
Cryptanalysis of Lattice-Based Sequentiality Assumptions
and Proofs of Sequential Work

Chris Peikert∗ Yi Tang†

February 13, 2024

Abstract

This work completely breaks the sequentiality assumption (and broad generalizations thereof)
underlying the candidate lattice-based proof of sequential work (PoSW) recently proposed by Lai and
Malavolta at CRYPTO 2023. In addition, it breaks an essentially identical variant of the PoSW, which
differs from the original in only an arbitrary choice that is immaterial to the design and security proof
(under the falsified assumption). This suggests that whatever security the original PoSW may have is
fragile, and further motivates the search for a construction based on a sound lattice-based assumption.

Specifically, for sequentiality parameter T and SIS parameters n, q,m = n log q, the attack on the
sequentiality assumption finds a solution of quasipolynomial norm m⌈log T⌉ (or norm O(

√
m)⌈log T⌉ with

high probability) in only logarithmic Õn,q(log T) depth; this strongly falsifies the assumption that finding
such a solution requires depth linear in T . (The Õ notation hides polylogarithmic factors in the variables
appearing in its subscript.) Alternatively, the attack finds a solution of polynomial norm m1/ε in depth
Õn,q(T

ε), for any constant ε > 0. Similarly, the attack on the (slightly modified) PoSW constructs a
valid proof in polylogarithmic Õn,q(log

2 T) depth, thus strongly falsifying the expectation that doing so
requires linear sequential work.

1 Introduction

The notion of timed (or timed-release) cryptography was formally introduced and realized in 1996 by Rivest,
Shamir, and Wagner [RSW96], following initial concepts due to May [May93] and related ideas of Cai,
Lipton, Sedgewick, and Yao [CLSY93]. The general thrust of this area is to devise “puzzles” that require
(roughly) a prespecified amount of time to solve—even for solvers that have a large amount of computing
power. More precisely, solving the puzzle should be inherently sequential (i.e., high computation depth) in
nature, so that using many processors in parallel does not lead to any major speedup in finding a solution,
versus using just one processor. (Of course, using a faster sequential processor will unavoidably result in a
speedup, but the range of available processor speeds is substantially narrower than the ability to purchase
huge numbers of parallel processors.)

Several variations on this theme have emerged in the literature. The focus of this work is on one of the
most basic timed primitives, called a proof of sequential work (PoSW) [MMV13, CP18, AKK+19]. Here
the goal is simply to quickly convince a skeptical verifier that a sequential computation of some significant
desired length has been performed. In other words, the computation should be inherently sequential and

∗University of Michigan, cpeikert@umich.edu.
†University of Michigan, yit@umich.edu.

1

tunable, but the result of such a computation should be publicly and very quickly verifiable. (No secret
message is encrypted or decrypted, however.) Applications of PoSW include anti-spam and denial-of-service
measures [DN92], and reducing the wasteful energy consumption of proof-of-work blockchains like Bitcoin
(because using large-scale parallel computation is of little marginal benefit).

1.1 (In)Security in a Quantum World

Unfortunately, most prior timed-cryptography constructions will become completely insecure in the presence
of general-purpose quantum computers. This is because the security of these constructions relies on the
conjectured hardness of problems that are in fact easy for quantum computers. As some of the most notable
examples, the constructions of [RSW96, Pie19, Wes19] rely on the presumed hardness of factoring integers,
but the breakthrough work of Shor [Sho94] gave an efficient quantum algorithm for this problem. Therefore,
quantum computers would be able to completely circumvent the (conjectured) classical sequentiality of these
puzzles, and solve them in relatively low quantum depth.

In this light, it is important to find constructions of timed cryptography that are quantum-secure, or “post
quantum”—i.e., that can be run on today’s computers, but are believed to remain secure against attacks
by future quantum computers. In other parts of cryptography, the most promising post-quantum systems
are based on lattice problems, particularly short integer solution (SIS) [Ajt96] and learning with errors
(LWE) [Reg05], and their variants. Over the past two decades, countless efficient and powerful cryptographic
concepts have been realized from these lattice foundations.

Yet despite so much progress in general, post-quantum timed cryptography is still in its infancy, with
very few and limited constructions. In particular, for proofs of sequential work we know of only two
types of post-quantum constructions: ones in the idealized random-oracle model (or under a closely related
sequential-hashing assumption) [MMV13, CP18], and a very interesting “algebraic” proposal by Lai and
Malavolta [LM23] from CRYPTO 2023 that is related to lattices, and does not require random oracles.

As a foundation for their PoSW candidate, Lai and Malavolta introduced a new SIS-related problem
and sequentiality assumption, for which they gave some credible evidence. Essentially, the problem is to
evaluate a long chain of iterated SIS hash functions, and the assumption is that doing so requires computation
depth roughly proportional to the length of the chain. Their elegant PoSW protocol works analogously to the
factoring-based construction of [Pie19] by exploiting the homomorphic properties of the SIS hash function,
and they proved its security under the new sequentiality assumption.

1.2 Contributions

Our first main contribution is to strongly falsify the lattice-based sequentiality assumption proposed in [LM23],
and broad generalizations thereof. In a bit more detail, the conjecture is that finding a “somewhat short”
solution to a certain regular linear system (corresponding to iterated hash evaluations) requires nearly linear
depth in the sequentiality parameter T ; see Section 2.2 for details. For typical parameters, we instead solve this
problem in depth only polylogarithmic in T . Also, other parameterizations of our attack find asymptotically
much shorter solutions in small polynomial depth depth T ε, for any constant ε > 0. So, tightening the
quantitative definition of “short” offers limited hope for salvaging the assumption, unless the norm bound is
made quite small; see Section 1.3 below for a discussion.

Interestingly, while our attack breaks the assumption underlying the security proof for the PoSW protocol
of [LM23], it does not break the PoSW itself as originally defined—and so far we have not found an attack
that does so. However, we do manage to break two slight variants of the PoSW from [LM23], by employing
our core techniques in more sophisticated ways (see Figure 4 for an illustration). These variants are supported

2

by essentially identical security proofs (under the same kind of falsified assumption) as the original PoSW.
Indeed, one of the variants differs from the original in only an arbitrary choice in the core “folding” operation,
so we consider it to be effectively identical to the original.

Our specific contributions are organized as follows.
• In Section 3 we give a suite of very general and modular tools for efficiently computing, combining,

and using lattice “trapdoors” in low computation depth. As we showcase in the rest of the paper, these
tools can be combined in various ways to yield attacks on lattice-based timed cryptography proposals,
and may also be of independent interest for other applications.

• In Section 4 we use our tools to give a low-depth recursive attack that strongly falsifies the sequentiality
assumption from [LM23].

• Finally, in Section 5 we extend the attack to break two slight variants of the PoSW protocol from [LM23].
We refer to each individual section for further background and context for the results and techniques given
therein.

1.3 Discussion and Future Work

As noted above, while we have not managed to break the PoSW from [LM23] exactly as it is written, we
did break a variant that differs only in one minor and arbitrary choice, which has no effect on its underlying
assumption or security proof. This state of affairs suggests that whatever security the original PoSW may have
is quite fragile, and not due to any intentional design choice or technique in the security proof. Additional
ideas might lead to a successful attack against the original PoSW; alternatively, it might actually be secure,
perhaps with a different security proof under some other plausible assumption. We leave these topics for
future work.

The effectiveness of our attacks hinges on the following key feature of the assumption and PoSW protocols
following [LM23]: solutions are allowed to be “somewhat short,” even though the “honest” computation
generates a “very short” solution. More specifically, the norm (in ℓ∞, say) of a solution is allowed to be
quasipolynomial in the sequentiality parameter T , whereas the honestly computed solution has constant ℓ∞
norm. The reason for this gap is that in the protocol, the honest solution is repeatedly “folded” into one having
smaller dimension but larger norm, so the verifier needs to use more permissive norm checks. (Additionally,
the knowledge extractor in the security proof incurs another quasipolynomial blowup in the norm of its
extracted solution, relative to the norm bounds used by the verifier.)

Our attacks crucially exploit this gap by computing a “somewhat short” solution of quasipolynomial
norm in only polylogarithmic depth polylog(T), or even a “short” one of some polynomial norm in small
polynomial depth T ε, for any constant ε > 0. However, we do not see how to compute a “very short” solution
having constant ℓ∞ norm (like the honestly computed one) in depth sublinear in T . So, a much weaker
version of the sequentiality assumption from [LM23] corresponding to these parameters, still seems plausible.
Constructing a proof system that quickly proves knowledge of such a short solution is an interesting and
worthwhile open problem.

