A). Note that mn cannot have
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the RT effect: a non-real-time thread cannot enter a subregion that is reserved only for
real-time threads.

[EXPR FORK] P; E; X \ {RT}; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)
E ` RKind(rcr)=kcr NonLocal(kcr)

P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ NonLocal(ki))
P; E; X; rcr ` fork v0.mn 〈o(n+1)..m〉(v1..u) : int

The rule checks that the new thread does not receive any local region or objects allocated
in a local region. It uses the following observation: the only owners that appear in the
types of the method arguments are: initialRegion, this, the formals for the method and
the formals for the class the method belongs to. Therefore, the arguments passed to the
method mn from the fork instruction may be owned only by the current region at the point
of the fork, by the owners o1..n that appear in the type of the object v0 points to, or by the
owners o(n+1)..m that appear explicitly in the fork instruction. For each such owner o, our
system uses the rule E ` RKind(o)=k to extract the kind k of the region it stands for (if
it is a region), or of the region it is allocated in (if it is an object). The rule next checks
that k is a subkind of SharedRegion or GCRegion. The rules for inferring statements of the
form E ` RKind(oi)=ki (see Appendix 6.A) are similar to the previously explained rules for
checking that a region handle is available. The key idea they exploit is that a subobject is
allocated in the same region as its owner.

6.5 Type Inference

Although SafeJava is explicitly typed in principle, it would be onerous to fully annotate
every method with the extra type information that SafeJava requires. Instead, we use a
combination of type inference and well-chosen defaults to significantly reduce the number of
annotations needed in practice. SafeJava also supports user-defined defaults to cover specific
patterns that might occur in user code. We emphasize that our approach to inference is
purely intraprocedural and we do not infer method signatures or types of instance variables.
Rather, we use a default completion of partial type specifications in those cases. This
approach permits separate compilation.

The following are some defaults currently provided by SafeJava. If owners of method local
variables are not specified, we use a simple unification-based approach to infer the owners.
We described this approach in Section 4.5 in Chapter 4. For parameters unconstrained
after unification, we use initialRegion. For unspecified owners in method signatures, we use
initialRegion as the default. For unspecified owners in instance variables, we use the owner
of this as the default. For static fields, we use immortal as the default. Our default accesses
clauses contain all class and method owner parameters and initialRegion.

6.6 Translation to Real-Time Java

Although our system provides significant improvements over the RTSJ, programs in our
language can be translated to RTSJ reasonably easily, by local translation rules. This is
mainly because we designed our system so that it can be implemented using type erasure
(region handles exist specifically for this purpose). Also, RTSJ has mechanisms that are
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Figure 6-12: Translation of a Region With Three Fields and Two Subregions.

powerful enough to support our features. RTSJ offers LTMemory and VTMemory regions
where it takes linear time and variable time (respectively) to allocate objects. RTSJ regions
are Java objects that point to some memory space. In addition, RTSJ has two special
regions: heap and immortal. A thread can allocate in the current region using new. A
thread can also allocate in any region that it entered using newInstance, which requires the
corresponding region object. RTSJ regions are maintained similarly to our shared regions,
by counting the number of threads executing in them. RTSJ regions have one portal, which
is similar to a portal field except that its declared type is Object. Most of the translation
effort is focused on providing the missing features: subregions and multiple, typed portal
fields. We discuss the translation of several important features from our type system; the
full translation is discussed in Appendix 6.B at the end of this chapter.

We represent a region r from our system as an RTSJ region m plus two auxiliary objects
w1 and w2 (see Figure 6-12). m points to a memory area that is pre-allocated for an LT
region, or grown on-demand for a VT region. m also points to an object w1 whose fields
point to the representation of r’s subregions. (We subclass LT/VTMemory to add an extra
field.) In addition, m’s portal points to an object w2 that serves as a wrapper for r’s portal
fields. w2 is allocated in the memory space attached to m, while m and w1 are allocated in
the region that was current at the time m was created.

The translation of “new cn 〈o1..n〉” requires a reference to (i.e., the handle of) the region
we allocate in. If this is the same as the current region, we use the more efficient new.
The type rules already proved that we can obtain the necessary handle, i.e., E `av RH(o1);
we presented the relevant type rules in Section 6.4. Those rules “pushed” the judgment
E `av RH(o) up and down the ownership relation until we obtained an owner whose region
handle was available: immortal, heap, this, or a region whose region handle was available in a
local variable. RTSJ provides mechanisms for retrieving the handle in the first three cases:
ImmortalArea.instance(), HeapArea.instance(), and MethodArea.getMethodArea(Object), re-
spectively. In the last case, we simply use the handle from the local variable.

6.7 Programming Experience

To gain preliminary experience, we implemented several programs in SafeJava. These in-
clude two micro benchmarks (Array and Tree), two scientific computations (Water and
Barnes), several components of an image recognition pipeline (load, cross, threshold, hys-
teresis, and thinning), and several simple servers (http, game, and phone, a database-backed
information sever). In our implementations, the primary data structures are allocated in
regions (i.e., not in the garbage collected heap). In each case, once we understood how
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Program Lines of Code Lines Changed
Array 56 4
Tree 83 8
Water 1850 31
Barnes 1850 16
ImageRec 567 8
http 603 20
game 97 10
phone 244 24

Figure 6-13: Programming Overhead

Execution Time (sec)
Program Static Dynamic Overhead

Checks Checks
Array 2.24 16.2 7.23
Tree 4.78 23.1 4.83
Water 2.06 2.55 1.24
Barnes 19.1 21.6 1.13
ImageRec 6.70 8.10 1.21

load 0.667 0.831 1.25
cross 0.014 0.014 1.0
threshold 0.001 0.001 1
hysteresis 0.005 0.006 1
thinning 0.023 0.026 1.1
save 0.617 0.731 1.18

Figure 6-14: Dynamic Checking Overhead

the program worked and decided on the memory management policy to use, adding the
extra type annotations was fairly straightforward. Figure 6-13 presents a measure of the
programming overhead involved. It shows the number of lines of code that needed type
annotations. In most cases, we only had to change code where regions were created.

We also used our RTSJ implementation to measure the execution times of these programs
both with and without the dynamic checks specified in the Real-Time Specification for
Java. Figure 6-14 presents the running times of the benchmarks both with and without
dynamic checks. Note that there is no garbage collection overhead in any of these running
times because the garbage collector never executes. Our micro benchmarks (Array and
Tree) were written specifically to maximize the checking overhead—our development goal
was to maximize the ratio of assignments to other computation. These programs exhibit the
largest performance increases—they run approximately 7.2 and 4.8 times faster, respectively,
without checks. The performance improvements for the scientific programs and image
processing components provide a more realistic picture of the dynamic checking overhead.
These programs have more modest performance improvements, running up to 1.25 times
faster without the checks. For the servers, the running time is dominated by the network
processing overhead and check removal has virtually no effect. We present the overhead
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of dynamic referencing and assignment checks in this thesis. For a detailed analysis of the
performance of a full range of RTSJ features, see [46, 47].

