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1 Introduction
Asperger Syndrome is an autism spectrum disorder that reduces a patient’s ability
to interact socially, and restricts their interests and abilities. Using functional
magnetic resonance imaging (fMRI), it has been shown that Asperger patients
exhibit reduced activity between the nodes of a resting-state neuronal network
comprised of the posterior cingulate cortex (PCC), the medial prefrontal cortex
(MPFC), and the lateral parietal cortex, compared to healthy controls [1].

The study of Ref. [1] proposed a technique to discriminate Asperger patients
and healthy controls using the self-organizing map (SOM) algorithm [2] to auto-
matically generate a cluster representing this resting-state network from resting-
state fMRI data. If robust, such a method could have important applications in
screening for this disorder, both in clinical and research settings. However, this
method has a few potential weaknesses. First, it performs discrimination using
a single statistic. Second, the SOM algorithm clusters voxel timecourses based
on Euclidean distances, and therefore may not robustly cluster voxels that are
functionally connected but possess inter-voxel delays. Third, the original method
required user interaction to choose the cluster that best represents the resting-state
network, which may bias the results. Therefore, we are proposing three inno-
vations to this algorithm. To address the first and last issues, we will apply fil-
ter and wrapper methods directly to the fMRI images, bypassing SOM and the
need for user interaction. We have also implemented several different discrim-
ination methods to compare to the simple z-score threshold test implemented in
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Ref. [1]. These include Fisher discriminant analysis and Support Vector Machines
(SVM’s). To address the second issue, we are implementing a kernelized version
of SOM, which allows for using a different metric rather than the direct Euclidean
norm between timecourses and cluster exemplars. Each of the these innovations
will be ultimately compared and contrasted to find the best technique to differen-
tiate between normal and Asperger’s patients. In the following sections we will
describe the original discrimination method and our innovations, and provide a
comparison between their performance.

2 Background

2.1 The Self-Organizing Map Algorithm
The Self-Organizing Map (SOM) algorithm [2] generates a map of length-n ex-
emplar vectors mi that optimally describe a set of observed length-n vectors xk.
The algorithm is initialized by defining a grid of nodes, each of which is associated
with a random exemplar vector mi. At each iteration t, updates to the exemplars
are made as follows. An observation x (t) (in this scenario an observation is a
voxel’s magnitude fMRI timecourse) is compared to each exemplar vector, to find
the prototype index ĉ that satisfies:

ĉ = argmin
c

‖x (t)−mc (t)‖2 . (1)

The exemplars are then updated according to:

mi (t + 1) = mi (t) + h (i; ĉ, t) (x (t)−mi (t)) , (2)

where h (i; ĉ, t) is a neighborhood function, that updates exemplars according to
their distance from mĉ. h (i; ĉ, t) is initially a wide function that narrows as iter-
ations progress, until only mĉ is updated. We take h (i; ĉ, t) to be the Gaussian
function

h (i; ĉ, t) = α (t) exp

(
−‖ri − rĉ‖2

2σ2 (t)

)
, (3)

where 0 < α (t) < 1 is a learning rate that decreases with t, ri and rĉ are the
positions on the SOM grid of the updated and ‘best’ exemplars, respectively, and
σ2 (t) controls the width of the neighborhood function, and also decreases with
iteration. Note that we treat a different observation vector at each iteration, but
when t reaches the number of observation vectors, we may loop back to the first
observation vector and continue updating.
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2.2 SOM-based discrimination of healthy controls and adults
with Asperger’s Disorder

The original method of Ref [1] used resting-state fMRI datasets. These were
obtained by acquiring 270 volumes of images, taken once every 0.75 seconds,
with the subjects lying down in the scanner, awake but resting. The total dataset
is comprised of 8 adult Asperger’s subjects, 10 healthy adult subjects that were
matched in IQ and age range to the Asperger’s subjects, and 8 separate unmatched
healthy adult subjects.

Each subject’s data was independently processed as follows. The SOM algo-
rithm was applied to each subject’s data to obtain a 10 × 10 grid of exemplars.
SOM was again applied to the 100 exemplars, to obtain 16 superclusters. The cor-
relation (z-score) between each voxel timecourse and each supercluster exemplar
was then calculated, yielding 16 z-score maps. These were then examined and the
‘best’ map corresponding to the network of interest was determined by hand.

