Exploring Grapheme-to-Phoneme Induction with
Machine Learning

Terrence Szymanski

1 INTRODUCTION

Text-to-speech (TTS) systems have increas-
ingly found use in the modern world. One
of the subproblems of TTS is determin-
ing the phonetic structure of words, i.e.,
their pronunciation, from their orthography,
i.e., their spelling. This is known as the
grapheme-to-phoneme (G2P) problem. In
all languages this is a nontrivial task, but
particularly in English, a language with rich
historiolinguistics that has led to an irreg-
ular and inconsistent spelling system. A
single letter, even appearing in similar con-
texts, can be pronounced several different
ways. For example, see Table 1.

The most common solution to the obsta-
cle of unpredictable pronunciations is using
a phonetic dictionary with entries that look
like the rows in Table 1. However, neolo-
gisms like Google in English, Wikcionario in
Spanish, and Klimakatastrophe in German
constantly creep into the lexicon. Keep-
ing track of all these new words is impossi-
ble, yet native speakers can easily pronounce
most neologisms at first sight. This suggests
that their oththography carries enough in-
formation to determine their pronunciation.

The first solutions to the G2P problem
involved hand-writing sets of pronunciation
rules for various languages. With the onset
of the machine learning (ML) paradigm, this
method became extremely outmoded.[4] In

Kevin Wilson

the ML version, the basic idea is to develop a
set of rules which map strings of graphemes
to strings of phonemes based on their ortho-
graphic context, i.e., the letters surrounding
the grapheme. These rules are learned from
a phonetic dictionary like [2] which can then
be applied to new words outside of the train-
ing set.

We focus on two kinds of phonetic dictio-
naries: aligned and wunaligned as described
in Section 2. For the aligned dictionaries,
we describe algorithms based on k-Nearest
Neighbors (kNN) and multi-class Adaboost
[3]. These are detailed in Section 2. For
unaligned dictionaries, we present two algo-
rithms. The first is based on Dynamically
Expanding Context, an algorithm that was
developed by Kohonen and Torkkola [6, 10]
which uses decision trees (cf. Section 3).
The second is an original ensemble algo-
rithm based on boosting (cf. Section 4).

While most of the motivation for our al-
gorithms comes from English (as it is both
authors’ native language), the G2P is a very
generic problem. Thus, we have tested our
algorithms on German, Spanish, and En-
glish datasets. The results of our tests can
be found in Section 5.

Finally, we conclude with some future re-
search directions (Section 6) and some re-
marks (Section 7).

Throughout this strings of

paper,

graphemes will be denoted by Latin
characters contained in angle brackets ().
Strings of phonemes will be denoted in the
International Phonetic Alphabet (IPA) in
slashes //. For a reference on the TPA, see

9, 5].

2 ALIGNED-DATA METHODS

Most supervised machine learning algo-
rithms assume a set of data instances and
corresponding labels. In the G2P problem,
this criterion is satisfied if the graphemes in
each word are somehow (manually or auto-
matically) aligned with the phonemes in the
pronunciation.

The organizers of the 2007 PASCAL
Letter-to-Phoneme Conversion Challenge
have made available several phoneme-
aligned data sets, which were automati-
cally generated from unaligned data sets us-
ing the EM algorithm.[8] In this data, null
phonemes exist both in the orthographic
and the phonological representations, repre-
sented by the underscore character. These
null phonemes make it possible to model
“silent” letters and many-to-one alignments.
The example word (Utah) illustrates null
alignment:

Latin IPA
mean min
memo

memo
meme mim

mneme | nimi
mercy | morsi

Table 1: Five different words with simi-
lar orthographies but radically different pro-
nunciations. Note that both vowels and con-
sonants and even number of syllables are dif-
ferent in each word.

g=(_ u t a h)
p=/J uwt o _ /
In this example, /j/ is pronounced at the
beginning of the word, but is not written in

the orthographic form. Conversely, the final
(h) is written, but not pronounced.

2.1 Data Representation

In this domain, each data point is a
grapheme: each word in the dictionary con-
tributes multiple data points. Each data
point is represented as a feature vector,
where each feature represents the grapheme
and its local context (i.e. the graphemes in
the same word up to [positions to the left
and r positions to the right). Hash marks
are used to indicate any position that ex-
ceeds the dimensions of the word.