2 Preliminaries

2.1 Vector and Matrix Norms

For a real vector x and p ≥ 1, define its ℓp norm as ∥x∥p :=
(∑

i|xi|p
)1/p, and its ℓ∞ norm as ∥x∥∞ :=

maxi|xi|. Observe that the Euclidean norm is simply the ℓ2 norm. For any n-dimensional vector x and any

3

1 ≤ p ≤ r ≤ ∞, a standard bound is

∥x∥r ≤ ∥x∥p ≤ ∥x∥r · n1/p−1/r ,

where we adopt the convention that a1/∞ = 1 for any a > 0. We extend any ℓp norm ∥·∥p on vectors to
matrices X by taking the maximum over its columns xj , i.e., ∥X∥p := maxj∥xj∥p.

For matrices it will be convenient to use the operator norm ∥X∥r←p := maxy ̸=0∥Xy∥r/∥y∥p for
p, r ∈ [1,∞]. In words, the operator norm bounds the factor by which left-multiplication by X can expand
norms, going from ℓp to ℓr:

∥X ·Y∥r ≤ ∥X∥r←p · ∥Y∥p . (2.1)

The operator norm is sub-additive and sub-multiplicative, i.e., ∥X +Y∥r←p ≤ ∥X∥r←p + ∥Y∥r←p and
∥X · Y∥r←p ≤ ∥X∥r←p · ∥Y∥r←p, and it is immediate that ∥XY∥r←p ≤ ∥X∥r←q · ∥Y∥q←p. For any
p, r ∈ [1,∞], observe that the identity matrix In satisfies ∥In∥r←p = max(n1/r−1/p, 1), and in particular
∥In∥p←p = 1; and for any X ∈ Rn×m,

∥X∥r←p ≤ n1/r · ∥X∥∞←p ≤ n1/r · ∥X∥∞ ·m1−1/p . (2.2)

Random matrices. For tighter bounds, it is convenient in some cases to rely on standard results from
random matrix theory; see, e.g., [Ver12]. For example, if X ∈ Rm×m is a random matrix with independent
columns drawn from subgaussian distributions (which may vary from column to column), then it will satisfy
∥X∥2←2 = O(

√
m) except with probability 2−Ω(m). (We refer to [Ver12] for the definition of subgaussian,

which we do not need in this work.) For simplicity, we simply say “high probability” to represent 1− 2−Ω(m).
Observe that by the union bound, any T = 2o(m) events that individually occur with high probability will also
all occur with high probability; we often implicitly use this fact in our high-probability statements.

Block-wise norms. For some of our purposes it will be important to have finer-grained bounds on the
(operator) norms of the row blocks of a vector or matrix. Let ∥·∥ be a norm on vectors or matrices, such as the
ones defined above. When X is seen as being made up of row blocks Xi (whose definition will always be
clear from context), we take ∥X∥ to be the column vector of norms ∥Xi∥, i.e., ∥X∥ := (∥Xi∥)i. For vectors
of norms having the same dimension, we use the partial ordering given by a ≤ b if ai ≤ bi for all i. So, for
any matrices X,Y where now X is seen as being made up of row blocks (but Y is not), Equation (2.1) still
holds, but now both sides are vectors (and ∥Y∥p is a scalar).

2.2 Sequentiality Assumption

Here we recall the lattice-based candidate sequentiality assumption recently proposed by Lai and Mala-
volta [LM23] (with some slight differences in the notation). This assumption was used as the foundation for a
candidate proof of sequential work (PoSW); see Section 5 for further details.

Let q be a positive integer modulus and g ∈ Zℓ
q be a suitable “gadget” vector; for concreteness, we use the

standard powers-of-two gadget g = (1, 2, 4, . . . , 2ℓ−1)t for ℓ = ⌈log2 q⌉, but all of our results easily adapt to
other choices of gadgets (see [MP12] for further details). Let g−1 : Zq → Zℓ be the corresponding “(bit)
decomposition” function: g−1(u) is binary and hence “short,” and ⟨g,g−1(u)⟩ = gt · g−1(u) = u for any
u ∈ Zq. Finally, extend the gadget and its decomposition operation to work on matrices (including vectors) as
follows: for any positive integer n, let Gn := In ⊗ gt ∈ Zn×nℓ

q denote the block-wise application of gt to
each ℓ-dimensional column block, and let G−1n (·) denote the entry-wise application of g−1 on any matrix U
having n rows, so that Gn ·G−1n (U) = U.

4

For dimensions n and m = nℓ, matrix Ā ∈ Zn×m
q , vector u0 ∈ Zn

q , and sequentiality parameter T , Lai
and Malavolta [LM23] consider the following linear system, where G = Gn ∈ Zn×m

q :1


G
Ā G

Ā
. . .
. . . G

Ā G


︸ ︷︷ ︸

AT∈ZTn×Tm
q

·


x1

x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=


u0

0
...
0
0

 ∈ ZTn
q . (2.3)

They conjectured that for sufficiently large q, given uniformly random (Ā,u0), computing a “somewhat short”
solution x ∈ ZTm to Equation (2.3)—specifically, one having ℓ∞ norm ∥x∥∞ ≤ O(n)2 log T —requires Ω(T)
sequential time. (Naturally, one can consider other norms as well, like the Euclidean ℓ2 norm.) Notice that a
“very short” binary solution, which has ℓ∞ norm ∥x∥∞ ≤ 1, can be computed in depth proportional to T , as
x1 = G−1n (u0) ∈ Zm and then xi = −G−1n (Āxi−1) ∈ Zm for i = 2, . . . , T . This works because

Āxi−1 +Gxi = Āxi−1 − Āxi−1 = 0 .

The reason for the gap between the “very short” bound obtained by the above computation, versus the
“somewhat short” bound in the assumption, is the O(n)2 log T “slack factor” in the proof of sequential work
from [LM23]. More specifically, the honest prover can use a “very short” solution to convince the verifier, but
the knowledge extractor can extract only a “somewhat short” solution from any (possibly malicious) prover
that manages to convince the verifier. Looking ahead, the attacks we give in Section 4 crucially exploit this
gap, using a low-depth computation to find a solution that is significantly longer than the “very short” one, but
still below the “somewhat short” threshold.

3 Attack Framework

Here we develop a suite of general tools that can be combined in various ways to yield attacks on sequentiality
assumptions and proofs of sequential work.

3.1 Gadget Trapdoors

We first recall from [MP12] the notion of a (gadget) trapdoor for a matrix A ∈ ZN×W
q , for any dimen-

sions N,W . This is any “short” matrix R ∈ ZW×M , where M = Nℓ, for which

AR = GN = IN ⊗ gt ∈ ZN×M
q . (3.1)

More precisely, R should have suitably bounded operator norm ∥R∥r←p for whatever p, r are most appropriate
for the application. For example, when bounds on the Euclidean ℓ2 norm are desired, the spectral norm

1For convenience, we have made a slight but immaterial tweak to the system appearing in [LM23], by dropping the Ā matrix in
the bottom-right block (that appears below our bottom-right G matrix) and dropping the bottom-most block uT on the right-hand
side (below our zero blocks). It is easy to see that the two systems are equivalent. In addition, [LM23] considers a more compact and
“algebraically structured” version of the system over a certain polynomial ring, where each n-by-n block of Ā is the (structured)
multiplication matrix of a random ring element. Our attack works for arbitrary Ā, so for simplicity and generality we adopt the above
presentation.

5

∥R∥2←2 is usually most useful. In this work we will also frequently use the ℓ∞ norm, and also finer-grained
block-wise norm bounds, as defined in Section 2. Observe that GN itself has IM as a trapdoor.

Using such a trapdoor, it is easy to compute, in low depth, a comparably short solution x ∈ ZW to
Ax = u, for any syndrome u ∈ ZN

q : simply let x = R ·G−1N (u). This works because both R and G−1N (u)
are short, and

Ax = AR ·G−1N (u) = GN ·G−1N (u) = u .