6.8 Related Work

The seminal work in [129, 128] introduces a static type system for region-based memory
management for ML. SafeJava extends this to object-oriented programs by combining the
benefits of region types and ownership types in a unified type system framework. SafeJava
extends region types to multithreaded programs by allowing long-lived threads to share
objects without using the heap and without having memory leaks. SafeJava extends region
types to real-time programs by ensuring that real-time threads do not interfere with the
garbage collector.

One disadvantage with most region-based management systems is that they enforce a lexical
nesting on region lifetimes; so objects allocated in a given region may become inaccessible
long before the region is deleted. [4] presents an analysis that enables some regions to
be deleted early, as soon as all of the objects in the region are unreachable. Other ap-
proaches include the use of linear types to control when regions are deleted [48, 52]. None
of these approaches currently support object-oriented programs and the consequent sub-
typing, multithreaded programs with shared regions, or real-time programs with real-time
threads (although it should be possible to extend them to do so). Conversely, it should also
be possible to apply these techniques to SafeJava. In fact, existing systems already combine
ownership-based type systems and unique pointers [44, 26, 6].

RegJava [39] has a region type system for object-oriented programs that supports subtyping
and method overriding. Cyclone [80] is a dialect of C with a region type system. SafeJava
improves on these two systems by combining the benefits of ownership types and region
types in a unified framework. An extension to Cyclone handles multithreaded programs
and provides shared regions [79]. SafeJava improves on this by providing subregions in
shared regions and portal fields in subregions, so that long-lived threads can share objects
without using the heap and without having memory leaks. Other systems for regions [72, 73]
use runtime checks to ensure memory safety. These systems are more flexible, but they do
not statically ensure safety.

To our knowledge, SafeJava is the first static type system for memory management in real-
time programs. [54, 55] automatically translates Java code into RTSJ code using off-line
dynamic analysis to determine the lifetime of an object. Unlike SafeJava, this system does
not require type annotations. It does, however, impose a runtime overhead and it is not
safe because the dynamic analysis might miss some execution paths. Programmers can use
this analysis to obtain suggestions for region type annotations. [121] uses escape analysis
to remove RTSJ runtime checks [122]. However, the analysis is effective only for programs
in which no object escapes the computation that allocated it. SafeJava is more flexible: we
allow a computation to allocate objects in regions that may outlive the computation.

Real-time garbage collection [12, 10] provides an alternative to region-based memory man-
agement for real-time programs. It has the advantage that programmers do not have to
explicitly deal with memory management. The idea is to perform a fixed amount of garbage
collection activity for a given amount of allocation. With fixed-size allocation blocks and
in the absence of cycles, reference counting can deliver a real-time garbage collector that
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imposes no space overhead as compared with manual memory management. Copying and
mark and sweep collectors, on the other hand, pay space to get bounded-time allocation.
The amount of extra space depends on the maximum live heap size, the maximum allocation
rate, and other memory management parameters. The additional space allows the collector
to successfully perform allocations while it processes the heap to reclaim memory.

To obtain the real-time allocation guarantee, the programmer must calculate the required
memory management parameters, then use those values to provide the collector with the
required amount of extra space. In contrast, region-based memory management provides an
explicit mechanism that programmers can use to structure code based on their understand-
ing of the memory usage behavior of a program; this mechanism may enable programmers
to obtain a smaller space overhead. The additional development burden consists of grouping
objects into regions and determining the maximum size of LT regions [74, 75].

6.9 Conclusions

The Real-Time Specification for Java (RTSJ) allows programs to create real-time threads
and use region-based memory management. The RTSJ uses runtime checks to ensure mem-
ory safety. This chapter describes how the SafeJava type system statically guarantees that
these runtime checks will never fail for well-typed programs. SafeJava therefore 1) provides
an important safety guarantee and 2) makes it possible to eliminate the runtime checks and
their associated overhead.

SafeJava also makes several contributions over previous work on region types. For object-
oriented programs, it combines the benefits of region types and ownership types in a unified
type system framework. For multithreaded programs, it allows long-lived threads to share
objects without using the heap and without having memory leaks. For real-time programs,
it ensures that real-time threads do not interfere with the garbage collector.

Our experience indicates that SafeJava is sufficiently expressive and requires little program-
ming overhead, and that eliminating the RTSJ runtime checks using a static type system
can significantly decrease the execution time of real-time programs.
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6.A Rules for Type Checking

This section formally describes our type system for region-based memory management.
To simplify the presentation of the key ideas, it builds on the type system presented in
Appendix 2.A at the end of Chapter 2. The grammar for the type system is shown below.

P ::= defn ∗ srkdef ∗ e
defn ::= class cn 〈formal+〉 extends c where constr ∗ { field ∗ meth ∗ }

formal ::= k fn
c ::= cn 〈owner+〉 | Object〈owner 〉

owner ::= fn | r | this | initialRegion | heap | immortal | RT
field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ { e }

effects ::= accesses owner ∗
constr ::= owner owns owner | owner outlives owner

t ::= c | int | RHandle〈r〉

srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind where constr ∗ { field ∗ subsreg ∗ }
subsreg ::= srkind :rpol tt rsub
srkind ::= SharedRegion | srkn 〈owner ∗〉
rkind ::= Region | NoGCRegion | GCRegion | LocalRegion | srkind

k ::= Owner | ObjOwner | rkind | rkind :LT

rpol ::= LT(size) | VT
tt ::= NoRT | RT

e ::= v | let v = e in { e } | v.fd | v.fd = v | v.mn 〈owner ∗〉(v∗) | new c |
fork v.mn 〈owner ∗〉(v∗) | RT fork v.mn 〈owner ∗〉(v∗) | h.fd | h.fd = v |
(RHandle〈r〉 h) { e } | (RHandle〈rkind :rpol r〉 h) { e } | (RHandle〈r〉 h = [new]opt h.rsub ) { e }

h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Throughout this appendix, we try to use the same notations as in the grammar. However,
to save space, we use o instead of owner and f instead of formal . We also use g and a
to range over the set of owners. We assume the program source has been preprocessed by
replacing each constraint “o1 owns o2” with the non-ASCII, but shorter form “o1 º o2” and
each constraint “o1 outlives o2” with “o1 ºr o2.”

We first define a number of predicates used in the type system. These are based on similar
predicates from [70, 68]. Most of these predicates are straightforward and we omit their
definitions for brevity; the only exception is InheritanceOK (P), which we define formally
in the set of rules.

Predicate Meaning
WFClasses(P) No class is defined twice and there is no cycle in the class hierarchy.
WFRegionKinds(P) No region kind is defined twice and there is no cycle in the region kind hi-

erarchy. In addition, no region kind has an infinite number of (transitive)
subregions.

MembersOnce(P) No class or region kind contains two fields with the same name, either declared
or inherited. Similarly, no class declares two methods with the same name.