To perform discrimination, the ‘best’ z-score maps were transformed to a nor-
malized brain atlas. Then a mask for the network of interested was calculated by
thresholding the summed ‘best’ z-maps of the control subjects. This mask was
applied to the ‘best’ map of each subject to calculate the average z-score within
the masked regions. This statistic was used to discriminate between groups, via
a threshold that was chosen to achieve zero false negatives, and is therefore the
maximum average z-score of the patient group.

Figure 1 shows an example mask and z-maps generated by this technique.
Figure 2 shows a box plot of the z-scores for each group. While the average z-
score is a good discriminator between the matched controls and the patients, it
is a poor discriminator between unmatched controls and patients. We performed
leave-one-out cross validation to estimate the error of this method as 0.23 (6 errors
out of 26 subjects).

3 Approach I: Wrappers and Filters
Our first approach explored various feature extraction methods to discriminate
between patients with Aspergers and healthy controls. We worked directly on the
brain images themselves, without using any physiological assumptions. These
approaches will require no user interaction.
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Figure 1: Top three rows: Thresholded z-scores for the cluster encompassing the
resting-state network of interest, superimposed on anatomical images. Asperger’s
subjects exhibit reduced functional connectivity between regions. Bottom row:
Reference mask used to calculate average z-scores for classification. Each column
is a different slice in the volume (moving superior to inferior through the brain).
Image adapted from Ref. [1].
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Figure 2: Average z-scores for Asperger’s subjects and healthy controls in the ref-
erence mask. Thresholding the statistic is a good discriminator between patients
and matched controls, but a poor one between patients and unmatched controls.

5



3.1 Technical description
Feature extraction, or feature subset selection, is a difficult problem [3]. Even
defining relevant features can be difficult (Ref. [4] cites 6 different definitions)
especially when optimality and relevance are not directly related. For example,
a Bayes classifier would use every feature; in practice, however, a smaller subset
of features performs better - and often an ‘optimal’ feature set may not even con-
tain some strongly relevant features. This difficulty precludes methods based on
minimizing error or other criteria, so heuristic algorithms are most common.

Filtering methods attempt to find the most relevant feature without assuming a
final classification algorithm. In a preprocessing step, an algorithm (i.e., a ‘filter’)
is applied to each feature which gives a numerical value used for ranking. The top
m features are then used in classification. T-test statistics, the filters used in this
paper, look at the variance among the training data of each feature and are defined
as

t(j) =

∣∣∣∣∣
x̄(j)

+ − x̄(j)
−

s/
√

n

∣∣∣∣∣ , (4)

where j is the feature index and s is the pooled sample standard deviation. In
our application, x̄(j)

+ and x̄(j)
− are the average value of voxel j among Asperger’s

patients and healthy controls, respectively. The larger t(j), the more variance (and
hopefully information) is captured by the feature. Unfortunately, these methods
often pick features that, while strongly correlated with the class label, hurt perfor-
mance under the final algorithm used for classification. In addition, while filtering
may find the best m features, these are not necessarily the m best features.

Wrapper methods use the accuracy of the classification method to determine
the best subset of features. One chooses how to search the feature space, how
to predict the accuracy of the given subset, and the classification algorithm to be
used. Usually the feature space is too large to search through every possible sub-
set of features so different strategies are used, such as forward selection. Cross-
validation can be used for accuracy prediction. Classification methods include
decision trees, Naive Bayes, and LDA. In this report, a forward search method
is used - this method starts with an empty set of features and applies the classi-
fication algorithm to each feature and returns an accuracy prediction. The best
feature is chosen and the wrapper loops through all the features again, applying
the classification algorithm to the best feature plus each individual feature. This
continues until a stopping rule is satisfied. Although wrapper methods appear to
be a brute force method, they perform well, [3].
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1st control patient − slices 15−18 − masked
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Figure 3: Control patient - four slices of the brain, shown masked

One particularly difficult problem scenario in classification is high dimension-
ality with a small number of samples - the problem we face here. Methods using
a Gaussian assumption and calculating a covariance matrix (for example, naive
Bayes or LDA) perform especially poorly as the small number of samples causes
the covariance matrix to be unstable [5]. In fact, [6] proves that the classification
rate will tend to .5 under these circumstances as noise accumulates. One solution
they suggest is to use a filtering method first to reduce the dimensionality of the
problem and then applying an appropriate classifier.