Recall that G−1N applies g−1 to each entry of u independently, so x can be computed in depth ÕN,q(1), i.e.,
polylogarithmic in N and q. And because G−1N (u) is binary, for any r ∈ [1,∞] we have that x satisfies the
(potentially block-wise) norm bound

∥x∥r ≤ ∥R∥r←∞ . (3.2)

For example, by Equation (2.2) this is at most W 1/r · ∥R∥∞ ·M , but tighter bounds may be available in
specific circumstances.

Subspace trapdoors. More generally, for some relations (including the specific one from [LM23]) it
suffices, and will yield better bounds, to have a limited trapdoor with respect to just the top s rows for some
s ≪ N , which we call an s-subspace trapdoor.2 For convenience of usage later on, we allow s to be arbitrary,
including s > N . An s-subspace trapdoor of A is a short matrix R ∈ ZW×sℓ for which

AR = GN,sℓ := IN,s ⊗ gt ∈ ZN×sℓ
q , (3.3)

where Ia,b is the a-by-b matrix obtained by padding Imin(a,b) with zeros on the right or the bottom, as
appropriate. We have that ∥Ia,b∥r←p = ∥Imin(a,b)∥r←p. Notice that the gadget matrix GN itself has the
matrix IM,sℓ as an s-subspace trapdoor.

Definition 3.1 (s-admissible vector). For a positive integer s, a vector u ∈ ZN
q is s-admissible if all its

entries below the first min(s,N) are zero.

Using an s-subspace trapdoor R for A, for any s-admissible syndrome u ∈ ZN
q , it is easy to compute, in

depth Õs,q(1), a solution to Ax = u that satisfies the norm bound in Equation (3.2). Let us ∈ Zs
q be the

truncation or padding by zeros (as appropriate) of u; observe that IN,sus = u because u is s-admissible.
Output x = R ·G−1s (us) ∈ ZW . Then we have that, as needed,

Ax = GN,sℓ ·G−1s (us) = IN,s · us = u .

3.2 Trapdoor Combiners

The core idea underlying our attacks is to recursively compute, in fairly low depth, a trapdoor for the
block-triangular matrix of the linear system in question, using trapdoors for sub-matrices of the system. This
trapdoor can then be used to find a short solution for any desired syndrome, as described above. In this section
we give a variety of low-depth, non-recursive combiner algorithms for constructing trapdoors and finding
short solutions using sub-trapdoors. Sections 4 and 5 then give parallel recursive “driver” algorithms that use
these combiners for specific attacks.

The base case is where the system’s matrix is simply the gadget matrix Gn for some (typically small) n—
which trivially has the identity matrix Inℓ as a trapdoor—or some other matrix having a known trapdoor. For

2This definition and the associated techniques naturally generalize to any particular set of rows, or even to any subspace of the
column space.

6

the recursive case, suppose that the system’s matrix A has N = N0 +N1 rows and block lower-triangular
form

A =

(
A0

W A1

)
, (3.4)

where A0 and A1 respectively have N0 and N1 rows; typically, one would have N0 ≈ N1. Note that the
matrix AT from the system in Equation (2.3) has this form, where A0 = A1 = AT/2 for even T (and
similarly for odd T) and W is all zeros except in its upper-rightmost n-by-m block.

The following lemma is the main result of this section.

Lemma 3.2. Let A have the form given in Equation (3.4). There is a polynomial-time, depth-ÕN,q(1)
algorithm CombTrap that, given A and a trapdoor Ri (having Mi = Niℓ columns) for each Ai, outputs a
trapdoor R (having M = Nℓ columns) for A satisfying for all p, r ∈ [1,∞] the block-wise bound

∥R∥r←p ≤

(
∥R0∥r←p

∥R1∥r←p · (M1−1/p
0 ·M1/p

1 + 1)

)
(3.5)

Moreover, for p = 2, the bound holds with O(
√
M) in place of (M1−1/p

0 ·M1/p
1 + 1), with high probability.

Proof. Observe that

A ·
(
R0

R1

)
=

(
GN0

WR0 GN1

)
. (3.6)

Therefore, a trapdoor R for A is

R =

(
R0

R1

)(
IM0

R′ IM1

)
=

(
R0

R1R
′ R1

)
where R′ = G−1N1

(−WR0) ∈ ZM1×M0 . (3.7)

This is because

AR =

(
GN0

WR0 GN1

)(
IM0

R′ IM1

)
=

(
GN0

WR0 −WR0 GN1

)
= GN .

Note that R can be computed (given R0,R1,W) in depth ÕN,q(1), by first computing WR0, then R′,
then R1R

′.
For the norm bound, first observe that R′ ∈ ZM1×M0 has binary entries, so ∥R′∥∞ ≤ 1. From

Equation (3.7), and sub-additivity and transitivity of the operator norm, we get the block-wise bound

∥R∥r←p ≤
(
∥R0∥r←p

∥R1∥r←p · (∥R′∥p←p + 1)

)
.

The bound ∥R′∥p←p ≤ M
1−1/p
0 ·M1/p

1 follows from Equation (2.2). Moreover, if we use a randomized,
subgaussian variant of g−1, we get that ∥R′∥2←2 = O(

√
M) with high probability.

3.2.1 Subspace Trapdoors

To attack the specific relation from [LM23] (see Equation (2.3)), because the syndrome is n-admissible it
suffices to compute an n-subspace trapdoor, regardless of how large N = Tn is. This can be done by a
simple optimization of the above approach, which yields much better matrix-norm bounds, and somewhat
better computation-depth bounds.

7

Definition 3.3 (s-admissible matrix). Let A have the form given in Equation (3.4). For a positive integer s,
we say that A is s-admissible if all the columns of W are s-admissible vectors (Definition 3.1), i.e., all their
entries below the first min(s,N1) are zero.

For example, observe that the matrix AT from [LM23] (see Equation (2.3)) is n-admissible.
For s-admissible matrices, the CombTrap algorithm from Lemma 3.2 adapts to an algorithm CombTraps

having the following differences:3

• It takes as input, and produces as output, s-subspace trapdoors of their respective matrices; note that
these trapdoors have just sℓ columns (not M = Nℓ or Mi = Niℓ).

• The output can be computed in depth Õs,q(1); note that in the subscript, s appears in place of N .
• The operator-norm bound from Equation (3.5) becomes

∥R∥r←p ≤
(
∥R0∥r←p

∥R1∥r←p · sℓ

)
, (3.8)

and for p = 2, the bound holds with O(
√
sℓ) in place of sℓ, with high probability.

Specifically, CombTraps works as follows:

1. Write GN,sℓ = (
GN0,sℓ

HN1,sℓ
). Observe that the columns of GN,sℓ are s-admissible vectors, hence the same

goes for HN1,sℓ.

2. Let Ws and Hs respectively be the truncations or zero-paddings (as appropriate) of W and HN1,sℓ

to s rows. Because the columns of W and HN1,sℓ are s-admissible vectors, IN1,s ·Ws = W and
IN1,s ·Hs = HN1,sℓ.

3. Output

R =

(
R0

R1

)(
Isℓ
R′

)
=

(
R0

R1R
′

)
where R′ = G−1s (Hs −WsR0) ∈ Zsℓ×sℓ . (3.9)

The output is an s-subspace trapdoor of A due to the subspace-trapdoor relation (Equation (3.3)), the
above parsing of GN,sℓ, and a calculation similar to the one in the proof of Lemma 3.2, using the fact that

A1R1 ·R′ = GN1,sℓ ·G−1s (Hs −WsR0) = IN1,s · (Hs −WsR0) = HN1,sℓ −WR0 .

The depth bound of Õs,q(1) holds because R1 has only sℓ columns. And bounds on ∥R′∥p←p analogous to
the ones in the proof of Lemma 3.2 hold, but with sℓ in place of M0 and M1.

3.2.2 Combining Solver

Here we describe a slightly optimized solution finder, which is important for our attack on the PoSW protocol
with its original norm bounds (see Section 5). Instead of building a full trapdoor from sub-trapdoors and then
using it to find a comparably short solution for a desired syndrome, we can instead directly use the sub-trapdoors
to get a somewhat shorter solution. Essentially, this optimization corresponds to solving the system “slightly
honestly,” where we sequentially compute a solution one block at a time, using the sub-trapdoors to compute
each block of the solution in low depth. Comparing the combination of Equations (3.2) and (3.5) above with
Equation (3.10) below, this method yields better block-wise norm bounds for (say) the ℓ∞ norm by at least
an M0 factor for full trapdoors, and an sℓ factor for an s-subspace trapdoor.