InheritanceOK (P) The constraints of a sub-class/kind are included among the super-class/kind
constraints. For overriding methods, in addition to the usual subtyping rela-
tions between the return/parameter types, the constraints of the overrider are
included among the constraints of the overridden method; a similar relation
holds for the effects.
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The core of our type system is a set of typing judgments of the form P; E; X; rcr ` e : t.
P, the program being checked, is included to provide information about class definitions.
The typing environment E provides information about the type of the free variables of e
(t v, i.e., variable v has type t), the kind of the owners currently in scope (k o, i.e., owner
o has kind k), and the two relations between owners: the “ownership” relation (o2 º o1,
i.e., o2 owns o1) and the “outlives” relation (o2 ºr o1, i.e., o2 outlives o1). More formally,
E ::= ∅ | E, t v | E, k o | E, o2 º o1 | E, o2 ºr o1. rcr is the current region. X must
subsume the effects of e. t is the type of e.

We define the type system using the following judgments. We present the typing rules for
these judgments after that.

Judgment Meaning
` P : t Program P has type t.
P `def defn defn is a well formed class definition from program P .
P `srkdef srkdef j srkdef j is a well formed shared region kind definition from program P .
P; E;X; rcr ` e : t In program P, environment E, and current region rcr, expression e has type t.

Its evaluation accesses only objects (transitively) outlived by owners listed in
the effects X.

P `env E E is a well formed environment with respect to program P .
P; E `meth meth Method definition meth is well defined with respect to program P and environ-

ment E.
P ` mbr ∈ c Class c defines or inherits “member” definition mbr . “Member” refers to a field

or a method: mbr = field | meth .
P ` rmbr ∈ rkind Shared region kind rkind defines or inherits “region member” definition rmbr .

“Region member” refers to a field or a subregion: rmbr = field | subsreg .
P; E `type t t is a well formed type with respect to program P and environment E.
P ` t1 ≤ t2 In program P, t1 is a subtype of t2.
P; E `okind k k is a well formed owner kind, with respect to program P and environment E.
P ` k1 ≤k k2 In program P, k1 is a subkind of k2.
E ` X2 ºr X1 Effect X1 is subsumed by effect X2, with respect to environment E.
E ` constr In environment E, constr is well formed (i.e., the owners involved in it are well

formed) and satisfied.
E `k o : k In environment E, o is a well formed owner with kind k.
E ` RKind(o)=k Owner o is either a region of kind k or an object allocated in such a region.
E `av RH(o) The handle of the region o is allocated in (if o is an object) or o stands for (if

it is a region) is available in the environment E.
E ` o2 º o1 In environment E, owner o2 (an object or a region) owns owner o1 (which must

be an object).
E ` o2 ºr o1 In environment E, owner o2 outlives owner o1.
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` P : t

[PROG]

WFClasses(P) WFRegionKinds(P) MembersOnce(P) InheritanceOK (P)

P = defn1..n srkdef 1..r e ∀i = 1..n, P `def defni ∀i = 1..r, P `srkdef srkdef j

E = ∅, GCRegion heap, SharedRegion :LT immortal, RHandle〈heap〉 hheap, RHandle〈immortal〉 himmortal

P; E;world; heap ` e : t
` P : t

P `def defn

[CLASS DEF]

E = ∅, GCRegion heap, SharedRegion :LT immortal, RHandle〈heap〉 hheap, RHandle〈immortal〉 himmortal,
(ki fni)i=1..n, constr1..p, cn 〈fn1..n〉 this, (fni ºr fn1)i=2..n

defn = class cn 〈(ki fni)i=1..n〉 extends c where constr1..p { field1..m meth1..q } P = ...defn ...

P `env E P; E `type c ∀j = 1..m, (fieldj = tj fdj ∧ P; E `type tj) ∀k = 1..q, P; E `meth methk

P `def defn

P `srkdef srkdef

[REGION KIND DEF]

srkdef = regionKind srkn 〈(ki fni)i=1..n〉 extends r where constr1..c { field1..m subsreg1..s } P = ... srkdef ...

E = ∅, (ki fni)i=1..n, constr1..c, srkn 〈fn1..n〉 this, (fni ºr this)i=1..n P `env E P; E `okind r

∀j = 1..m, (fieldj = tj fdj ∧ P; E `type tj)

∀k = 1..s, (subsregk = srkindk :rpolk tt rsubk ∧ P; E `srkind srkindk)
P `srkdef srkdef

P `env E

[ENV ∅]

P `env ∅

[ENV v]

P `env E
v 6∈ Dom(E)
P; E `type t

P `env E, t v

[ENV OWNER]

P `env E
o 6∈ Dom(E)
P; E `okind k
P `env E, k o

[ENV º]

P `env E
E `k o1 : ObjOwner

E `k o2 : k
P `env E, o1 º o2

[ENV ºr ]

P `env E
E `k o1 : k1

E `k o2 : k2

P `env E, o1 ºr o2

P; E `type t

[TYPE INT]

P; E `type int

[TYPE OBJECT]

E `k o : k
P; E `type Object〈o〉

[TYPE REGION HANDLE]

E `k r : k
P ` k ≤k Region

P; E `type RHandle〈r〉

[TYPE C]

P = ... defn ... defn = class cn 〈(ki fni)i=1..n〉 ... where constr1..c ...
∀i = 1..n, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi ºr o1) ∀i = 1..c, E ` constr i[o1/fn1]..[on/fnn]

P; E `type cn 〈o1..n〉

P ` t1 ≤ t2

[SUBTYPE REFL]

P ` t ≤ t

[SUBTYPE TRANS]

P ` t1 ≤ t2 P ` t2 ≤ t3
P ` t1 ≤ t3

[SUBTYPE CLASS]

P `def class cn 〈(ki fni)i=1..n〉extends cn2〈fn1 o∗〉 ...
P ` cn 〈o1..n〉 ≤ cn2〈fn1 o∗〉[o1/fn1]..[on/fnn]
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P; E `meth meth

[METHOD]

E′ = E, f1..n, constr1..c, (tj pj)j=1..p, Region initialRegion, RHandle〈initialRegion〉 hfresh

P `env E′∀i = 1..q, (E′ `k ai : ki ∨ ai = RT) P; E′; a1..q ; initialRegion ` e : t
P; E `meth t mn 〈f1..n〉((tj pj)j=1..p) accesses a1..q where constr1..c {e}

P; E `okind k

[STANDARD OWNERS]

k ∈ {Owner, ObjOwner, Region, GCRegion, NoGCRegion, LocalRegion, SharedRegion}
P; E `okind k

[LT REGIONS]

P; E `okind rkind
P; E `okind rkind :LT

[USER DECLARED SHARED REGION]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 ... where constr1..c ...
∀i = 1..n, (E `k oi : k ′i P ` k ′i ≤k ki)
∀i = 1..c, E ` constr i[o1/fn1]..[on/fnn]

P; E `okind srkn 〈o1..n〉

P ` k1 ≤k k2

[SUBKIND REFL]

P ` k ≤k k

[SUBKIND TRANS]

P ` k1 ≤k k2 P ` k2 ≤k k3

P ` k1 ≤k k3

[SUBKIND VALUE]

