Bootstrapping
(with Small Error Growth)

Chris Peikert

University of Michigan

HEAT Summer School
12 Oct 2015

14

Fully Homomorphic Encryption [RAD'78,Gentry'09]

> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by

[vDGHV'10,BV'11a,BV'11b,BGV’'12,B'12,GSW'13,. . .]

14

Fully Homomorphic Encryption [RAD'78,Gentry'09]

> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV’'12,B'12,GSW'13,. . .]

» “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

Fully Homomorphic Encryption [RAD'78,Gentry'09]

> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV’'12,B'12,GSW'13,. . .]

» “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

» Thus far, "bootstrapping” is required to achieve unbounded FHE.

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext , allowing further homomorphic operations.

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext , allowing further homomorphic operations.

» Decrypting as a function of sk:

3k;—>Dec<-,) — U

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext , allowing further homomorphic operations.

» Decrypting as a function of sk:
sk — Dec(- ,) —
» Homomorphically decrypting on :

—>[Eva|< Dec(-))]_>

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext , allowing further homomorphic operations.

» Decrypting as a function of sk:
sk — Dec(- ,) —u
» Homomorphically decrypting on :

—>[Eva|< Dec(-))]_>

» Runtime of Eval(Dec) is controlled by complexity of Dec.

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext , allowing further homomorphic operations.

» Decrypting as a function of sk:

sk — Dec(- ,) — U
» Homomorphically decrypting on :

—>[Eva|(Dec(-,[1]))]_>

» Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic
assumption — e.g., initial LWE noise “rate” of .

14

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphic decryption of on :

—>[Eva|< Dec(-,[1]))]_>

/14

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphic decryption of on :

—>[Eva|< Dec(-,[1]))]_>

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

/14

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphic decryption of on :

—>[Eva|< Dec(-,[1]))]_>

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:

/14

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphic decryption of [/.| on :

—>[Eva|< Dec(-,[1]))]_>

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:

* Homom Addition: Error grows additively.

14

Bootstrapping: SHE — FHE [Gentry'09]
» Homomorphic decryption of on :
—>[Eval(Dec(‘ ,))]—>

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

14

Bootstrapping: SHE — FHE [Gentry'09]
» Homomorphic decryption of on :
—>[Eval(Dec(- ,))]—)

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known boolean decryption circuits have logarithmic O(log A) depth.

14

Bootstrapping: SHE — FHE [Gentry'09]
» Homomorphic decryption of on :
—>[Eval(Dec(- ,))]—)

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known boolean decryption circuits have logarithmic O(log A) depth.

— Quasi-polynomial A2 error growth & lattice approx factors.

14

Bootstrapping: SHE — FHE [Gentry'09]
» Homomorphic decryption of on :
—>[Eval(Dec(- ,))]—)

> Runtime: quasi-linear O()\) using rings [GHS'12,AP'13]

» Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known boolean decryption circuits have logarithmic O(log A) depth.

— Quasi-polynomial A28 error growth & lattice approx factors.

Can we do better??

14

Agenda for the Talk

@ Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan'14]

Agenda for the Talk

@ Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan'14]

® Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert'14]

Agenda for the Talk

@ Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan'14]

® Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert'14]

© Fast (< 1s) ring-based implementation
[DucasMicciancio’15]

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,

G (A) is short (over Z) and G- -G '(A) = A (mod q).

/14

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting p € Z under s is a Z,-matrix C satisfying

sC=pu-sG+e~pu-sG (mod q).

14

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.
» Homomorphic mult: C;[[]C; := C; - G~ 1(Cy).

14

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.
» Homomorphic mult: C;[[]C; := C; - G~ 1(Cy).
s-C1-G 1(Cy) = (u1-5G +e)) -G HCy)

14

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.
» Homomorphic mult: C;[[]C; := C; - G~ 1(Cy).

s-Cyq- Gfl(CQ) = (Nl -sG + e1) . Gfl(CQ)
=1 -sCy+e; - G H(Cy)

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,
G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.
» Homomorphic mult: C;[[]C; := C; - G~ 1(Cy).
s-C1-G 1(Cy) = (u1-5G +e)) -G HCy)
=1 -sCy+e; - G H(Cy)
= pipiz - sG + 1 -ex +e; - G HCy) .

new error e

14

Somewhat Homomorphic Encryption [GentrySahaiwaters'13]

> Recall “gadget” matrix G over Z, [MP'12]: for any matrix A over Zj,

G (A) is short (over Z) and G- -G '(A) = A (mod q).
» Ciphertext encrypting u € Z under s is a Z,-matrix C satisfying
sC=pu-sG+e~pu-sG (mod q).
» Homomorphic add: CiHC, := C; + Cos.
» Homomorphic mult: C;[[]C; := C; - G~ 1(Cy).
s-C1-G 1(Cy) = (u1-5G +e)) -G HCy)

=1 -sCy+e; - G H(Cy)
= pipiz - sG + 1 -ex +e; - G HCy) .

new error e

» (Can randomize G~ for tighter error growth, full rerandomization.)