3As with subspace trapdoors themselves, this modification naturally generalizes to any linear subspace of the column space.

8

Lemma 3.4. Let A have the form given in Equation (3.4). There is a polynomial-time, depth-ÕN,q(1)
algorithm CombSolve that, given A, any syndrome u ∈ ZN

q , and a trapdoor Ri (having Mi = Niℓ columns)
for each Ai, outputs a solution to Ax = u satisfying for any p, r ∈ [1,∞] the block-wise norm bound

∥x∥r ≤

(
∥R0∥r←p ·M1/p

0

∥R1∥r←p ·M1/p
1

)
. (3.10)

Similarly, for any positive integer s, there is a polynomial-time, depth-Õs,q(1) algorithm CombSolves
that, given any s-admissible A and u ∈ ZN

q , and an s-subspace trapdoor Ri for each Ai, outputs a solution
to Ax = u satisfying the same block-wise norm bound as in Equation (3.10), but with sℓ in place of each Mi.

Proof. For our purposes in Section 5.3 it is convenient to define CombSolve in terms of a “helper” function
CombSolveHelper that has a slightly different interface. Given:

• A and an initial solution block x0 (that is meant to satisfy A0x0 = u0 for some initial syndrome block
u0 ∈ ZN0

q),
• a remaining syndrome u1 ∈ ZN1

q , and
• a trapdoor Ri for Ai for each i > 0 (so R0 is not needed),

it outputs a full solution x = (x0
x1) to Ax = u, by computing a solution to A1x1 = u′1 := u1 − Wx0,

namely, x1 = R1 ·G−1N1
(u′1).

We now define CombSolve. It parses u = (u0
u1) ∈ ZN

q where ui ∈ ZNi
q , computes the initial solution

block as x0 = R0 ·G−1N0
(u0), and finally outputs the full solutionCombSolveHelper(A,x0,u1,R1). Observe

that the output is computed in depth ÕN,q(1), and satisfies ∥xi∥r ≤ ∥Ri∥r←p ·M1/p
i because the output of

G−1Ni
is binary.

The claim about CombSolves follows similarly, via a corresponding helper CombSolveHelpers, by
adapting the approach for combining subspace trapdoors from Section 3.2.1 above.

3.2.3 Larger Arity

Finally, all of the above easily generalizes to the case where A can be split into larger numbers of blocks.
This will be needed for our attacks on PoSW variants in Section 5.

Specifically, suppose that for some k ≥ 2, the matrix A has the form

A =


A0

W1,0 A1
...

... . . .
Wk−1,0 Wk−1,1 · · · Ak−1

 , (3.11)

where Ai has Ni rows. Then everything in Lemmas 3.2 and 3.4 and Section 3.2.1 generalizes in the natural
way, with algorithms having depth ÕN,q(k), using techniques analogous to Gaussian elimination (run in
parallel over columns).

In a bit more detail, CombTrap from Lemma 3.2 generalizes as follows. It can be verified that if Ri is a
trapdoor (having Mi = Niℓ columns) for Ai, then a trapdoor for A is

R =


R0

R1

. . .
Rk−1




IM0

R′1,0 IM1

...
... . . .

R′k−1,0 R′k−1,1 · · · IMk−1


9

where
R′i,j = G−1Ni

(
−Wi,jRj −

∑
j<j′<i

Wi,j′Rj′R
′
j′,j

)
.

These blocks can be computed in k − 1 sequential stages, in parallel over the columns j = 0, . . . , k − 1,
by computing R′i,j for i = j + 1, . . . , k − 1 in sequence. So, R can be computed in depth ÕN,q(k). A
block-wise operator-norm bound on R can easily be obtained from operator-norm bounds on the R′i,j and the
triangle inequality, as in the proof of Lemma 3.2. (We will not need such a bound in this work, so we omit its
rather large expression.)

Similarly, the optimized solver CombSolve from Lemma 3.4 generalizes to this setting as well, in an
analogous way.

Subspace trapdoors. All the optimizations relating to subspace trapdoors also generalize similarly. First,
we generalize the notion of s-admissible matrix (Definition 3.3) to apply to matrices having the form
given in Equation (3.11), where we require that the columns of all the Wi,j are s-admissible vectors. The
combiners and solvers for s-admissible matrices and subspace trapdoors given in Sections 3.2.1 and 3.2.2 then
generalize straightforwardly, and have depth Õs,q(k). More specifically, the output of CombTraps satisfies an
operator-norm bound analogous to Equation (3.8), where all blocks but the first incur an expansion, by the
same factor. Finally, the optimized solver CombSolves from Lemma 3.4 and its norm bound also generalize
in the natural way.

4 Attack on the Assumption

Here we use the tools from Section 3 to give a recursive attack on the sequentiality assumption from [LM23]
(see Section 2.2). Our ultimate result in this respect is as follows.

Theorem 4.1 (Attack on the sequentiality assumption). Let Ā ∈ Zn×m
q , T and k ∈ [2, T] be positive

integers, and AT be the matrix given in Equation (2.3). Given Ā, T, k, an n-subspace trapdoor RT for AT

satisfying the following (scalar) norm bound for any p, r ∈ [1,∞] can be computed in depth Õn,q(k logk T):

∥RT ∥r←p ≤ (k1/r ·m)⌈logk T ⌉ · ∥Im∥r←p .

Moreover, for p = 2 and T = 2o(m), the bound holds with
√
m in place of m in the factor on the left, with

high probability.
As a result, a solution x to Equation (2.3) satisfying the following (scalar) norm bound for any p ∈ [1,∞]

can be computed in depth Õn,q(k logk T):

∥x∥p ≤ (k1/p ·m)⌈logk T ⌉ ·m1/p ,

and for p = 2 and T = 2o(m) the bound holds with
√
m in place of m in the factor on the left, with high

probability.

We prove this theorem below as a corollary of a much more general setup and attack. As a couple of
examples, we can get the following parameterizations of Theorem 4.1:

• For k = 2, in depth just Õn,q(log T) we get a solution having ℓ∞ norm bounded by m⌈log2 T ⌉, or ℓ2
norm (and hence ℓ∞ norm as well) bounded by (2m)(⌈log2 T ⌉+1)/2 with high probability.

10

RecTraps(A)

if A = Gn : return Inℓ,sℓ

foreach i in parallel : Ri = RecTraps(Ai)

return CombTraps(A, [Ri]i)

Figure 1: Algorithm that computes a subspace trapdoor for any recursively s-admissible matrix A.

• By setting k ≈ T ε for an arbitrarily small constant ε > 0, in depth Õn,q(T
ε) we get a solution of just

polynomially bounded ℓ∞ norm m1/ε.

In a typical instantiation where log q = Õn,T (1), the q subscripts in the above Õ expressions can be
replaced by T . In general, for log q = o(n) and hence m = o(n2), the above falsifies (even a major weakening
of) the assumption made in [LM23], which posits that computing a solution of ℓ∞ norm O(n)2 log2 T requires
depth Ω̃n,q(T) (or in weaker form, depth Ω̃n,q(T

ε) for some constant ε > 0).

General attack. In fact, our attack applies to a broad generalization of the system in Equation (2.3), namely,
any one in which the matrix is block lower-triangular and has “gadget” matrices G (or any other matrices
having known trapdoors) as the diagonal blocks. For simplicity of presentation, throughout this section and
Section 5, our general attack algorithms assume that the system’s matrix A is implicitly given in block form
following Equation (3.4) (or more generally, Equation (3.11)), and similarly for its component Ai matrices,
recursively. Then, an attack against a specific assumption or protocol is obtained as an instantiation of the
general attack, by specifying the recursive block structure for the proposal in question.

Definition 4.2 (Recursively s-admissible). For a positive integer s, a matrix A is recursively s-admissible
if A = Gn for some n (the base case), or if it has the form given in Equation (3.4) (or more generally,
Equation (3.11)), it is s-admissible, and all its Ai submatrices are recursively s-admissible.

For example, notice that the matrix AT from Equation (2.3) is recursively n-admissible for any choice of
arity k ∈ [2, T], with a recursive block structure of depth ⌈logk T ⌉.

In the rest of this section, we define and analyze a simple recursive “driver” of the (general arity, subspace)
trapdoor combiner CombTrap from Section 3.2; see Figure 1 for its formal definition. Then we show that a
straightforward instantiation of this driver yields Theorem 4.1 as corollary.