P ` Value ≤k k

[SUBKIND OWNER]

k ∈ {ObjOwner, Region}
P ` k ≤k Owner

[SUBKIND REGION]

k ∈ {GCRegion, NoGCRegion}
P ` k ≤k Region

[SUBKIND NOGCREGION]

k ∈ {LocalRegion, SharedRegion}
P ` k ≤k NoGCRegion

[SUBKIND SHARED REGION KIND]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 extends r ...
P ` srkn 〈o1..on〉 ≤k r[o1/fn1]..[on/fnn]

[DELETE LT]

P ` rkind :LT ≤k rkind

[ADD LT]

P ` rkind1 ≤k rkind2

P ` rkind1 :LT ≤k rkind2 :LT

P ` mbr ∈ c, where mbr = field | meth

[INHERITED CLASS MEMBER]

P `def class cn2〈(ki fn ′i)i=1..m〉 extends cn 〈o1..n〉... P ` mbr ∈ cn 〈fn1..n〉
P ` mbr [o1/fn1]..[on/fnn] ∈ cn2〈fn ′1..m〉

[DECLARED CLASS MEMBER]

P `def class cn 〈(ki fni)i=1..n〉 ... {... mbr ...}
P ` mbr ∈ cn 〈fn1..n〉

P ` rmbr ∈ rkind , where rmbr = field | subsreg

[DECLARED REGION MEMBER]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 ... { ... rmbr ... }
P ` rmbr ∈ srkn 〈fn1..n〉

[INHERITED REGION MEMBER]

P ` rmbr ∈ srkn 〈fn1..n〉
P `srkdef regionKind srkn 〈(ki fn ′i)i=1..m〉 extends srkn 〈o1..n〉 ...

P ` rmbr [o1/fn1]..[on/fnn] ∈ srkn2〈fn ′1..m〉

E ` constr

[ENV CONSTR]

E = E1, constr , E2

E ` constr

[º world]

o 6= RT
E ` world ºr o

[º OWNER]

E = E1, cn 〈o1..n〉 this, E2

E ` o1 º this

[º REFL]

E ` o º o

[º TRANS]

E ` o1 º o2 E ` o2 º o3

E ` o1 º o3

[º → ºr ]

E ` o1 º o2

E ` o1 ºr o2

[ºr heap/immortal]

o1∈{heap, immortal}
E ` o1 ºr o2
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[ºr REFL]

E ` o ºr o

[ºr TRANS]

E ` o1 ºr o2 E ` o2 ºr o3

E ` o1 ºr o3

E ` X1 ºr X2

[X1 ºr X2]

∀o ∈ X1, ∃g ∈ X2, E ` o ºr g
E ` X1 ºr X2

E `k o : k

[OWNER THIS]

E = E1, cn 〈...〉 this, E2

E `k this : Owner

[OWNER FORMAL]

E = E1, k o, E2

E `k o : k

E ` RKind(o)=k

[RKIND THIS]

E = E1, cn 〈o1..n〉 this, E2

E ` RKind(o1)=k
E ` RKind(this)=k

[RKIND FN1]

E `k fn : k
k 6∈ {Owner, ObjOwner}

E ` RKind(fn )=k

[RKIND FN2]

E `k fn : k k ∈ {Owner, ObjOwner}
E ` o º fn E ` RKind(o)=k2

E ` RKind(fn )=k

E `av RH(o)

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2

E `av RH(r)

[AV THIS]

E = E1, cn 〈o1..n〉 this, E2

E `av RH(this)

[AV TRANS1]

E ` o1 º o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o2 º o1 E `av RH(o2)
E `av RH(o1)

InheritanceOK(P)

[INHERITANCEOK REGION KIND]

srkdef = regionKind srkn 〈f1..n〉 extends srkn′〈o1..m〉 where constr1..q ...
srkdef ′ = regionKind srkn ′〈(k ′i fn ′i)i=1..m〉 extends srkind where constr ′1..s ...

P `srkdef srkdef ′ constr1..s[o1/fn ′1]..[om/fn′m] ⊆ constr ′1..q

P ` InheritanceOK (srkdef )

[INHERITANCEOK PROG]

P = defn1..n srkdef 1..r e
∀i = 1..n, P ` InheritanceOK (defni)
∀i = 1..r, P ` InheritanceOK (srkdef i)

InheritanceOK (P)

[INHERITANCEOK CLASS]

defn = class cn 〈(ki fni)i=1..n〉 extends cn 〈o1..m〉where constr1..q ...
defn′ = class cn′〈(k ′i fn ′i)i=1..m〉 extends c where constr ′1..u ...

P `def defn′ constr1..u[o1/fn ′1]..[om/fn′m] ⊆ constr ′1..q

∀mn , ( P ` meth ∈ defn ∧ meth = tr mn 〈...〉(...) ... ∧
P ` meth′ ∈ defn′ ∧ meth = t′r mn 〈...〉(...) ... )

→ P ` OverridesOK (meth ,meth′)
P ` InheritanceOK (defn )

[OVERRIDESOK METHOD]

meth = tr mn 〈f1..n〉((ti pi)i=1..m) accesses a1..qwhere constr1..r ...
meth′ = t′r mn 〈f1..n〉((t′i p′i)i=1..m) accesses a′1..swhere constr ′1..u ...

P ` t′r ≤ tr ∀i = 1..m, P ` ti ≤ t′i
a′1..q ⊆ a1..s constr ′1..r ⊆ constr1..u

P ` OverridesOK (meth ,meth′)

P; E; X; rcr ` e : t

[EXPR VAR]

E = E1, t v, E2

P; E; X; rcr ` v : t

[EXPR REF READ]

P; E; X; rcr ` v : cn 〈o1..n〉
P ` (t fd ) ∈ cn 〈fn1..n〉 t′ = t[o1/fn1]..[on/fnn]

(t′ = int) ∨ (t′ = cn′〈o′1..m〉 ∧ E ` X ºr o′1)
P; E; X; rcr ` v.fd : t′

[EXPR REf WRITE]

P; E; X; rcr ` v1 : cn 〈o1..n〉
P ` (t fd ) ∈ cn 〈fn1..n〉 t′ = t[o1/fn1]..[on/fnn]

P; E; X; rcr ` v2 : t2 P ` t2 ≤ t′
(t′ = int) ∨ (t′ = cn′〈o′1..m〉 ∧ E ` X ºr o′1)

P; E; X; rcr ` v1.fd = v2 : t′
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[EXPR INVOKE]

P; E; X; rcr ` v : cn 〈o1..n〉 ∀i = (n + 1)..m, E ` oi ºr o1 P ` meth ∈ cn 〈fn1..n〉
meth = t mn 〈(ki fni)i=(n+1)..m〉 ((tj pj)j=1..u)accesses Xm where constr1..c {e}

Rename(α)
def
= α[o1/fn1]..[om/fnm][rcr/initialRegion]