T, = [Qi gi—1 -+ Gi—-1 Yit1 - - - 9¢+r]

For example, given the parameters [= 2
and r = 2, and the previous (Utah) data,
the feature vector representation is:

rn=[_ # # u t] wyu=/j
zo=[u # _ t a] wp=/u/
zz3=[t _ u a h] y=/t/
zg=[a uw t h _] yu=/a/
vs=[h t a # #] ys = /_/

In the following sections, we discuss the
application of two popular machine-learning
algorithms, kNN and AdaBoost, to aligned
data represented in this way.

2.2 kNN Classifier

A simple classifier that ends up perform-
ing rather well is the k-Nearest-Neighbors
(kKNN) classifier. To classify a data point
x using kNN, its initial neighborhood N is
selected as the set of all data points in the
training data whose first feature value is the
same (i.e. all other points representing the
same grapheme).

N(z) ={x;: s = zW

7

Next, we calculate the distance from z
to every point z’ in its neighborhood using
a simple features-not-in-common metric for
distance d:

d
d(z,z") = Z 1{x(j);éx/<j)}
j=1

The kNN set contains the £ points in NV
having the smallest distance d from x. The
predicted output label for point x is the
most frequent label appearing in the kNN
set. Since many points may be equidistant
from the test point (due to the simple dis-
tance metric), we decided to allow the size of
the kNN set to occasionally be greater than
k in such cases, but never less than k. (In
practice, the d = 0 or d < 1 neighborhoods
often contain more than & members.)

To mimic the actual classification task,
null graphemes in the test input were dis-
carded prior to classification. A more im-
proved classifier might include a step to pre-
dict when to insert null graphemes, but this
one does not. The results of the kNN clas-
sifier are discussed in Section 5.3.

2.3 AdaBoost.M2

While trying to develop the unaligned en-
semble classifier described in Section 4.2,
we decided to investigate a well-known en-
semble classifier, AdaBoost, utilizing a sim-
ilar type of base classifier that we devel-
oped for the unaligned ensemble. Since the
AdaBoost algorithm only applies to binary-
class data, we implemented the multi-class
AdaBoost.M2 algorithm developed by Yoav
Freund and Robert Schapire.[3]
AdaBoost.M2 follows the general proce-
dure of AdaBoost, but differs in interest-
ing ways in order to incorporate multi-class
data. Let X be the set of all data points

(graphemes in context) and Y be the set of
all outputs (phonemes). The weak learner
selects a hypothesis h; : X x Y — [0,1],
which assigns a “plausibility” to each input-
output pair.|[3]

Specifically, if the training data consists of
m examples ((z1,41) ... (Tm, Ym)), then de-
fine the set of all training-data indices and
output labels which differ from the observed
output label for that index:

B={(,y) €e[l.m]|xY :y#y}

Also, define a distribution over B, with
weights initially distributed equally:

Dy (i,y) = 1/|B|for(i,y) € B

The boosting algorithm proceeds (roughly
in the same way as the standard AdaBoost)
through T iterations. The weak learner
chooses h; at each iteration that minimizes
the the “pseudo-error” ¢;, defined as:

f=3 30 Diliyp) (1=l y) +hilzy)

(i,y)€EB

At each iteration, D, is updated accord-
ingly:

. D ia Yy hi(xq,y:)—he(x;,
Do)) st

By = €/(1 —¢) and Z; is a normalization
constant. The final classifier is:

T
hara(z) = argmax » (log i) hi(,y)
yey i—1 t

The performance of the AdaBoost.M2
classifier depends on choice of the weak clas-
sifiers. We experimented with several varia-
tions of a simple multi-class decision stump;
each assigns its confidence somewhat differ-
ently, and this affects the performance of the
classifier.

Below are four of the classifier types we
tried. Each base classifier specifies 7, an in-
dex of the grapheme to match, g, the value
of the grapheme to match, and gy, the value

of the correct output phoneme. In this way,
each weak classifier matches only those data
points whose j* member is ¢, and favors
classifying those points as yo. The values for
7, g, and gy are extracted from the training
data to generate the set of all weak classi-
fiers from which h; is drawn.