Lemma 4.3. Let A be a recursively s-admissible matrix that recursively has the form given in Equation (3.11)
for some arity k and recursion depth at most d (where d = 0 is the base case). Then RecTraps(A) computes,
in depth Õs,q(kd), an s-subspace trapdoor R for A satisfying for any p, r ∈ [1,∞] the (scalar) norm bound

∥R∥r←p ≤ (k1/r · sℓ)d · ∥Isℓ∥r←p .

For p = 2 and kd = 2o(sℓ), the bound holds with
√
sℓ in place of sℓ in the factor on the left, with high

probability. In particular, for r = ∞ we have that ∥R∥∞←p ≤ (sℓ)d, and ∥R∥∞←2 ≤ (sℓ)d/2 with high
probability.

Proof. It is easy to see that at each level of the recursion, by (the general arity, subspace version of) Lemma 3.2,
CombTraps has depth Õs,q(k). Hence the overall computation depth of RecTraps(A) is Õs,q(kd).

11

For the operator norm of R, again by (the general arity, subspace version of) Lemma 3.2, we have the
recurrence

∥R∥r←p ≤

∥∥∥∥∥∥∥∥∥


∥R0∥r←p

∥R1∥r←p · sℓ
...

∥Rk−1∥r←p · sℓ


∥∥∥∥∥∥∥∥∥
r

≤ k1/r ·max
i

∥Ri∥r←p · sℓ .

For p = 2, the recurrence holds with
√
sℓ in place of sℓ, with high probability. The base case of this

recurrence is ∥Inℓ,sℓ∥r←p ≤ ∥Isℓ∥r←p, and the recursion has depth at most d. This yields the claimed bound
on ∥R∥r←p.

Proof of Theorem 4.1. Recall that the matrix AT from Equation (2.3) is recursively n-admissible for any
choice of arity k ∈ [2, T], with a corresponding depth of d = ⌈logk T ⌉. The computation of RT and the
bound on ∥RT ∥r←p then follows immediately from Lemma 4.3 and the fact that m = nℓ. For the particular
solution x, we use the subspace-trapdoor solver (see Section 3.1), letting x = RT ·G−1n (u0). Then

∥x∥p ≤ ∥RT ∥p←p · ∥G−1n (u0)∥p ≤ (k1/p ·m)⌈logk T ⌉ ·m1/p .

5 Attacks on Proofs of Sequential Work

Lai and Malavolta [LM23] also gave a candidate proof of sequential work (PoSW) protocol and proved its
security based on the sequentiality assumption stated in Section 2.2. While the attack from Section 4 strongly
falsifies the assumption, and thus renders the security proof vacuous, it does not immediately follow that the
PoSW itself is broken. Indeed, the attack as stated does not break the protocol, because it produces a solution
vector whose components have much larger norms than the “honestly computed” ones, so running the (honest)
prover with this vector would not yield short enough component vectors to convince the verifier.

In this section we give attacks that use the tools from Section 3 in a more sophisticated way, to break two
PoSWs that are very similar (but not quite identical) to the one given in [LM23]; see Figure 2 for the formal
definition. Both variants tweak the core “folding” operation to multiply the verifier’s random challenge by the
first, rather than the second, half of the prover’s solution vector. In the design of the protocol the choice is
arbitrary, since the analysis and security proof apply equally well to either version, but the choice seems to
have significant implications for attacks, as we explain below. In addition, in our first variant protocol, the
verifier checks the prover’s responses using somewhat relaxed norm bounds (which are polynomially related
to the original ones). Our second variant uses the original norm bounds from [LM23]; the only change is the
tweaked folding operation.

The rest of this section is organized as follows. In Section 5.1 we describe some of the challenges that
arise in attacking the PoSW protocol of [LM23]. In Section 5.2 we break the first variant protocol using the
simple RecTrap algorithm from Section 4, but with a slightly different recursive block decomposition of the
system’s matrix. Then in Section 5.3 we break the second variant using a much more sophisticated recursive
strategy.

5.1 Challenges in Attacking PoSWs

We start by describing some of the additional challenges that arise in attacking the PoSW protocol of [LM23],
which motivate our protocol tweaks and enhanced attacks. See Figure 2 for a formal definition of the protocol,
with our tweaks highlighted.

12

Prover(Ā, T,u0, {ui}i∈[T], {xi}i∈[T])

if T = 1 :

send x1

return

T ′ = (T − 1)/2

send xT ′+1

receive c

u′
i = c · ui + ui+T ′+1

x′
i = c · xi + xi+T ′+1

Prover(Ā, T ′,u′
0, {u′

i}i∈[T ′], {x′
i}i∈[T ′])

Verifier(Ā, T,u0,uT , β)

if T = 1 :

receive x1

return [∥x1∥ ≤ β

∧Gx1 = u0 ∧ −Āx1 = u1]

T ′ = (T − 1)/2

receive xT ′+1

if ∥xT ′+1∥ > β : return 0

send random c with |c| ≤ γ

u′
0 = c · u0 + (−ĀxT ′+1)

u′
T ′ = c · GxT ′+1 + uT

return Verifier(Ā, T ′,u′
0,u

′
T , 2 γ′ · β)

Figure 2: The core algorithms of the PoSW from [LM23], with boxed modifications. For simplicity, we
give the code only for T of the form T = 2t − 1. The original PoSW applies the challenge factor c to the
second term in each sum (instead of the first), and it uses γ′ = γ.

Structure of the PoSW. In the PoSW, the honest prover computes a short solution x to Equation (2.3), then
engages in an interactive public-coin protocol to convince the verifier that it knows such a solution. (The
protocol can be made non-interactive in the usual way via the Fiat–Shamir transform.) To do this, it uses the
verifier’s small random challenge to linearly “fold” the first and second halves of x together, which yields a
somewhat longer solution of half the dimension, then recursively proves knowledge of this folded solution.

More precisely, the prover first announces uT = −ĀxT (or equivalently, xT) as its claimed result of
the sequential computation. Then it gives a proof of knowledge of its solution x to Equation (2.3): it
announces x(T+1)/2 (assume that T is odd for simplicity), which the verifier checks is short enough, and the
verifier announces a small random challenge c.4 Observe that the remaining halves of x form two solutions to
reduced-dimension instances of Equation (2.3), with known right-hand sides of the appropriate form. So, the
prover linearly combines these solutions using c, and recursively proves knowledge of the resulting (somewhat
longer) solution in the same manner, until the dimension is small enough to simply reveal and check the
solution. Note that with each successive stage of the recursion, the verifier must apply a more relaxed norm
check on the prover’s announced value, because folding increases the norm of the solution by some fixed
factor (independent of T).

The difficulty. The key challenge in attacking the PoSW seems to be as follows: (1) the prover must first
announce some uT to the verifier, so (2) the prover can know at most one short solution for whatever value
it announces, and (3) the only way we see to convince the verifier is by knowing a solution whose middle
component x(T+1)/2, along with all subsequent middle components under the recursive folding, are nearly as
short as what the honest prover would compute. We elaborate on each of these points next.

The announced value of uT represents the claimed result of the sequential computation that the prover

4As mentioned before, [LM23] considers an “algebraically structured” version of the system Equation (2.3) over a certain
polynomial ring, and the challenge c there is also a ring element. Hence in our language, we actually need to model the challenge c as
a matrix, and measure its shortness by some suitable operator norm. For simplicity we still write c as a scalar, and we give more
details about the norm of c as a matrix when it comes to the actual calculations later on.

13

supposedly performed to get a solution to Equation (2.3). It is straightforward to show that computing distinct
short solutions, for any fixed and possibly adversarially chosen right-hand side, is at least as hard as solving
the corresponding SIS problem for the random matrix Ā. So, under the standard assumption that SIS is
intractable (see, e.g., [Ajt96, MR04]), once an efficient prover (of any depth) reveals some uT , it can know
at most one short solution for it. The same goes for the later stages of the protocol with lower-dimensional
instances of Equation (2.3), where the first and last components of the right-hand side are determined by the
previous stages.5

With these constraints, the only way we see to convince the verifier is by proceeding exactly as the honest
(specified) prover would, using a single known solution. This means that the middle component of the solution
vector, and all subsequent middle components under recursive folding, need to satisfy the verifier’s norm
checks. In particular, it seems that whichever half of the solution is multiplied by the verifier’s challenge
needs to be nearly as short as what the honest prover would compute. The PoSW from [LM23] multiplies
by the second half, and we do not see a way to generate such a short second half in depth significantly less
than T . This is because our techniques yield trapdoors and solutions whose second halves are larger than their
first halves by some polynomial factor. Again we stress that the attack from Section 4 achieves low depth by
exploiting the moderately large slack factor: the solution is merely “somewhat short” in its second half (and
fourth quarter, etc.), but not nearly as short as what the honest computation produces.