∀i = 1..u, (P; E; X; rcr ` vi : t′i ∧ P ` t′i ≤ Rename(ti))
∀i = (n + 1)..m, (E `k oi : k ′i ∧ P ` k ′i ≤k Rename(ki))

E ` X ºr Rename(Xm) ∀i = 1..c, E ` Rename(constr i)
P; E; X; rcr ` v.mn 〈o(n+1)..m〉(v1..u) : Rename(t)

[EXPR LET]

P; E; X; rcr ` e1 : t1 E′ = E, t1 v
P `env E′ P; E′; X; rcr ` e2 : t2
P; E; X; rcr ` let v = e1 in e2 : t2

[EXPR NEW]

P; E `type c c = cn 〈o1..n〉
E `av RH(o1) E ` X ºr o1

P; E; X; rcr ` new c : c

[EXPR REGION]

P; E `okind rkind rkind = srkn 〈〉
kr =


rkind :LT if rpol = LT(size)
rkind otherwise

E2 = E, kr r, RHandle〈r〉 h

E3 =

8
<
:

E2, (re ºr r)∀re∈Regions(E)

ifP ` rkind ≤k LocalRegion
E2 otherwise

P `env E3 P; E3; X, r; r ` e : t E ` X ºr heap
P; E; X; rcr ` (RHandle〈rkind :rpol r〉 h) {e} : int

[EXPR SUBREGION]

P; E; X; rcr ` h2 : RHandle〈r2〉 E `k r2 : srkn2〈o1..n〉
P ` rkind3 :rpol tt rsub ∈ srkn2〈fn1..n〉
rkind = rkind3[o1/fn1]..[on/fnn][r2/this]

kr =


rkind :LT if rpol = LT(size)
rkind otherwise

E2 = E, kr r, RHandle〈r〉 h, r2 ºr r P `env E2

P; E2; X, r; r ` e : t
(new ∨ (rpol = V T ) ∨ (tt = NoRT)) → E ` X ºr heap

(tt = RT) → E ` X ºr RT
P; E; X; rcr ` (RHandle〈r〉 h1 = [new]opt h2.rsub ) {e} : int

Regions(E) is the set of all regions in E, defined as follows: Regions(∅) = ∅
Regions(E, rkind r) = Regions(E) ∪ {r}
Regions(E, ) = Regions(E), otherwise

[EXPR LOCAl REGION]

P; E; X; rcr ` (RHandle〈LocalRegion :VT r〉 h) {e} : int
P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

[EXPR FORK]

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)

E ` RKind(rcr)=kcr NonLocal(kcr) P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ NonLocal(ki)) P; E; X \ {RT}; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

P; E; X; rcr ` fork v0.mn 〈o(n+1)..m〉(v1..u) : int

[EXPR RTFORK]

X′ = {o ∈ X | E ` RKind(o)=k ∧ P ` k ≤k SharedRegion :LT}
P; E; X′, RT; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t P; E; X; rcr ` v0 : cn 〈o1..n〉

∀i = 1..m, (E ` RKind(oi)=ki ∧ P ` ki ≤k SharedRegion) E ` RKind(rcr)=kcr P ` kcr ≤k SharedRegion
P; E; X; rcr ` RT fork v0.mn 〈o(n+1)..m〉(v1..u) : int

[EXPR GET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉 P ` t fd ∈ srkn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn][r/this] ((t′ = int) ∨ (t′ = cn 〈o′1..m〉 ∧ E ` X ºr o′1))

P; E; X; rcr ` h.fd : t′

[EXPR SET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉 P ` t fd ∈ srkn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn][r/this] P; E; X; rcr ` v : t1 P ` t1 ≤ t′

((t′ = int) ∨ (t′ = cn 〈o′1..m〉 ∧ E ` X ºr o′1))
P; E; X; rcr ` h.fd = v : t′
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6.B Translation to RTSJ

This sections presents details on how we translate SafeJava programs written to RTSJ
programs using local translation rules. The following subsections show the translation
for expressions that create or enter regions, access region fields, allocate objects, or start
threads. The translation for the other language constructs is trivial—we do a simple type-
erasure based translation. In this section, we use bold font for the generated code and
italic font (default font for mathematical notation in LATEX) for the expressions that are
evaluated at translation time.

6.B.1 Region Representation

Similar to SafeJava, RTSJ allows the programmers to create memory regions (“memory ar-
eas” in RTSJ terminology). It also has two special memory areas: a garbage-collected heap
and an immortal memory area. A memory area is a normal Java object that also points
to a piece of memory for the objects allocated in that memory area. Figure 6-16 presents
the RTSJ hierarchy of classes for memory management. The root of this hierarchy, Mem-
oryArea, is subclassed by HeapMemory, ImmortalMemory and ScopedMemory. HeapMemory
and ImmortalMemory represent the heap and the immortal memory area respectively; there
exists only one instance of each of them. ScopedMemory is the class for normal regions; it
has two subclasses: LTMemory (for LT regions) and VTMemory (for VT regions). The RTSJ
regions are maintained similarly to our shared regions: each thread has a stack of regions
it can currently access, and each region has a counter of how many threads can access it.

We represent a region r from SafeJava as an RTSJ memory area m plus two auxiliary
objects w1 and w2. m points to a piece of memory that is pre-allocated for an LT region,
or grown on-demand for a VT region. m also points to an object w1 whose fields point
to the representation of r’s subregions (we subclass LT/VTMemory to add an extra field);
these subregions are represented in the same way as r. (Note that we only allow a region to
have a bounded number of subregions.) In addition, m’s portal points to an object w2 that
serves as a wrapper for r’s fields. w2 is allocated in the memory space attached to m, while
m, w1, and all the similar objects used for the representation of r’s transitive subregions are
allocated in the region that was the current region at the time m was created. Figure 6-12
from Section 6.6 presents the translation of a region with three fields and two subregions
into RTSJ.

There are several differences between the RTSJ memory areas and the SafeJava regions.
The following list presents them, together with our translation for each case; Figure 6-15
presents the classes and interfaces we introduce along the way.

1. An RTSJ memory area has one portal field, similar to a SafeJava region field, except
that it is untyped (i.e., it has type Object). To allow multiple and typed region
fields, for each region kind rkind from SafeJava, we introduce a field wrapper class
rkindFields (Figure 6-15) that contains a field for each original field. For each region
of kind rkind , the portal of the corresponding memory area points to an object of
class rkindFields allocated in that memory area.

2. RTSJ does not have anything equivalent to the subregions in SafeJava. To simulate
them, for each region kind rkind , we introduce a subregion wrapper class rkindSubs

141



public interface Irkind extends IRegion {
rkind Subs getSubs();

rkind Fields getFields();

}

public class rkind Fields {
∀ field (t fd ) ∈ rkind

public t fd ;
}

public class rkind Subs {
∀ subregion (srkinds :rpols rsub) ∈ rkind

public Isrkinds rsub;
}

public interface IRegion {
boolean isFlushed();

void enterRegion();

void exitRegion();

boolean isASubregion();

void setIsASubregion(boolean value);

}

Figure 6-15: Declarations of Irkind and IRegion

(Figure 6-15) that has one field for each subregion. Subregions are represented sim-
ilarly to their parent region. When we create a region, we automatically create all
its transitive subregions. All the memory area objects and the field wrappers are
allocated in the regions that is the current region at the creation time.