6

14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Error growth for multiplication is asymmetric and “quasi-additive:”

Error in C := C1[[]1Cs is e; - poly(A) + 1 - €.

/14

Bootstrapping with Polynomial Error [Brakerskivaikuntanathan'14]
» Error growth for multiplication is asymmetric and “quasi-additive:”
Error in C := C1[[]1Cs is e; - poly(A) + 1 - €.
» Right-associative multiplication: for C; encrypting u; € {0,+1},
Cil(--- (C2(Ci—1[1Cy)) - -+) has error) . e; - poly(N).

14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Error growth for multiplication is asymmetric and “quasi-additive:”
Error in C := C1[[1Cy is e - poly(A) + p1 - e
> Right-associative multiplication: for C; encrypting u; € {0,+1},
Cil(--- (C2(Ci—1[1Cy)) - -+) has error) . e; - poly(N).

P Generalizes to orthogonal matrices over Z, e.g., permutation matrices.
Encrypt bitwise:

@)= 5) -G 5

Py ﬁ,2 PPy
el €2 fii fio f21 f22>
1oer2) (h R e oo+ (20 2
<62,1 02,2> <f2,1 f2,2> poly(A) <f1,1 f12
- '
E F P.-F

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Polynomial error growth for any product of encrypted permutations.

/14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Polynomial error growth for any product of encrypted permutations.

» Barrington’'s Theorem: boolean circuit — branching program:

Po1 P Pisa Pisa

>

Poo Pio Piso Piso

depth d length 44

14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Polynomial error growth for any product of encrypted permutations.

» Barrington’'s Theorem: boolean circuit — branching program:

0

Po1 Pii— - Pisa Pisa
0 * /

Poo Pio Piso — Pispo
1

depth d length 44

14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Polynomial error growth for any product of encrypted permutations.

» Barrington’'s Theorem: boolean circuit — branching program:

0
Po1 Pii— - Pisa Pisq
0 * /
Poo Pio Piso — Pispo
1
depth d length 44

> To refresh [11]: convert Dec(-,[/1]) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs P; o, P; 1.

14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

» Polynomial error growth for any product of encrypted permutations.

» Barrington’'s Theorem: boolean circuit — branching program:

0
Po1 Pii— - Pisa Pisa
0 = /
Poo Pio Piso — Pispo
1
depth d ~ 3log A length 4% ~)%

> To refresh [11]: convert Dec(-,[/1]) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs P; o, P; 1.

X Drawback: Barrington’s transformation is very inefficient.

14

More Efficient Bootstrapping [Alperin-SheriffPeikert'14]

» Faster algorithm with small polynomial error growth

/14

More Efficient Bootstrapping [Alperin-SheriffPeikert'14]

P Faster algorithm with small polynomial error growth

Result: quasi-optimal O(\) homom ops; O(\?) error growth.

14

More Efficient Bootstrapping [Alperin-SheriffPeikert'14]

P Faster algorithm with small polynomial error growth

Result: quasi-optimal O(\) homom ops; O(\?) error growth.

» Treats decryption as an arithmetic function over Zg,, not a circuit.

14

More Efficient Bootstrapping [Alperin-SheriffPeikert'14]

P Faster algorithm with small polynomial error growth

Result: quasi-optimal O(\) homom ops; O(\?) error growth.

» Treats decryption as an arithmetic function over Zg,, not a circuit.

Avoids Barrington's Theorem — but still uses permutation matrices!

14

More Efficient Bootstrapping [Alperin-SheriffPeikert'14]

P Faster algorithm with small polynomial error growth

Result: quasi-optimal O(\) homom ops; O(\?) error growth.

» Treats decryption as an arithmetic function over Z,, not a circuit.

Avoids Barrington's Theorem — but still uses permutation matrices!

» Key idea: embed additive group (Z,, +) into a small symmetric group.

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}" J

q7

10/14

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}" J

q7

® Prepare: Encrypt each s; € Z,, embedded into a certain group G.

10/14

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}"

q?

® Prepare: Encrypt each s; € Z,, embedded into a certain group G.

We need two homomorphic algorithms for Z, C G:

@@ = and Equal?([v], 2) = { ifv=z

[0] otherwise

14

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}"

q?

® Prepare: Encrypt each s; € Z,, embedded into a certain group G.

We need two homomorphic algorithms for Z, C G:

o
[a]@[b]=]a+b] and Equal?(,z):{ nv=s

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , we evaluate:

@® Inner Product: compute [v]:= ([s],c) =

Jjicj=1

14

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}"

q?

® Prepare: Encrypt each s; € Z,, embedded into a certain group G.

We need two homomorphic algorithms for Z, C G:

o
[a]@[b]=]a+b] and Equal?(,z):{ nv=s

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , we evaluate:

@® Inner Product: compute [v]:= ([s],c) =

©® Round: compute

[v],

Jjicj=1

= Equal?([v], 2)

z: |z],=1

10/14

Overview of Bootstrapping Algorithm [ap'14]

» Decryption in LWE-based schemes is a “rounded inner product:”
Dec(s, c) := [(s,c)], € {0,1} with s € Z, c € {0,1}"

q?