5.2 Breaking a Relaxed PoSW

The above discussion motivates a natural alternative folding operation: multiply the verifier’s random
challenge c by the first, rather than the second, half of the solution. That is, instead of folding a solution x into
the lower-dimensional one xfirst + c · xlast, use c · xfirst + xlast. The security proof from [LM23] (modified in
the obvious way) holds equally well for this option, because the two halves are treated symmetrically. (As far
as we can tell, in [LM23] the choice of folding operation between these two options was arbitrary.)

Interestingly, this trivial modification makes the PoSW breakable using our attack framework. In this
subsection, as a warmup we break this tweaked protocol with a verifier that also uses somewhat relaxed norm
checks. The precise statement is as follows; we prove it below after introducing the definitions and tools
needed to do so.

Theorem 5.1 (Attack on the PoSW with relaxed parameters). There is a depth-Õn,q(log T) malicious
prover that, given any Ā ∈ Zn×m

q , u0 ∈ Zn
q , and positive integer T , convinces the verifier in the modified

PoSW, where in the folding operation the challenge is multiplied by the first half of the solution, and parameters
γ′ ≥ (γ +m)/2 and β ≥ m are used.

The attack simply uses the RecTrap algorithm from Section 4, but with a slightly different recursive
block decomposition of the matrix AT . Essentially, this works because the xlast constructed by the attack is a
small factor longer than xfirst, so the two summands c · xfirst,xlast in the tweaked folding operation are more
“balanced,” hence their sum passes the appropriately relaxed norm checks. However, we also need to ensure
that the revealed middle component is sufficiently short, at every stage of the recursion. For this we impose a
suitable recursive block structure on AT , which treats the middle components specially, as base cases.

Definition 5.2 (PoSW topology). For a positive integer r, a block vector or matrix has PoSW topology of
depth d and base rows r if for the base case d = 0 it has r rows, and if for d > 0 it has three row blocks,

5This state of affairs is quite different from the context of the attack from Section 4, where the adversary is not bound to any
particular right-hand side of Equation (2.3), and knows short solutions to many different right-hand sides via its trapdoor.

14

respectively having PoSW topologies of depths d − 1, 0, d − 1 (all with base rows r). In addition, for a
recursively s-admissible matrix A (Definition 4.2), we also require that A = Gr in the base case d = 0.

Observe that by induction, a vector or matrix having PoSW topology of depth d has T = 2d+1 − 1 rows
blocks, of r rows each. Also observe that for such T and for r = n, the recursively n-admissible matrix AT

from the system in Equation (2.3) can be given this PoSW topology, and the base case Gn has an (n-subspace)
trapdoor Inℓ.

Remark 5.3. In Definition 5.2, for simplicity of presentation, we define the PoSW topology only for matrices
having exactly T = 2d+1 − 1 row blocks. Our attacks, analyses, and results in Sections 5.2 and 5.3 rely on
the PoSW topology, and consequently work for T of this form. However, it is easy to generalize the recursive
definition to work for an even number of blocks, following what is done in the original definition of the PoSW
of [LM23]. This defines a PoSW topology for any positive integer T , and our attacks, analyses, and results
immediately generalize analogously.

To aid in the analysis, we define the following operations on a vector or matrix M having PoSW topology
of depth d > 0 and base rows r, whose three row blocks are denoted M0,M1,M2. The middle block, and
folding operation with multiplier c, are respectively defined as

mid(M) := M1 =
(
0r,N ′ Ir 0r,N ′

)
·M (5.1)

foldc(M) := cM0 +M2 =
(
cIN ′ 0N ′,r IN ′

)
·M , (5.2)

where N ′ = T ′r for T ′ = (T − 1)/2 = 2d − 1 is the number of rows in each of M0,M2. For convenience,
for M having depth d = 0 also define mid(M) := M = Ir ·M.

Observe that for a vector or matrix having a PoSW topology, its corresponding recursive block-wise vector
of (vector or matrix) norms also has a PoSW topology of the same depth, with one row in the base case. In
particular, if |c| ≤ γ, then by the triangle inequality,

∥foldc(M)∥r←p ≤ foldγ(∥M∥r←p) . (5.3)

This can be applied iteratively: for any ci with |ci| ≤ γ for all 1 ≤ i ≤ τ where τ ≤ d, we have that

∥foldcτ (· · · (foldc1(M)))∥r←p ≤ fold(τ)γ (∥M∥r←p) . (5.4)

More generally, our treatment (which expands polynomial-ring elements as vectors and matrices) actually
models the multiplier c as a square matrix having the same dimension as the base-case number of rows. Then
the folding is defined as

foldc(M) :=
(
IT ′ ⊗ c 0N ′,r IN ′

)
·M ,

and for any c with ∥c∥r←r ≤ γ, Equation (5.3) still holds (and similarly for its iterated version Equation (5.4)).

Lemma 5.4. Let A be a recursively s-admissible matrix with PoSW topology of depth d and base rows n.
Then RecTraps(A) computes, in depth Õs,q(d), an s-subspace trapdoor R for A satisfying the following
bound for any p, r ∈ [1,∞] and any integer τ ∈ [0, d]:

mid(fold(τ)γ (∥R∥r←p)) ≤ (γ + sℓ)τ · ∥Inℓ,sℓ∥r←p · sℓ .

15

Proof. At each level of the recursion, by (the general arity, subspace version of) Lemma 3.2, CombTraps has
computation depth Õs,q(1). Hence the overall computation depth for RecTraps(A) is Õs,q(d).

For the operator norm of R, again by (the general arity, subspace version of) Lemma 3.2, we have the
recurrence

∥R∥r←p ≤

 ∥R0∥r←p

∥Inℓ,sℓ∥r←p · sℓ
∥R2∥r←p · sℓ

 ,

and the base case d = 0 has ∥R∥r←p = ∥Inℓ,sℓ∥r←p. Hence ∥R∥r←p ≤ pf(d), a block vector recursively
defined as

pf(d) :=

 pf(d− 1)
∥Inℓ,sℓ∥r←p · sℓ
pf(d− 1) · sℓ

 , (5.5)

with base case pf(0) = ∥Inℓ,sℓ∥r←p. Therefore,

foldγ(pf(d)) =
(
γI 0 I

)
·

 pf(d− 1)
∥Inℓ,sℓ∥r←p · sℓ
pf(d− 1) · sℓ

 = (γ + sℓ) · pf(d− 1) .

By iterating, for any integer τ ∈ [0, d], we get that fold(τ)γ (pf(d)) = (γ + sℓ)τ · pf(d − τ). Therefore, as
desired,

mid(fold(τ)γ (∥R∥r←p)) ≤ mid(fold(τ)γ (pf(d)))

= (γ + sℓ)τ ·mid(pf(d− τ))

≤ (γ + sℓ)τ · ∥Inℓ,sℓ∥r←p · sℓ .

(Note that mid(pf(d− τ)) = ∥Inℓ,sℓ∥r←p in the base case τ = d, but ∥Inℓ,sℓ∥r←p · sℓ is still a valid upper
bound.)

Proof of Theorem 5.1. For simplicity of presentation we assume that T has the form T = 2d+1 − 1, as
required by Definition 5.2; for other T , we can use a generalized PoSW topology as described in Remark 5.3.

The matrixAT from Equation (2.3) is recursivelyn-admissible with PoSW topology of depth d = ⌊log2 T ⌋.
The malicious prover computes an n-subspace trapdoor R of AT following Lemma 5.4, uses the subspace-
trapdoor solver (see Section 3.1) to get a solution x = RT ·G−1n (u0) to Equation (2.3), and then proceeds in
the same way as the honest prover. By Lemma 5.4, this prover has depth Õn,q(log T).