Weak Classifier 1:

1 if 20) = g and y = yo
hw,y) = { 0 otherwise
Classifier 1 assigns all of its confidence to
a single positive match output class. If the
classifier does not match, then it makes no

predictions at all.
Weak Classifier 2:

1 ifz¥) =gandy =1y
h(z,y) =< 0 ifz0) =g and y # yo
1/k otherwise
Classifier 2 is similar to Classifier 1, except
that it assigns uniform nonzero confidence
to all classes if the classifier does not match.

Weak Classifier 3:

if 2U) = g and y = 1o
if 2U) = g and y # 4o
if zU) #£ g and y =y
0 ifz0) #gandy#y
Classifier 3 is similar to Classifier 1, except
that it assigns a very high confidence to one
arbitrarily-chosen output label, y;, in the
event that the classifier does not match the
data point. We generate one such classifier
for each value of y;. It is not clear why, but
this weak classifier outperforms all the oth-
ers (see Table 5).
Weak Classifier 4:

h(x,y) =

_ O =

#{(@iy):2 =g, yi=y}

: if 20 =
hayy) = 4 D=y BT
’ #{(zi):w) #g,mi=y} if 20 £g

#{(Iivyi)m'l('j)?ég}

Classifier 4 makes very weak predictions,
based on the distribution of the data. If the
classifier matches the data point, then the
output is the relative frequency with which
the label y appears in all training points
also matching the classifier. If the classifier
does not match, then the output is similar,
but for all training points that also do not
match.

The choice of which classifier set to use
can impact performance by up to 20% (see
Section 5.4).

3 UNALIGNED DATA: DECISION
TREES

This section details our first algorithm based
on unaligned phonetic dictionaries. As op-
posed to the aligned dictionaries described
in Section 2, entries in an unaligned dictio-
nary take the form

utah juto

Neither the fact that the (h) goes to the
silent phoneme nor the fact that the (u)
produces two phonemes is indicated. This
makes the problem of unaligned G2P in-
trinsically harder than aligned G2P. On the
other hand, it is very costly to produce accu-
rate aligned dictionaries (though ML tech-
niques have been applied to this problem as
well [8]). Thus, there is a need for an un-
aligned algorithm.

The major hurdle to implementing an un-
aligned algorithm is the blow-up associated
with adding context. One naive approach
to compiling a list of potential rules would
be to write down every grapheme/phoneme
pair and every possible context of length d
or less and simply trying all of these rules.
Unfortunately, this produces np(1-+n+n?+
-+ -+n?) potential rules, where n is the num-
ber of graphemes and p is the number of
phonemes. The CMU Pronouncing Dictio-
nary [2] lists n = 26 and p = 39, and if we

take d = 5, this is already 12529623834 =~
10,

3.1 Motivation

When English speakers see a letter, they
know what it sounds like in most contexts.
When confronted with (z) they think of
(zap) and a (t) brings (tap) to mind. But
English speakers also know many contextu-
alized G2P rules. For example, a (c) might
make them think of the /k/ sound in (cap),
but then know that if (c) is followed by (e)
or (i) that it is probably pronounced /s/ as
in (cerrated).

This behavior can be modeled as a deci-
sion tree. Specifically, we may consider the
nodes of the tree to be strings of phonemes
and the edges labelled by graphemes. By
traversing an edge, we are “adding context.”
Consider the tree in Figure 1. Then imag-
ine trying to classify the (a) in (gait). Con-
text expands to the right, then the left, and
continues back-and-forth. Then our classi-
fier would traverse the (a), (i) branch, and
then the (g) branch. As it cannot traverse
any farther, it will output the phoneme /er/.
Compare then what happens with (cart)
and (care). In both cases, the classifier will
traverse the tree down the (a), (r), and (c)
branches. In the case of (cart), it would con-
tinue to traverse the (t) branch and would
then output the phoneme /t/. In the case
of (care), it cannot traverse any farther, and
so will output /er/.