3. Each memory area that represents a region of kind rkind implements the interface
Irkind (Figure 6-15); this interface has special methods for retrieving the field wrapper
object and the subregion wrapper. In addition, Irkind extends the interface IRegion
(Figure 6-15) that has some region maintenance methods that are explained later in
this appendix.

4. To ensure proper nesting of memory area enter/exit operations, RTSJ uses the follow-
ing mechanism for executing code inside a memory area: the program calls the enter
method of the memory area object and passes it a Runnable object; the run() method
of this object is executed inside the memory area. To translate an expression of the
form “(RHandle〈rkind :rpol r〉 h) {e}” into this pattern, we have to create a Runnable
object.

5. RTSJ does not have thread-local memory areas. Therefore, we have to translate the
local regions into memory areas that are maintained through thread counting, even
if we know that only one thread uses them. This is less efficient than a genuine
implementation of local regions but is still correct.

6. Our RTSJ platform flushes a memory area when its counter changes from one to zero
and its portal is null. While designing our language, our goal was as follows. We
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LTMemory VTMemoryImmortalMemory Irkind1LTrkind1
HeapMemory SopedMemoryMemoryArea

VTrkind1
. . . Irkindn

RTSJ IRegion
Figure 6-16: RTSJ Hierarchy of Classes for Memory Management and our Extensions to it

wanted to provide semantics where flushing or deleting of regions is transparent to
programs (so one cannot detect under program control if a region has been flushed or
deleted). However, we also wanted to reclaim memory space as soon as possible. We
therefore came up with the following rules for flushing a region:

• we flush a subregion if the counter is zero, all fields are null and all subregions
have been flushed;

• we flush a region as soon as its counter is zero (because the region won’t be used
afterward).

To enforce our rules, at each place where we might exit a region we call its method
exitRegion(). If the above flushing conditions are satisfied, this method sets the portal
field to null such that RTSJ flushes that region; otherwise, the portal field remains
non-null and prevents the region from being flushed. To check the flushing conditions,
we use the methods isFlushed() and isASubregion().

In RTSJ, the programmer chooses the desired allocation policy by allocating a LTMemory
or a VTMemory object. Hence, for each region kind rkind , we define two implementations
of Irkind : a class LTrkind that extends LTMemory, and a class VTrkind that extends
VTMemory. This creates the class hierarchy from Figure 6-16. Figure 6-17 presents the
declaration of LTrkind , except for the implementations of enterRegion() and exitRegion()
that are presented later in this appendix. VTrkind is almost identical, except that it inherits
from VTMemory, and its constructor does not take any size argument. As Java does not
have multiple class inheritance, there is significant code duplication between LTrkind and
VTrkind . This can be improved by factoring out most of the code as static methods in one
of the two classes.

The private method extraFlushingTest() tests the flushing conditions that are required in
addition to the zero-valued counter: top-level region or subregion with all portal fields null
and all subregions flushed. The private method flush() creates the condition for the flushing
of the region by the RTSJ platform: sets the portal field to null. In the case of a top-
level region, it also applies itself recursively to all transitive subregions. Together, these
two methods implement the flushing policy described above; they are used by exitRegion()
(presented in Section 6.B.3).

In SafeJava, we have both region names and region handles. The region names are for
typechecking purposes only and are removed by the type erasure. The region handles are
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runtime values; a region handle that had the type RHandle〈r〉 in SafeJava is translated into
a reference to an object Irkind , where rkind is the kind of the region r.

6.B.2 Creating a Default Local Region

Instead of presenting directly the translation for general region creation expression of the
form “(RHandle〈rkind :rpol r〉 h) {e}”, we first look at a simplified case. An expression
of the form “(RHandle〈r〉 h) {e}” creates a local region (i.e., a region of kind LocalRegion)
using the default allocation policy VT. Figure 6-18 presents the translation for “(RHandle〈r〉
h) {e}”. The code from Figure 6-18 works as follows:

1. Create region h = new VTLocalRegion(false)

2. Declare a class RE that implements the Runnable interface. Its run() method serve as
a wrapper for the expression e. We introduce several fields in RE for dealing with the
free variables of e. For each such variable v 6= this, RE has a field v of appropriate
type. If this appears in e, we create a field with a fresh name this (this refers to
another object in the methods of RE ). The body of the run() method consists of e,
with each free occurrence of this substituted by this.

3. We create an instance re of RE in the current region and initialize its fields with the
free variables of e.

4. Execute e: h.enter(re);

5. Retrieve the (possibly changed) values of the free variables of e from re’s fields.

6.B.3 Creating a Shared Region

The translation for “(RHandle〈rkind :rpol r〉 h) {e}” is similar to that for a local region
(Figure 6-18), with two important differences.

First, we change Line 1 as follows:

1’: Irkind h =

if (rpol = LT(size)) new LTrkind (true, size);
else new VTrkind (true);

Accordingly, field h of class RE (Line 2) has now type Irkind .

Second, we change the body of the run() method of class RE (Line 3 in Figure 6-18) as
follows:

public void run() {
h.enterRegion();
try {

translation of e[id /this]
} finally {

h.exitRegion();
}

}
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import javax.realtime.*;

import java.util.concurrent.atomic.*;

public class LTrkind extends LTMemory implements Irkind {
public rkind Subs getSubs() { return subs; }
private rkind Subs subs;

public rkind Fields getFields() { return (rkind Fields) getPortal(); }

public boolean isFlushed() { return isFlushed; }
private boolean isFlushed;

public boolean isASubregion() { return isASubregion; }
public void setIsASubregion(boolean value) { isASubregion = value; }
private boolean isASubregion;

private AtomicInteger n_inside = new AtomicInteger(0); // number of threads inside

private AtomicInteger getNInside() { return n_inside; }
private AtomicInteger n_exiting = new AtomicInteger(0); // number of threads exiting

private AtomicInteger getNExiting() { return n_exiting; } // See JSR 166

public LTrkind (boolean isASubregion, int size) {
super(size);

this.isFlushed = true;

this.isASubregion = isASubregion;

this.subs = new rkind Subs();
∀ subregion (srkinds :rpols rsub) ∈ rkind , generate

subs.rsub =

if rpol s = LT(size) new LTsrkinds(true,size);
else new VTsrkinds(true);

}

public void enterRegion() { ... presented later ... }
public void exitRegion() { ... presented later ... }

private boolean extraFlushingTest() {
if(!isASubregion()) return true;

rkind Fields fields = this.getFields();

if(fields != null) {
∀ field (t fd )∈rkind , generate

if(fields.fd != null) return false;

}
rkind Subs subs = this.getSubs();

∀ subregion (srkinds :rpols rsub) ∈ rkind , generate
if(!subs.rsub.isFlushed()) return false;

return true;