3.2 Methods, Results and Discussion
In this approach we operate directly on the subjects’ fMRI timecourses, after
transforming them to a normalized brain atlas. We used four brain slices for each
subject. An example of one of the control patients is shown in Figure 3. For this
approach, only the first time point was used. The brain in each image was also
masked to remove the background. Overall, of the original 33886080 dimensions
per subject, we used 5609.
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Wrapper using all features
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Figure 4: SVM selected features (error = 0.12) using all features

The first algorithm we applied was a forward search wrapper using LDA and
Naive Bayes classifiers, and leave-out-out cross-validation (L1OCV) as an error
metric. The search stopped when the error was reduced by less than 0.1%. Both
wrapper methods always achieved an error rate of 0.31. The linear estimator al-
ways classified each data point as belonging to a healthy control. According to
the literature, this rate is to be expected with such a small sample size, due to
inaccuracy in covariance matrix estimation.

The next algorithm we tried was a forward search wrapper using L1OCV and
the same stopping rule as before, but using the SVM algorithm with a linear ker-
nel. Because this algorithm maximizes the margins between classes instead of
fitting the class data to Gaussian curves, SVM should perform better than LDA or
naive Bayes. The error rate for an SVM wrapper is 0.12 selecting two features,
which constitutes an improvement over the original SOM method’s error of 0.23.
The two chosen features are shown in Fig. 4.

To address the curse of dimensionality, we incorporated the t-test filter method
first, and then applied the best features to the SVM wrapper [6]. The features
with the highest 100 t-test statistics were used in the previously-described SVM
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Best 100 features − tscore
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Figure 5: Best 100 features using t-test statistic filtering (shown in white)

wrapper. The top 100 and 500 features from filtering are shown in Figs. 5 and
6. The regions covered by the top features encompass the areas suggested by
physiology, but also cover other areas of the brain. Using these features, four
features were selected (Fig. 7), achieving the same error rate of 0.12.

The wrapper and filtering combined with wrapper method achieved an im-
proved classification error of 0.12, despite the small size of the data set. However,
a classifier based on only two to four pixels is not likely to perform well when
applied to new MR images. Ideally, we would select more pixels, for example
25 or 50 to create a mask (like the SOM) to use on future test samples. Unfortu-
nately, the curse of dimensionality combined with the small sample size prevents
this approach. Because the wrapper method could not be run to find the best m
features due to time constraints, we used the top m features (as found by filtering)
and used SVM to find the L1OCV error as shown in Table 1.

We also explored shrinking the images to a smaller image (1/4 to 1/2 the origi-
nal size) and applying filtering and then the wrapper method, but the subtle details
of the original were lost and the SVM wrapper gave an error or .3077 for each.
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Best 500 features − tscore

1 53

1

64

Figure 6: Best 500 features using t-test statistic filtering (shown in white)

Table 1: Error rates using best m features found by filtering using SVM with a
linear kernel

Number of Features Error
1 0.38
5 0.31

25 0.54
50 0.54

100 0.62
200 0.69
500 0.54

1000 0.65
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Wrapper using best 100 features
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Figure 7: SVM-selected features (error = 0.12) using top 100 features

4 Approach II: Kernelized SOM

4.1 Drawbacks to the standard SOM; our approach
While this Euclidean distance metric (Eq. 1) used in the standard SOM may be
effective within one spatial region, correlations between distinct spatial regions
may not be fully reflected by it due to, e.g., delays between the time-courses of
voxels in the same functional network. In fact, it has been shown that temporal
delays between the time-courses of connected brain regions are significant enough
to indicate causality between the regions [7]. As a consequence, it is reasonable
to expect that a clustering method that clusters two like time-courses with some
delay between them with a higher degree of confidence may outperform standard
SOM in this classification task. Therefore, we explored the application of SOM’s
to alternative representations of the data, using the kernelized SOM method [8].
The kernelization of SOM is simple; assuming the input timecourses x (t) have
been normalized so as to possess unit norm, the Euclidean distance metric used
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by SOM effectively reduces to an inner product:

‖x (t)−mc (t)‖2 = 2− 2 〈x (t) , mc (t)〉 . (5)

We can kernelize the SOM by replacing x (t) with a non-linear function of the
data, φ (x (t)). Note that the data should be normalized to have unit norm in the
function space. In particular, we used functions capable of highlighting correla-
tions between voxels with time-courses that have some delay between them.

The success of this approach hinges on two assumptions. First, we assume that
delays between the time-courses of functionally connected areas actually exist in
our data, and second, we assume that the alternative representations of our data
will allow clustering of greater confidence and subsequently greater discrimina-
tion power between patients and controls. That is, we assume that voxels which
are functionally connected but which have a delay between them will possess low
values of ‖x (t)−mc (t)‖2 that obscure differences due to reduced levels of con-
nectivity.

4.2 Methods
To make the SOM robust to delays between timecourses, we chose nonlinear func-
tions that threw away varying degrees of timing data. Prior to running the SOM
algorithm, we transformed the timecourses to the Fourier domain using the DFT.
To obscure a delay of tdel seconds, we quantized the phase of each Fourier har-
monic according to:

θ̂k =

⌊
θk

N∆t

2πktdel

⌋
2πktdel

N∆t
, k = 1, . . . ,

N

2
, (6)

where k is the index of the Fourier harmonic, ∆t = 0.75 seconds is the sampling
period of the fMRI experiment, and N = 270 is the number of volumes sampled.
The width of each quantization bin is equal to the phase shift corresponding to
a delay of tdel seconds. The quantized-phase data was then transformed back to
the time domain, and SOM proceeded as usual. We tested this kernelized SOM
for several values of tdel, from 1 to 10 seconds. Leave-one-out cross-validation
error was recorded for each value of tdel, for comparison to the standard SOM of
section 2.1.
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Table 2: Error rates for various levels of phase quantization. The entry tdel = 0
corresponds to the original SOM.

tdel Error
0 0.23
1 0.38
2 0.38
3 0.35
5 0.35
10 0.31

4.3 Results
Table 2 lists the leave-one-out cross validation errors for 5 quantization levels,
compared to the original SOM (tdel = 0). From the table, it is evident that phase
quantization increased the estimated error, indicating that phase quantization does
not improve discrimination performance. Figure 8 shows a boxplot of the aver-
age z-scores in the masked region for the phase-quantized SOM with tdel = 10
seconds. Compared to Fig. 2, the phase-quantized SOM has resulted in a wider
range of average z-scores for the matched controls and more overlap of z-scores
with the Asperger’s patients. This will result in decreased discrimination perfor-
mance. The phase-quantized SOM did, however, consistently (i.e., for all tdel

values tested) reduce the variance of z-scores for the unmatched controls, as well
as this group’s overlap with the Asperger’s patients. This will result in improved
discrimination performance between patients and this group. Overall, the phase-
quantized SOM does not improve our ability to discriminate between Asperger’s
and controls. The reason for this could be simply that significant delays between
the connected brain regions do not exist in this data.

5 Approach III: Spectral Coherence and Linear Dis-
criminant methods

This section reports attempts made to improve discrimination using linear classi-
fiers (LDA, FDA and SVM’s) and another set of features derived from the coher-
ence metric. One of the drawbacks of the similarity or the connectivity measure
used in [1] is that it uses Euclidean distances between the timecourses, and there-
fore does not specifically take advantage of the nature of the physical quantity
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Figure 8: Average z-scores for Asperger’s subjects and healthy controls in the ref-
erence mask, for the phase-quantized SOM method with tdel = 10. Compared to
Fig. 2 for the original SOM, the phase-quantized SOM produces average z-scores
with a wider range for the matched controls, leading to increased discrimination
error for that group. However, it produces a narrower range for the unmatched
controls, so that the net effect of quantization is a small increase in estimated
error.
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which it attempts to capture. By definition, functionally ‘connected’ brain regions
share a causal relationship with each other [9]. Spectral coherence has been effec-
tively used as a metric that captures this causal synchrony in electroencephalog-
raphy (EEG), another functional neuroimaging modality [10].