Our first method is based on Dynamically
Expanding Context (DEC), first introduced
by Kohonen [6] and subsequently incorpo-
rated into the G2P literature by Torkkola
[10]. The idea behind DEC is to induce
all context-free rules that appear through-
out an aligned dictionary. Many of these

Figure 1: A toy example of a DEC decision
tree. Note that the [node is just a place-
holder: all traversals start here.

rules will not be unique. For example

(/t/ atTack
// aTtack
t— < /t/ Tip
/[/ facTion
| /0/ The

Once these rules have been estabilished,
enough context is added to make the rules
unique. For example, on this subset of five
words, DEC would produce the following
rules:

tt — /t/
ta +— //
#i = /t/
ci — /]
th — /3/

where # represents a word boundary.

If g; is the ith grapheme in a word g,
we call the contextualization of ¢g; in w
C(z,w) = Gi+1Gi—1 """ (Cf Table 2)

Degrees of Context | Expansion
0 t
1 ti
2 cti
3 ctio
4 actio
5 action
C(3,w) icoanf##

Table 2: Contextual expansion of the (t)=
g3 in g =(faction).

3.2 An Unaligned Algorithm

The original DEC algorithm assumes an
aligned dictionary; we detail an unaligned
version. We greedily grow a decision tree
like Figure 1 adding one rule at a time, until
the improvement from adding a single rule
is sufficiently small for [consecutive rounds.
Let C be our classifier, £ = FE¢ be a fixed
error metric based on C, s and t fixed con-
stants, D our dictionary, and |w| the length
of the word w:

Init Set £ = oo for all 7 < 0.
Loop In round ¢

e Find words w!,... ,w® € D for which
E(w’) is as large as possible. Let
pl,...,p' be their phonetic representa-
tions.

For every j € [L.t], k € [0.[w]), m €
0..]97]), a € [0..s)

— Traverse along the path defined by

C(k,w’) in C until a leaf is reached.

— Add a new mnode with label
Pl * Py connected to this leaf by
an edge labelled gj.

— (Calculate error

— Remove the node just added from

C.

e Choose the j,k,m,a that mini-
mizes €jrmec and add the triple
(Wi, pl, - P, Ck,w?)) to C as
in the loop

e Set

&= Ew)

weD

Repeat until max;_;<j<; &7 is sufficiently small.

There are several parameters in this al-
gorithm which serve to make it computa-
tionally feasible. First, rules are added to
C based on how they improve the error
on some small subset of the entire dictio-
nary. In practice, we used ¢ = 5 whereas
|D| > 4000. Because of this, additional
rules sometimes increased £. Thus, we need
not only a stopping tolerance, but also a
stopping range. This is [, which for good
results we took to be about 25.

Note also that s describes the maximum
number of phonemes a single grapheme can
map to. For our test languages, we took
s = 2 (as in the (U) in the (Utah) example),
though in other languages (Chinese, for ex-
ample), this s could grow to 4 or 5. For
results, see Section 5.

4 ENSEMBLE METHODS

4.1 Motivation

As mentioned, one hurdle to overcome when
learning grapheme-to-phoneme rules is that
the number of rules grows exponentially
with the amount of context which is in-
cluded in the rule. For instance, consider
the class of rules of the form below, which
includes [graphemes of context to the left
of the target grapheme and r graphemes to
its right (in this notation, go is the target
grapheme, and other g subscripts indicate a

grapheme’s position relative to the target).:

{{go) = /p/ (91 9-1) _ (g1 94r) }

In a situation where there are n
graphemes and p phonemes, then there are
pn!TTH potential G2P rules. However, using
simple weak classifiers which only consider
a single contextual grapheme can greatly re-
duce the size of the set of rules.

For instance, if we are trying to learn a
rule to pronounce (t) as /[/ before (ion) (as
in words like (caption)), then the intuition
is that the effect of a G2P rule such as:

{(t) = /1/ - _ (iom) }

could be approximated by the interaction of
three simpler rules of the form:

{t) = /I g =) }

{(t) = /1) gr2=1(0) }

{&) = /g5 ={() }
In this way, each rule / classifier only in-
cludes the value of a single grapheme and
its position relative to the target grapheme
(e.g. 3 graphemes to the right). In a given
language, there are pn?(I+r) such rules; the
number of rules is linear in [and 7.