}

private void flush() {
isFlushed = true; setPortal(null);

rkind Subs subs = getSubs();

if(!isASubregion()) {
∀ subregion (rkinds :rpols rsub) ∈ rkind , generate

IRegion sr = subs.rsub; if(!sr.isFlushed()) sr.flush();

}}}

Figure 6-17: Declaration of Class LTrkind
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{
// create a new RTSJ region

1: ILocalRegion h = new VTLocalRegion(false);

// create a Runnable object to wrap the code of e
static class RE implements Runnable {

// one field for each free variable of e
if h ∈ FreeVars(e)

2: public ILocalRegion h;
∀ v ∈ FreeVars(e) \ {h, this}; let t be its type in the environment

public t v;
if this ∈ FreeVars(e); let t be its type in the environment

public t this;

public void run() {
3: translation of e[ this/this]

}
}
RE re = new RE();

// store h and all free variables of e in re’s fields

re.h = h;
∀ v ∈ FreeVars(e) \ {h, this}

re.v = v;
if this ∈ FreeVars(e)

re. this = this;

// evaluate e
((MemoryArea) h).enter(re);

// restore the values of e’s free variables

∀ v ∈ FreeVars(e) \ {h, this}
v = re.v;

}

where RE , re, and this are fresh identifiers.

Figure 6-18: Translation for “(RHandle〈r〉 h) {e}”
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public class LTrkind ... {

... as before ...

public void enterRegion() {
int x = getNInside().add(1);

// Wait until exiting threads finish exiting

while (getNExiting().get() > 0) sleep(1000);

// 1st entering thread creates portal

if (x == 1) {
isFlushed = false;

if (getPortal() == null)

setPortal(new rkind Fields());
} else {

// Others wait until portal is created

while (getPortal() == null) sleep(1000);

}
}

public void exitRegion() {
// Begin exiting the region

getNExiting().add(1);

int x = getNInside().add(-1);

if ((x == 0) && extraFlushingTest())

flush();

// Finish exiting the region

h.getNExiting().add(-1);
}

}

Figure 6-19: Declaration of Class LTrkind (Part II): enterRegion() and exitRegion()

At the beginning of the run() method, we call the method enterRegion() to do some book-
keeping for region r. Next, we execute the expression e in a try-finally block. This way, we
ensure that no matter how e terminates, we call the cleanup method exitRegion() for region
r right before run() terminates.

Figure 6-19 completes the definition of class LTrkind from Figure 6-17 by providing the
implementation of enterRegion() and exitRegion(). Most of these methods’ code deals with
synchronization issues. The code is more complicated than what is required for the case of
a top-level shared region: e.g., as the thread that creates the region is also the one to enter
it first, enterRegion() could have been simplified significantly. For space reason, we present
the full versions of these methods (that are valid even when an LTrkind region is used as
a subregion in future sections) instead of going through several specialized versions. We
explain these methods in the most general context: at any moment, several threads may
simultaneously attempt to enter/exit the region.

The last thread to use a region (possibly a subregion) must call its flush() method if ex-
traFlushingTest() is satisfied: otherwise, the portal object of the corresponding RTSJ mem-
ory area remains non-null, and the memory area is never flushed. When a thread enters the
region, it has to create its portal object if it does not exists yet (e.g., if the (sub)region has
been flushed and not re-entered yet). Therefore, both enterRegion() and exitRegion() may
write the portal field of the corresponding memory area.

147



If there is no synchronization between enterRegion() and exitRegion(), then the following
scenario is possible:

1. Thread T1 starts exiting the region; it checks the flushing conditions and decides to
flush; however, it is pre-empted by the scheduler before doing the actual flushing;

2. Thread T2 enters the region;

3. Thread T1 flushes the region; in particular, it sets the portal of the underyling memory
area to null;

4. Thread T2 attemps to use a portal field and raises a NullPointerException.

We avoid this race condition by a tricky synchronization algorithm that uses atomic opera-
tions defined in JSR 166 [95]. Our synchronization ensures safety: when a thread is using a
region, no other thread can flush the same region; and when a thread is using a region, the
region has a non-null portal. Because the set of subregions that the normal threads use is
disjoint from the set of threads that the realtime threads use, our synchronization does not
create priority inversion problems (see discussion at the end of Section!6.3). Our algorithm
maintains two AtomicInteger2 counters:

• n inside, that is returned by getNInside() and maintains the count of the threads that
currently use the region;

• n exiting, that is returned by getNExiting() and maintains the count of the threads
that started the exitRegion() method but did not complete it.

The method enterRegion() starts by incrementing the number of threads using the region.
Until this thread exits the region, no exiting thread can decide to flush the region if it has
not done so yet. The first while loop from enterRegion() ensures that no thread enters the
region until all the exiting threads finished exiting it. If the region does not have a portal
object, the thread that changed the n inside counter from 0 to 1 is responsible with creating
that object; the other threads attempting to enter the region have to wait for the portal
object to be ready (due to the second while loop).

The “useful” part of exitRegion() decrements n inside and calls flush() if all flushing condi-
tions are met. It is protected from interferences with enterRegion() by the counter n exiting,
that is appropriately maintained at the beginning and at the end of exitRegion().

Note that the RTSJ platform already maintains the count of the threads executing inside
a region. This counter is almost identical to our n inside. However, there is a notable
difference: the RTSJ counter is not atomic; e.g., if we try to use it, the test “x == 1” from
enterRegion() may fail if two threads enter the same subregion simultaneously (the value
returned by getReferenceCount() may jump from 0 to 2).

2For the purpose of this report, an AtomicInteger is an integer such that we can atomically incre-
ment/decrement it and read its new value.
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6.B.4 Entering a Subregion

The translation for “(RHandle〈r〉 h = h2.rsub) {e}” is very similar to the one from Sec-
tion 6.B.3. The only difference is that now, instead of creating a region, we simply read one
and use it. The beginning of the translation (Line 1’) becomes:

1’’: Isrkind h = h2.getSubs().rsub;

where rkind is the kind of the subregion rsub .

6.B.5 Creating a Subregion

The translation for “(RHandle〈r〉 h = new h2.rsub) {e}” is very similar to the one from
Section6.B.3. Only the beginning of the translation changes as follows:

1’’’: static class RE2 implements Runnable {
Isrkind h;
Isrkind2 h2;

public void run() {
h =

if rpol s = LT(size) new LTrkinds(true,size);
else new VTrkinds(true);

h2.getSubs().rsub = h;
}

}
MemoryArea ma = MemoryArea.getMemoryArea(h2);

h2.getSubs().rsub.setIsASubregion(false);
RE2 re2 = new RE2 ();

re2.h2 = h2;

ma.enter(re2);
Isrkind h = re.h;

where rkinds is the kind of the subregion rsub , rpols is its allocation policy, and RE, re,
and ma are fresh identifiers. The above code works as follows:

1. To be consistent with our representation of regions (see Section 6.B.1), we allocate
the memory area objects for the new subregion (and its subregions) in the same
memory area where the previous subregion was allocated. Most of the above code deals
with technical details related to this operation: by wrapping the creation of the new
subregion in a Runnable object, we ensure that all objects used for the representation
of that subregion are allocated in the appropriate region.