Note that following the honest prover using a valid solution ensures that the verifier’s “linear” checks are
satisfied, so it just remains to confirm that the verifier’s norm checks are also satisfied. By Lemma 5.4 again,
for all τ ∈ [0, d] the block-wise norm of the solution x satisfies

mid(fold(τ)γ (∥x∥∞)) ≤ mid(fold(τ)γ (∥R∥∞←∞)) · 1 ≤ (γ +m)τ ·m ≤ (2γ′)τ · β .

So, considering Equation (5.4) and the fact that the verifier’s challenges c all satisfy |c| ≤ γ (or more precisely,
∥c∥∞←∞ ≤ γ), the verifier’s norm checks on the folded solution x itself are indeed satisfied.

5.3 Breaking a PoSW with the Original Norm Bounds

The prior subsection breaks the PoSW with tweaked folding operation and relaxed norm bounds. Here we
break a PoSW whose only modification from [LM23] is the tweaked folding operation (the norm bounds

16

remain unchanged). This attack uses much more sophisticated recursive strategy, which we summarize below,
and present formally in Figure 3; see also Figure 4 for a visual illustration. Our main result in this subsection
is as follows; as in the previous subsection, we prove it below after introducing the needed tools.

Theorem 5.5 (Attack on the PoSW with original norm bounds). For log q = o(n), there is a depth-
Õn,q(log

2 T) malicious prover that, given any Ā ∈ Zn×m
q , u0 ∈ Zn

q , and positive integer T , convinces the
verifier in the modified PoSW where in the folding operation the challenge is multiplied by the first half of the
solution, and the original parameters γ′ = γ and β = 1 are used.

Recall that our previous attack breaks the PoSW with parameters γ′ = (γ + m)/2 and β = m
(Theorem 5.1). Our goal in the improved attack is to handle γ′ = γ and β = 1. At a high level, we improve the
parameter β by applying the “direct solution” technique from Section 3.2.2, and we improve γ′ by designing
a more sophisticated block decomposition of AT (in a finer-grained version of the PoSW topology).

Obtaining β = 1. To see the idea behind our new strategy, consider the concrete example of (the core
recursive part of) the PoSW for T = 15. In the first round, the prover sends the “middle” component x8 to the
verifier, which checks that ∥x8∥∞ ≤ β. Our previous attack constructs the solution as x = RT ·G−1n (u0),
where RT is a n-subspace trapdoor for AT generated by RecTrap. As a result, our previous attack can ensure
only that ∥x8∥∞ ≤ ∥R8∥∞←∞ (where R8 is the corresponding row block of RT), and by construction, this
is bounded by ∥I∥∞←∞ ·m = m, which is why we took β = m.

The factor m above comes from (the general arity, subspace version of) Lemma 3.2, but notice that in
its “direct solution” counterpart Lemma 3.4, the expansion factor is m1/∞ = 1 instead of m. So, if x is
constructed using CombSolve instead, we would have ∥x8∥∞ ≤ 1, which allows us to take β = 1, at least for
the first round. To get an attack that works for every round, we apply this idea recursively, solving for the
first half of x recursively, and in parallel computing suitable trapdoor(s) for the second-half block. We then
use CombSolveHelper to construct an entire solution from these pieces. See the definition of RecSolvevec

in Figure 3 for the precise definition; also see Figure 4 for an illustration, where the solid lines represent
recursive calls to RecSolvevec (ignore the other types of lines for now).

Obtaining γ′ = γ. Now let us resume the example. After the norm check in the first round, the prover
receives a challenge c1 from the verifier. Then in the second round, the prover sends x′4 = c1 ·x4 +x12 to the
verifier, which tests whether ∥x′4∥∞ ≤ 2γ′ · β. Once the above “direct solution” idea is applied recursively,
we can similarly get ∥x4∥∞ ≤ 1. However, the ∥x12∥∞ term in the second half still picks up an m factor
when the trapdoor for the second-half block is constructed using CombTrap. This results in no improvement
to the parameter γ′ = (γ +m)/2.

Our key new idea here is to partly “sequentialize” the solving within second half: instead of constructing
a combined, longer trapdoor for the entire second-half block from trapdoors for its sub-blocks, we just directly
use those trapdoors; see RecSolvelist in Figure 3. (Recall that CombSolveHelper works for an arbitrary block
decomposition.) Specifically, the sub-blocks in the second-half block are the third-quarter block, a singleton
block Gn, and the last-quarter block. We then simply use this list of trapdoors in CombSolveHelper to get
the final solution x. This leads to ∥x12∥∞ ≤ 1, thus allowing the use of γ′ = γ in the second round.

Continuing the example, we see that the “(2τ + 1)/2τ+1-points” (e.g., the “3/4-point” x12 we just
considered, the “5/8-point” x10, etc.) are the only places where we need to apply the “sequentialization”
idea in order to obtain γ′ = γ. Trapdoors for other groups of sub-blocks can be safely combined into one
trapdoor without violating the norm bounds; see RecSolvetrap in Figure 3. Importantly, therefore, the lengths
of the lists of trapdoors remain linear in the recursion depth d, so the depths of the sequential solving steps

17

RecSolvevec
s (A,u)

if A = Gn : return CombSolves(A,u, [Im,sℓ])

in parallel:
x0 = RecSolvevec

s (A0,u0)

L = RecSolvelist
s (A2)

return CombSolveHelpers(A,x0,u
′, [Im,sℓ;L])

RecSolvetrap
s (A)

if A = Gn : return Im,sℓ

in parallel:
R0 = RecSolvetrap

s (A0)

L = RecSolvelist
s (A2)

return CombTraps(A, [R0, Im,sℓ;L])

RecSolvelist
s (A)

if A = Gn : return [Im,sℓ]

in parallel:

L = RecSolvelist
s (A0)

R2 = RecSolvetrap
s (A2)

return [L; Im,sℓ,R2]

Figure 3: Algorithm RecSolvevec that solves Ax = u for any recursively s-admissible matrix A with
PoSW topology, and s-admissible syndrome u. It parses u = (u0

u′) where u0 ∈ ZN0
q for N0 = (N − n)/2.

Throughout, m = nℓ.

remain low. See Figure 4 for an illustration of the entire example, where the thick and thin dashed lines
represent recursive calls to RecSolvelist and RecSolvetrap, respectively; note that these recursive calls alternate
in a way that exactly traces the “(2τ + 1)/2τ+1-points.” Altogether, combining the “direct solution” and the
“sequentialization” idea, we manage to get our new attack to work for the original parameters γ′ = γ and
β = 1.

Lemma 5.6. Suppose that sℓ ≤ γ2. Let A be a recursively s-admissible matrix with PoSW topology of
depth d and base rows n, and let u be an s-admissible vector. Then RecSolvevec

s (A) computes, in depth
Õs,q(d

2), a solution to Ax = u satisfying the following bound for any p ∈ [1,∞] and any integer τ ∈ [0, d]:

mid(fold(τ)γ (∥x∥p)) ≤ (2γ)τ · (sℓ)1/p .

In particular, for p = ∞, we have that mid(fold
(τ)
γ (∥x∥∞)) ≤ (2γ)τ .

Remark 5.7. In Lemma 5.6 we assume that sℓ ≤ γ2. It is possible to relax the assumption to sℓ ≤ γ2+a for
any integer a ≥ 0, at the cost of increasing the depth of the computation from Õs,q(d

2) to Õs,q(d
2+a). Note

that for any polynomial relationship between sℓ and γ, this a will be a constant and so the extra factor da in
the computation depth will be polynomial in the depth of the PoSW topology.

The generalization is to generalize RecSolvelist to RecSolvelist[α] (with default value α = a): it makes
recursive calls to RecSolvelist and RecSolvetrap as usual for α = 0, while for α > 0 it makes recursive calls to
RecSolvelist[α] and RecSolvelist[α− 1] instead (and combines by simply concatenating the returned lists, still
with an Im,sℓ in the middle).

Proof. Again we assume that T has the form T = 2d+1−1; the case of general T can be handled as described
in Remark 5.3.

We first bound the computation depth of RecSolve, in any of its three “modes” (vec, trap, list), when given
a recursively s-admissible matrix having PoSW topology of depth d. It makes two parallel recursive calls

18

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

x

Figure 4: An example recursion tree for RecSolvevec on a matrix with PoSW topology of depth d = 3.
Recursive calls to RecSolve in the “modes” vec, list, trap are represented by solid lines, thick dashed lines,
and thin dashed lines, respectively; singleton identity matrices are marked by thin dotted lines. The thickness
of each (thick dashed) line for a list-mode call roughly depicts the number of returned trapdoors, and the
width of each internal recursion node roughly depicts the amount of sequential work at that node. Each
number i marks the vector/trapdoor corresponding to the block xi in the solution x.