Our original goal was to design an ensem-
ble learning algorithm for unaligned data
sets, and this is described in the following
section. However, the AdaBoost.M2 clas-
sifier described in Section 2.3 is based on
the same principles. The success of the
AdaBoost classifier indicates that ensemble-
based methods can work for this problem,
although the current unaligned system is
still unable to handle large data sets.

4.2 Unaligned Ensembles

Unaligned data are difficult to handle us-
ing off-the-shelf learning algorithms, since
there is no straightforward correspondence
between data points and output labels. Tra-
ditional performance evaluation measures

(such as error rate) cannot be used, since
the correct output labels are not known.
Therefore, some word-level metric of er-
ror must be used as the objective function
which we want to minimize. Below is a de-
scription of an unweighted ensemble classi-
fier for unlabeled data. At each iteration,
the learner greedily searches for the weak
classifier that minimizes the Mean Phoneme
Error Rate (MER, discussed in section 5.1),
which is related to the edit distance between
the true and predicted pronunciations..
Assume a set of base classifiers H,
and as input to the learning algo-
rithm a set of word-pronunciation pairs

(w1, p1) -+ (Wi, Pm))-

Initialize H = the set of all base learners
Initialize D; = 1/n for all ¢
Dofort=1,2,...T

1. hy <« WeakLearn(H, D)
2. 1= Z D; - mer(D,w, p)

i=1

3. o= % -log <_(1;:t)>

The final classifier is:

T
F(zx) = argmaxz oy fi(z)
vey o

H includes a classifier for each combina-
tion of data point (grapheme) and output
(phoneme) within a word. Without align-
ments, we assume that any grapheme in the
word could be the origin of any grapheme in
the output. The weak learner finds h; from
H that minimizes the error r; defined above.

This algorithm works, but can become ex-
tremely slow as m and H increase. Cal-
culating MER requires calculating the edit
distance between each true word and each
predicted word. If there are m words of av-
erage length [, then this is an O(ml?) pro-
cedure. Since [is typically small, this is not
a terrible problem, but it certainly slower
than other types of error metrics that only

involve counting.

The set H is perhaps the biggest problem.
In the aligned problem, each grapheme will
only be observed to align with some subset
of the total phoneme inventory. However, in
the unaligned case, base classifiers are ex-
tracted based on the co-occurrence within
a word of a grapheme and a phoneme. In-
evitably, every grapheme will eventually be
seen to co-occur with every phoneme in a
large enough dictionary.

Alignment is the obvious solution for cut-
ting down the size of H, but there could be
alternatives, such as iteratively recalculat-
ing H from a subset of the data and training
on that data. This remains for future work.
Evalutation of this algorithm on small data
sets with reduced phoneme and grapheme
inventories shows that it works in princi-
ple.

5 RESULTS

In this section we describe the data sets
and performance measures used to evaluate
the classifiers, and present the results of the
G2P classifiers described in this paper.

5.1 Evaluation

One possible evaluation metric for the
aligned classifiers would be to simply mea-
sure the error rate on phonemes; however,
this metric cannot be applied to unaligned
data. Therefore we use a more general eval-
uation metric inspired by Word Error Rate
(WER), which is commonly used for mea-
suring the performance of speech recogni-
tion systems.[7] This measure counts the
number of operations needed to transform
the predicted form to the actual form. We
define the phoneme error rate (PER) as:

Insertions 4 Substitutions + Deletions

Total Phonemes in Correct Transcription

The mean phoneme error rate (MER) is sim-
ply the mean of the PER for all words in the
data set. In the tables, we present 1-MER
as an analog to accuracy: high values repre-
sent good performance, low values represent
poor performance.