5.1 Spectral coherence as a feature capturing functional con-
nectivity

Coherence is a statistical quantitative measure of the phase consistency between
two signals (section 5.2.2). Consider, for example, coherence between voltages
at two nodes in a linear, noise-free electric circuit. Whereas each node voltage
will oscillate at the AC generator frequency with generally different phase, phase
differences remain fixed over time. Coherences between all paired voltages in
the circuit are equal to one in such linear circuits. Thus coherences measured
between separate electric circuits or between distinct cortical voxel locations pro-
vide measures of mutual influences or long-range synchrony, but the magnitudes
of such influences in complex, non-linear dynamic systems can be quite different
at different frequencies or different spatial scales [11]. Hence it may be hypothe-
sised that the coherence measure would better represent ‘similarity’ between two
time-courses for functional connectivity studies than Euclidean distance. The ac-
tual coherencies are analogous to correlation coefficients and are dependent on
unobservable probability density functions of associated stochastic processes and
hence can only be estimated [11]. The procedure to estimate coherence are dis-
cussed in section 5.2.

5.2 Methods
5.2.1 Data preprocessing and ROI selection

The data obtained from the patients, matched controls and unmatched controls
were transformed to a normalized brain atlas. A reference binary mask was de-
rived by thresholding the z-scores obtained using the procedure outlined in [1] to
select a region of interest (ROI). Pairwise coherences between all the voxels that
fall in the ROI were then calculated as described in the 5.2.2. However since the
number of coherence metrics to be computed was combinatorially large, the im-
age was blurred by averaging 32 neighboring voxels (4× 4 in-plane and 2 slices)
into one voxel, resulting in about 600 metrics to be estimated for each subject.
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5.2.2 Feature extraction and Classification

The coherence between any two time courses was estimated as follows:

1. The time-courses were divided into N = 5 non-overlapping epochs of the
same length (40 seconds)

2. The cross spectral density of the 2 time courses for a given epoch i and the
estimated cross spectral density was computed as:

G12i(f) = G1i(f)G∗
2i(f) (7)

Ĝ12(f) =
1

N

N∑

i=1

G12i(f), (8)

where G1i and G2i are individual Fourier transforms. 9-point FFTs were
obtained from each 54-point epoch in time. Each epoch was 40 seconds
long, implying that the frequency resolution in the coherence estimates was
about 0.025 Hz.

3. The estimate of spectral coherence based on N epochs was computed as
(with the individual power spectra being calculated similarly)

γ̂2
12(f) =

|Ĝ12(f)|2

Ĝ1(f)Ĝ2(f)
. (9)

The average length-9 coherence vector over each subject was taken as a feature
characterising functional connectivity over the ROI. Typical coherence vectors
obtained from a patient and from a matched control are shown in Fig. 9. This
feature vector was passed through the FDA, LDA and SVM discriminators. For
comparison, the mean z-scores over each of 6 selected slices from the ROI were
strung into a z-score feature vector of length 6. Linear discrimination was also
used in [1], but with z-scores averaged over the entire ROI, resulting in a threshold
comparator. Using the slice averages may avoid the loss of accuracy that may
possibly be caused by offsetting of the overall mean by one or two ‘noisy’ slices
and allow the discriminators to ‘learn’ which slices are more important.

Linear discriminators were explored in this section. LDA, FDA and SVM’s
were implemented to classify Asperger patients from healthy controls. SVM’s
were kernelised and used a Gaussian kernel.
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Figure 9: This shows two typical 9 point coherence feature vectors derived from a
control (blue) and a patient (red). Observe that in this example plot, the coherence
of a healthy control in the < 0.1 Hz range is higher than that of the patient.