® Prepare: Encrypt each s; € Z,, embedded into a certain group G.

We need two homomorphic algorithms for Z, C G:

T
@@: and Equal?(,z):{ ne==

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , we evaluate:

@® Inner Product: compute [v]:= ([s],c) =

©® Round: compute

[v],

Jjicj=1

= Equal?([v], 2)

z: |z],=1

» It remains to define the group G and [+], Equal? operations

10/14

Warmup: Embedding (Z,, +) into G = (S,,-)

Zq 0 1 q—1
1 1 1

Sq

11/14

Warmup: Embedding (Z,, +) into G = (S,,-)

Zq 0 1 q—1
0] 1 [0] 1

S 1 :

N Lo 1
1 1

. P, .

» Embed s € Z, as P and encrypt entry-wise (only need first column).

11/14

Warmup: Embedding (Z,, +) into G = (S,,-)

Zq 0 1 q—1
1 1

g 1 :

L B 1
1 1

. P, .

» Embed s € Z, as P and encrypt entry-wise (only need first column).

> Addition: [a]f[b] implemented as [P, |[[Py | =P, - P, |

* Recall: Right-associative multiplication yields polynomial error growth.

11 /14

Warmup: Embedding (Z,, +) into G = (S,,-)

Zq 0 1 q—1
1 1

g 1 :

L B 1
1 1

. P, .

» Embed s € Z, as P and encrypt entry-wise (only need first column).

> Addition: [a]f[b] implemented as [P, |[[Py | =P, - P, |

* Recall: Right-associative multiplication yields polynomial error growth.

> Equality test: Equal?(, b): output bth entry.

11 /14

Warmup: Embedding (Z,, +) into G = (S,,-)

Zq 0 1 q—1
1 1

L Lo 1
1 1

. P, .

» Embed s € Z, as P and encrypt entry-wise (only need first column).

> Addition: [a]f[b] implemented as [P, |[[Py | =P, - P, |

* Recall: Right-associative multiplication yields polynomial error growth.

> Equality test: Equal?(, b): output bth entry.

» Bottom line: O(A3) homomorphic operations to bootstrap.

11/14

Embedding (Z,, +) into Smaller Symmetric Groups

» Use ¢ =p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).

12 /14

Embedding (Z,, +) into Smaller Symmetric Groups

» Use ¢ =p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

12 /14

Embedding (Z,, +) into Smaller Symmetric Groups

» Use ¢ =p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:
Zq - Spl X X Spt [g SZI%]

T = (Pazmodpla---apxmodpt)

12 /14

Embedding (Z,, +) into Smaller Symmetric Groups

» Use ¢ =p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:
Zq - Spl X X Spt [g SZI%]

T = (meodpla---apxmodpt)

» Addition [H: same as in warmup, but component-wise

12 /14

Embedding (Z,, +) into Smaller Symmetric Groups

> Useqg=p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:
Zq— Spy X -+ % Sy, [C S5]
= (Pzmodpis- -+ Pzmodp:)
» Addition [H: same as in warmup, but component-wise
> Equality test:
Equal,([a] BEquaI - b mod p;)

12 /14

Embedding (Z,, +) into Smaller Symmetric Groups

> Useqg=p1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log \).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:
Zq - Spl X X Spt [g SZI%]

T = (meodpla--- 7me0dpt)
» Addition [H: same as in warmup, but component-wise

> Equality test:

Equal,([a] BEquaI - b mod p;)

> Bottom line: O()\) homomorphic operations to bootstrap.

12 /14

Refinement and |mp|ementation [DucasMicciancio'15]
» Observation [AP'14]: using ring-LWE in the mth cyclotomic ring R,

can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Z, ! S;.

13 /14

Refinement and |mp|ementation [DucasMicciancio'15]

» Observation [AP'14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Z, ! S;.

In particular, m = g and r = 1 yields Z,.

13 /14

Refinement and |mp|ementation [DucasMicciancio'15]

» Observation [AP'14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Z, ! S;.

In particular, m = g and r = 1 yields Z,.

> With a clever view of NAND as a mod-4 additive threshold, [DM'15]
designed a specialized “bootstrapped NAND" procedure.

13 /14

Refinement and |mp|ementation [DucasMicciancio'15]
» Observation [AP'14]: using ring-LWE in the mth cyclotomic ring R,

can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Z, ! S;.

In particular, m = g and r = 1 yields Z,.

> With a clever view of NAND as a mod-4 additive threshold, [DM'15]
designed a specialized “bootstrapped NAND" procedure.

» FFTW for fast ring operations = bootstrapping in 0.6 sec: FHEW!

13 /14

Open Problems

> Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no “packing”).

14 /14

Open Problems

» Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no “packing”).

» Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

14 /14

Open Problems

» Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no “packing”).

» Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

» Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

14 /14

Open Problems

» Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no “packing”).

» Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

» Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

Thanks!

14 /14