5.2 Data Sets

In this paper we use three sources of data.
The English dictionary we use is the CMU
Pronouncing Dictionary, containing 112,102
word-pronunciation pairs.[2] We also use a
CELEX dictionary of German, with 49,421
entries and a CELEX dictionary of Span-
ish with 31,391 entries. For the aligned
experiments, we used automatically-aligned
versions of these three dictionaries made
available by the organizers of the PASCAL
Letter-to-Phoneme Challenge. 8]

The CMU dictionary is much larger than
the other two dictionaries, and it includes
rare words and proper names, as well as
some abbreviations and acronyms. The
CELEX dictionaries, by comparison, con-
tain more “core” words of the languages.
This should be kept in mind when evaluat-
ing the performance on these different dic-
tionaries.

5.3 kNN Results

There are some parameters which need to
be set for this algorithm, and we do not
thoroughly investigate how to set those pa-
rameters here. However, Table 3 gives some
partial results that indicate that varying the
context parameters does not significantly af-
fect the result. Neither MER nor the num-
ber of words perfectly predicted, changes
much either by varying the total amount
of context (i.e. rows 1 and 2 compared to
row 3) or by varying the direction of context
(row 1 compared to row 2).

Table 4 shows the average results and
standard deviation of ten-fold cross valida-

tion, using [= 2, r = 2, and k = 5, on the
three data sets.

The different accuracy levels achieved by
the classifier hints at the relative complexity
of English, German, and Spanish orthogra-
phy; English orthography is very irregular
compared to the straightforward orthogra-
phy of Spanish. Still, it is important to keep
in mind that the better results on the Span-
ish and German data sets may be related to
the type of words contained in the CELEX
dictionaries.

5.4 AdaBoost.M2 Results

Due to time constraints, the AdaBoost.M2
classifier was not evaluated on the full data
sets available to us. Instead, the classifier
was tested on one fold of the Spanish data
set, using the other folds as training data.
(The small variance observed in the kNN
cross-validated results suggests that we can
consider single-fold results to be representa-
tive, but of course if we had more time we
would like to cross-validate these results as
well.) The algorithm was run for a maxi-
mum of 20 iterations while classifying each
grapheme.

Table 5 shows the results, which illustrate
how the definition of the set of weak clas-
sifiers described in Section 2.3 affects the
overall performance. The performance of
classifiers 1, 3, and 4 is roughly compara-
ble, but classifier 2 (which doesn’t look that

I | r|1-MER | % Perfect
212 .850 43.3
13 .852 42.8
315 847 43.7

Table 3: Results of running the kNN classi-
fier with different values of [and r on fold 0
(training on folds 1-9) of the English CMU
aligned data.

different on paper) was significantly poorer.
Also, note that if the set of weak classifiers
is taken to be the union of two of the pre-
viously defined sets (1 and 4), the perfor-
mance is better than either of the sets indi-
vidually.

The highest accuracy achieved by the Ad-
aBoost.M2 classifier (.978) is lower than the
accuracy of the kNN classifier on the same
data (.986). However, it is possible that bet-
ter results can be achieved with continued
engineering of the weak classifiers.

5.5 DEC Results

The first few runs of the DEC classifier were
slightly disasterous. This came from the
fact that eventually the classifier got stuck
with a particular set of worst words and con-
sequently hit a local minimum of the error.
The result was that it would keep adding
the same rule to the classifier ad infinitum.
This is when we added the [parameter to
the stopping condition and also introduced
some randomness to the algorithm. Specif-
ically, with some small probability instead
of choosing the ¢t words with highest error,
the algorithm will choose a random set of
t words. Tended to force the algorithm to
climb out of its local minimum and start
back downward.

The results for this modified version of

Language 1-MER % Perfect
English .845 (.0014) | 43.0 (.37)
German | .941 (.0015) | 66.4 (.58)
Spanish | .986 (.0005) | 92.1 (.33)
Table 4: Average cross-validated results

of the kNN classifier on English, German,
and Spanish aligned dictionaries. Standard
deviations are given in parentheses. The
fourth column shows the number of words
in each dictionary.