2. We detatch the subregion from its parent: “h2.subs.rsub .setIsASubregion(false)” to
record the fact that it cannot be entered from its parent. The first time its counter
becomes zero, it will be flushed (and subsequently deleted along with its subregions).

6.B.6 Manipulating Region Fields

We translate “h.fd” as follows:

((rkind Fields) h.getPortal()).fd

where rkind is the kind of the region r that h is a handle of, i.e., in the type environment,
h has type RHandle〈r〉.
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{
static class T extends javax.realtime.RealtimeThread {
∀ i ∈ {0 , . . . ,m}, generate one field to store the value of vi (of type ti) :

ti vi;
public void run() {

for(int i = 0; i < getMemoryAreaStackDepth(); i++) {
IRegion isr = (IRegion) getOuterMemoryArea(i);

isr.enterRegion();

}
try {

v0.mn(v1,..., vm);

} finally {
for(int i = 0; i < getMemoryAreaStackDepth(); i++) {

IRegion isr = (IRegion) getOuterMemoryArea(i);

isr.exitRegion();

}
}

} // end of run()

}
T t = new T();

∀ i ∈ {0, ..., m}, generate one line of the form :
t.vi = vi;

t.start();
}

where T and t are fresh identifiers.

Figure 6-20: Translation for “fork v0.mn 〈o1..n〉(v1..m)”

The translation for “h.fd = v” is similar:

((rkind Fields) h.getPortal()).fd = v

6.B.7 Allocating an Object

There are no constructors in the language we presented so far. However, they are trivial
to add: an expression of the form “new cn 〈o1..n〉(e1..m)” desugars into a “new cn 〈o1..n〉”
followed by a call to the appropriate constructor. We translate “new cn 〈o1..n〉(e1..m)” as
follows:

1. First, we generate Java code to retrieve the memory area where the new object is
allocated: the region where o1 is allocated (if o1 is an object) or the region o1 stands
for (if o1 is a region).

2. Next, we generate a call to newInstance, to allocate a new object in the memory area
that the code generated at 1 evaluates to.

3. We recursively translate e1, . . . , em (the arguments of the constructor).

4. Finally, we generate a call to the appropriate constructor.

The only non-trivial step is the first one: retrieving the memory area where we allocate
the new object. The type rule for new already checked that E `av RH(o1), i.e., a han-
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dle for this region is available at runtime, even after type-erasure (see Section 6.4). We
use the typechecker judgments to retrieve that region. Notice that each of the rules that
prove a statement of the form E `av RH(o) has at most one such statement among its
preconditions. Therefore, if we consider the part of the proof tree for E `av RH(o1) that
corresponds only to this kind of rules, we obtain a chain. This “reasoning” chain starts
with either [AV THIS] or [AV HANDLE]. In the case of [AV THIS] we generate the call
“MemoryArea.getMemoryArea(this)”.

In the second case, i.e., [AV HANDLE], the typing environment E contains a handle for
the appropriate region. Let r and h be the region and the region handle from the specific
instantiation of the rule [AV HANDLE]. If r is the special region heap, we generate a call
to HeapMemory.instance(), an RTSJ method that retrieves the (unique) heap memory area.
Similarly, if r is the special region immortal, we generate a call to ImmortalMemory.instance().
Otherwise, in the translated code, h is a local variable that points to the region we allocate
in; we directly generate the code “(MemoryArea) h”.

Optimization: newInstance allows us to allocate an object in any region. However, it
currently uses reflection, e.g., for passing the class of the allocated object. Hence, it is less
efficient than new, that allocates only in the current region. The typechecker knows the cur-
rent region rcr for the new expression that we translate. For [AV HEAP], [AV IMMORTAL]
and [AV HANDLE], if rcr is identical to the region we allocate in, we use new. We can apply
this optimization even in the case of [AV THIS], if the typechecker can prove that rcr º this.

6.B.8 Forking a Thread

Figure 6-20 presents the translation for an expression of the form “fork v0.mn 〈o1..n〉(v1..m)”.
The resulting code works as follows:

1. In Java, threads are objects whose class is a subclass of java.lang.Thread. Programmers
create thread objects using new and start them by invoking their start() method.
start() starts a thread whose body is the run() method of the thread object. In RTSJ,
threads that want to use regions have to subclass javax.realtime.RealtimeThread, which
itself subclasses java.lang.Thread. Accordingly, we define a class T for our thread. T
has one field vi to store the value of each variable vi.

2. The run() method of T invokes mn with the right receiver and parameters. When the
thread terminates, each region that is still on its stack of regions is exited. Therefore,
for each such region, if our conditions for flushing it are fulfilled, we need to make
sure that it meets the conditions for being flushed by RTSJ. Fortunately, RTSJ offers
methods that allow us to examine the stack of memory areas associated with a thread.

3. We create a instance of class T , generate code to store the result of each variable vi

in the appropriate field and next start the thread.

The only difference in the translation for “RT fork v0.mn 〈o1..n〉(v1..m)” is that we subclass T
from NoHeapRealtimeThread, instead of RealtimeThread. In RTSJ, a NoHeapRealtimeThread
is not interrupted by the garbage collector because it cannot manipulate heap references.
RTSJ ensures this using dynamic checks. SafeJava ensures this statically, so we can remove
these dynamic checks if the RTSJ platform allows us to do so.
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Chapter 7

Conclusions

Making software reliable is one of the most important technological challenges facing our
society today. This thesis presents a new type system that addresses this problem by
statically preventing several important classes of programming errors. If a program type
checks, we guarantee at compile time that the program does not contain any of those errors.

We designed our type system in the context of a Java-like object-oriented language; we
call the resulting system SafeJava. The SafeJava type system offers significant software
engineering benefits. Specifically, it provides a statically enforceable way of specifying
object encapsulation and enables local reasoning about program correctness; it combines
effects clauses with encapsulation to enable modular checking of methods in the presence of
subtyping; it statically prevents data races and deadlocks in multithreaded programs, which
are known to be some of the most difficult programming errors to detect, reproduce, and
eliminate; it enables software upgrades in persistent object stores to be defined modularly
and implemented efficiently; it statically ensures memory safety in programs that manage
their own memory using regions; and it also statically ensures that real-time threads in
real-time programs are not interrupted for unbounded amounts of time because of garbage
collection pauses. Moreover, SafeJava provides all the above benefits in a common unified
type system framework, indicating that seemingly different problems such as encapsulation,
synchronization issues, software upgrades, and memory management have much in common.

We have implemented several Java programs in SafeJava. Our experience shows that Safe-
Java is expressive enough to support common programming patterns, its type checking is
fast and scalable, and it requires little programming overhead. In addition, the type declara-
tions in SafeJava programs serve as documentation that lives with the code, and is checked
throughout the evolution of code. The SafeJava type system thus has significant software
engineering benefits and it offers a promising approach for improving software reliability.
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