5.3 Results and Discussion
Leave-one-out cross validation errors were computed for each of the classifiers
and feature type. The matched controls group and the separate controls group
were lumped together as one class (n1 = 18) and the patients were another class
(n2 = 8). Classifier performance is summarized in Table 3. LDA and FDA
performed identically. In fact, they were identical classifiers, i.e., they generated
the same hyperplane as would be expected from theory.

Thus it can be seen that stringing the slice z-score averages instead of using
the overall averages improved the classification from [1] by about 4% when used

Table 3: Leave-one out misclassification errors for LDA, FDA and SVM’s using
the coherence and the z-score vectors discussed in section 5.2.2.

Classifier Patients Controls Overall
LDA-FDA:z-scores 0.12 0.27 0.23

SVM:z-scores 0.12 0.22 0.19
LDA-FDA:Coherence 0 0.27 0.19

SVMs:Coherence 0 0.27 0.19
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with SVM’s. Using the coherence estimates improves the classification by 4% for
all the discriminators. Whether the advantage of this marginally superior perfor-
mance would scale to larger data-sets is unknown. However, one major advantage
of using the coherence estimates of blurred images is that it is computationally in-
expensive compared to the calculations required for SOM. Calculating FFT’s for
small timecourses can be done rapidly. In particular, the SOM algorithm requires
a sequential updating of the exemplars whereas calculation of the coherence esti-
mates can be done in parallel and hence advantageous when used with the single
instruction multiple data procesors that are widely in use today. Though all the
methods are inherently offline, the coherence method would accelerate diagnosis
and group analyses.

6 Conclusion
We have demonstrated three approaches to improving discrimination between pa-
tients with Asperger’s and healthy controls, based on resting-state fMRI data. The
methods we implemented aim to address the shortcomings of the SOM-based
method of Ref. [1].

In our first approach, we implemented filter and wrapper methods on the data
itself, in order to build classifiers based on more data than the single average z-
score statistic used by the original method. These methods also obviate the need
for user interaction in the classification process, thereby avoiding the possibility
of user-bias. The filter and wrapper methods were able to achieve improved dis-
crimination accuracy, but the small number of subjects and high dimensionality
of each subject’s data generally posed a problem to these methods. Among these
methods, the forward search method combined with the SVM algorithm, and the
t-test filter combined with the SVM algorithm yielded the best results, cutting the
estimated error in half.

In our second approach, we addressed a different shortcoming of the original
approach, namely that the Euclidean distance used in the SOM clustering algo-
rithm does not fully coincide with our notion of functional connectedness. To al-
low the possibility that there may exist functionally connected regions with some
time delay between their otherwise like timecourses, we permitted phase lags be-
tween regions by quantizing the phase of the data’s Fourier harmonics, prior to
running the SOM algorithm. This non-linear transformation of the data, combined
with SOM, comprises a kernelized SOM algorithm. This approach, however, did
not yield improved discrimination power. Therefore, we may conclude that time
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delays do not significantly reduce the apparent functional connectedness of dis-
tinct brain regions in this scenario. This may be because delays simply do not exist
in the data, or that they exist but do not cause the connected regions of interest to
appear dissimilar, compared to other regions.

Our final approach to improving discrimination combined the goals of the first
two approaches. In this approach, an alternative to average cluster z-scores was
used as a metric, namely coherence between voxels in the pre-identified network
of interest. Coherence is a metric of connectedness that, in contrast to Euclidean
distance, remains high for timecourses that possess a delay between them. This
new metric, combined with classification methods that function on more than one
statistic, were shown to generally provide improved classification error compared
to the original SOM-based method. Compared to the other two approaches, this
method is probably the most deserving of further investigation, since the coher-
ence metric fits our notion of connectedness, and the more sophisticated classi-
fication methods that function on this metric are likely to provide the best error
among all the methods we tried, after further investigation.

7 Group member contributions
1. Amanda Funai: Filter and wrapper methods (Approach I, Section 3). Wrote

introduction to progress report. Poster compilation.

2. Hari Bharadwaj: Spectral coherence and linear discriminant methods (Ap-
proach III, Section 5). Poster compilation.

3. William Grissom: Compilation of reports and proposal, transformation of
the data to a normalized atlas, implementation of original SOM-based method,
Sections 1, 2, and 4 (kernelized SOM).
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