(with varying modes) on submatrices that follow the PoSW topology (with the same base case), so its total
recursion depth is d. Then because RecSolvetrap returns a single trapdoor, RecSolvelist returns a list having
O(d) trapdoors. So, by (the general arity, subspace versions of) Lemmas 3.2 and 3.4, the computation depth
of the non-recursive work in RecSolve—namely, CombSolveHelper or CombTrap—is Õs,q(d), and hence
the overall computation depth is Õs,q(d

2).
For the (block-wise) norm of x, we analyze more generally the norms of the outputs of RecSolve{vec,list,trap}

when given an arbitrary recursively s-admissible matrix with PoSW topology. For an (arbitrary) vector x
returned by RecSolvevec, again by (the general arity version of) Lemma 3.4, we have the recurrence

∥x∥p ≤

 ∥x0∥p
∥Im,sℓ∥p←p · (sℓ)1/p
∥R̂2∥p←p · (sℓ)1/p

 =

 ∥x0∥p
(sℓ)1/p

∥R̂2∥p←p · (sℓ)1/p

 ,

and the base case is ∥x∥p = ∥G−1s (⋆)∥p ≤ (sℓ)1/p. Here R̂2 is the block matrix whose row blocks are
the vertically stacked s-subspace trapdoors (which, to recall, all have sℓ columns) from the list L returned
by RecSolvelist; we similarly stack other outputs of RecSolvelist below. For a trapdoor stack R̂ returned by
RecSolvelist, straightforwardly,

∥R̂∥p←p =

 ∥R̂0∥p←p

∥Im,sℓ∥p←p

∥R2∥p←p

 =

∥R̂0∥p←p

1
∥R2∥p←p

 ;

and for a trapdoor R returned by RecSolvetrap, again by (the general arity, subspace version of) Lemma 3.2,
we have that

∥R∥p←p ≤

 ∥R0∥p←p

∥Im,sℓ∥p←p · sℓ
∥R̂2∥p←p · sℓ

 =

∥R0∥p←p

sℓ

∥R̂2∥p←p · sℓ

 ≤

∥R0∥p←p

γ2

∥R̂2∥p←p · γ2

 ,

19

where for the last inequality we use the hypothesis sℓ ≤ γ2. Both ∥R̂∥p←p and ∥R∥p←p have the same base
case ∥Im,sℓ∥p←p = 1.

So, following the recurrence pattern, when the input to RecSolve has PoSW topology of depth d, we
have that

(
∥R∥p←p ∥R̂∥p←p ∥x∥p

)
is bounded from above by the matrix

(
pf trap(d) pf list(d) pfvec(d)

)
,

which is recursively defined as follows:

(
pf trap(d) pf list(d) pfvec(d)

)
:=

pf trap(d− 1) pf list(d− 1) pfvec(d− 1)

γ2 1 (sℓ)1/p

pf list(d− 1) · γ2 pf trap(d− 1) pf list(d− 1) · (sℓ)1/p

 .

For convenience, we denote profile(d) :=
(
pf trap(d) pf list(d) pfvec(d)

)
. The base case of the recursion is

profile(0) =
(
1 1 (sℓ)1/p

)
.

From these definitions it can be verified that

foldγ(profile(d)) =
(
γI 0 I

)
·

pf trap(d− 1) pf list(d− 1) pfvec(d− 1)

γ2 1 (sℓ)1/p

pf list(d− 1) · γ2 pf trap(d− 1) pf list(d− 1) · (sℓ)1/p


= profile(d− 1) ·

 γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

 .

Hence by iterating, for any τ , we get that

fold(τ)γ (profile(d)) = profile(d− τ) ·

 γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

τ

.

It can be verified by induction that this matrix power expands to γ 1 0

γ2 γ (sℓ)1/p

0 0 γ

τ

=

 (2γ)τ−1 · γ (2γ)τ−1 (2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · γ2 (2γ)τ−1 · γ (2γ)τ−1 · (sℓ)1/p

0 0 γτ

 .

Then we get, as desired,

mid(fold(τ)γ (∥x∥p)) ≤ mid(fold(τ)γ (pfvec(d)))

= mid(profile(d− τ)) ·

(2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · (sℓ)1/p

γτ


≤
(
γ2 1 (sℓ)1/p

)
·

(2τ−1 − 1) · γτ−2 · (sℓ)1/p
(2γ)τ−1 · (sℓ)1/p

γτ


= 2τ−1(γτ + γτ−1) · (sℓ)1/p

≤ (2γ)τ · (sℓ)1/p .

Here note that mid(pf(d − τ)) =
(
1 1 (sℓ)1/p

)
in the base case τ = d, but

(
γ2 1 (sℓ)1/p

)
is still a

valid upper bound.

20

Proof of Theorem 5.5. Because log q = o(n), we have that m = n log q = o(n2) = o(γ2), and thus m ≤ γ2

holds (for all sufficiently large n). Recall that the matrix AT from Equation (2.3) is recursively n-admissible
with PoSW topology of depth d = ⌊log2 T ⌋. The malicious prover computes a solution x to Equation (2.3)
following Lemma 5.6, and then proceeds in the same way as the honest prover. By Lemma 5.6, this prover
has depth Õn,q(log

2 T).
It remains to confirm that this will satisfy the verifier’s norm checks, and in particular to analyze the

γ-folding of the block-wise norms of the solution x. Similar to the proof of Theorem 5.1, by Lemma 5.6
again, for all τ ∈ [0, d] the block-wise norm of the solution x satisfies

mid(fold(τ)γ (∥x∥∞)) ≤ (2γ)τ · 1 ,

so the verifier’s norm checks are indeed satisfied with bound (2γ′)τ · β for parameters γ′ = γ and β = 1.

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996. Pages 2 and 14.

[AKK+19] H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and M. Walter. Reversible proofs of sequential
work. In EUROCRYPT, pages 277–291. 2019. Page 1.

[CLSY93] J. Cai, R. J. Lipton, R. Sedgewick, and A. C. Yao. Towards uncheatable benchmarks. In Structure
in Complexity Theory Conference, pages 2–11. 1993. Page 1.

[CP18] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In EUROCRYPT, pages 451–467.
2018. Pages 1 and 2.

[DN92] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO, volume
740, pages 139–147. 1992. Page 2.

[LM23] R. W. F. Lai and G. Malavolta. Lattice-based timed cryptography. In CRYPTO, pages 782–804.
2023. Pages 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, and 16.

[May93] T. C. May. Timed-release crypto, February 1993. http://cypherpunks.venona.com/date/
1993/02/msg00129.html. Page 1.

[MMV13] M. Mahmoody, T. Moran, and S. P. Vadhan. Publicly verifiable proofs of sequential work. In
Innovations in Theoretical Computer Science (ITCS), pages 373–388. 2013. Pages 1 and 2.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012. Pages 4 and 5.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004. Page 14.

[Pie19] K. Pietrzak. Simple verifiable delay functions. In Innovations in Theoretical Computer Science
Conference (ITCS), volume 124 of LIPIcs, pages 60:1–60:15. 2019. Page 2.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005. Page 2.

21

http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996. Pages 1 and 2.

[Sho94] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Preliminary version in FOCS
1994. Page 2.

[Ver12] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, chapter 5, pages
210–268. Cambridge University Press, 2012. Available at http://www-personal.umich.
edu/˜romanv/papers/non-asymptotic-rmt-plain.pdf. Page 4.

[Wes19] B. Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–2147, 2020.
Preliminary version in EUROCRYPT 2019. Page 2.

22

http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

	Introduction
	(In)Security in a Quantum World
	Contributions
	Discussion and Future Work

	Preliminaries
	Vector and Matrix Norms
	Sequentiality Assumption

	Attack Framework
	Gadget Trapdoors
	Trapdoor Combiners
	Subspace Trapdoors
	Combining Solver
	Larger Arity

	Attack on the Assumption
	Attacks on Proofs of Sequential Work
	Challenges in Attacking PoSWs
	Breaking a Relaxed PoSW
	Breaking a PoSW with the Original Norm Bounds