DEC are contained in Tables 6 and 7. For
the values s = 1 and s = 2 (where s is
the maximum number of phonemes a sin-
gle grapheme can map to). We note that
for Spanish, allowing s = 2 actually n-
creased our accuracy, but both measures of
accuracy decreased for English and German.
From looking at training output, we believe
that this is caused by getting trapped in lo-
cal minima and having to escape with ex-
tremely specific rules. This is especially evi-
dent in the German data where the percent
of perfect words is 83% for the training data
set as opposed to 32.5% for the test data
set. One way to improve this performance
would be to increase the values of n and de-
crease the value of [. Increasing the value of
n has the unfortunate effect of causing both
our decision trees to become more complex,
but hopefully decreasing [would offset this.
Tuning these parameters is the subject of
future work.

We also note that due to its high regular-
ity, Spanish was unaffected by the problem
of overfitting as there are always very few
plausible rules a grapheme could map to,
even when viewed from an ML perspective.
What is most surprising is that the DEC
classifier actually beat the aligned classifiers
in Spanish.

Classifier: | I-MER | % Perfect
1 933 61.3
2 786 13.4
3 978 86.5
4 941 67.1
1+3 .956 75.5

Table 5: Performance of the AdaBoost.M5
classifier using different sets of base classi-
fiers. Evaluation is on fold 0 of the Spanish
CELEX data, using folds 1-9 for training.

Language 1-MER % Perfect
English | 729 (.0060) | 15.7 (.004)
German | .902 (.0138) | 51.2 (2.70)
Spanish | .986 (.0003) | 92.1 (.260)

Table 6: Average cross-validated results of
the DEC classifier in the three languages.
Standard deviations are in parantheses. For
this table s = 1.

Language 1I-MER % Perfect
English | .695 (.0308) | 15.6 (L.4)
German | .839 (.0473) | 32.5 (3.9)
Spanish | .994 (.0006) | 97.0 (.36)

Table 7: Same as above, s = 2.

5.6 Unaligned Ensemble Results

The unaligned ensemble classifier is very
slow, since it requires calculating the full
edit-distance error rate for each classifier at
each iteration of the algorithm, and it is
not possible to classify each grapheme sep-
arately (as it is for the aligned AdaBoost
classifier). Therefore, we have no large-scale
data results for this classifier.

On a small-scale data set, consisting of
80 English words using a inventory of 5
graphemes and 9 phonemes, the classifier
achieved 1-MER = .885, with 66.7% of
words perfectly predicted. It can be as-
sumed that these numbers would drop on
larger and more complex data sets and,
as mentioned, the processing time increases
dramatically.

6 FUTURE WORK

There is much work to be done on the un-
aligned approach to ensemble classification.
Determining a way to link the error to clas-
sifier confidence is a priority, as is finding

an efficient way of selecting new classifiers
to add to the ensemble.

With the DEC algorithm, the number of
parameters is unwieldy. Simplifying these
to make them more intuitive should be a
priority. Moreover, the decision tree itself
can become rather unwieldy and contains
much redundancy. For example, there is a
general rule in English that a vowel which
is followed by a consonant and an (e) is
lengthened. This is captured in the deci-
sion tree by about 200 rules, as to even see
this construction, the tree must also see the
grapheme to the [left of the vowel in ques-
tion. One way to improve this would be to
introduce wildcards to the edge graphemes.
This would allow pruning to occur as many
rules could be collapsed into one.

Work on the AdaBoost.M2 classifier could
progress by inventing new sets of base clas-
sifiers, or combining old sets, to improve
performance. Also, much as in initial DEC
runs, the same classifier is often added for
several iterations with no immediate im-
provement in training error. Approaching
this problem is an important step to im-
prove this algorithm.

An interesting experiment with the kNN
classifier would be to examine in detail how
much context is necessary and sufficient.
Our small results suggest that [= 2, r = 2
is adequate, but could they be reduced?
Also, various distance metrics could improve
performance—perhaps one that weights near
context more heavily than distant context.
This would also alleviate the problem of
large d = 1 neighborhoods.

7 CONCLUSION

Our investigation shows that ML techniques
applied to automatically aligned dictionar-
ies can achieve good results. Surprisingly,
they also show that similar techniques can
perform nearly as well on unaligned data (at

11

least in some languages).

From a linguistic point of view, our results
also show that G2P is a much more difficult
problem in English than in Spanish or even
German. While this is not a new discov-
ery, the magnitude of the difference was a
surprise.

We think it is worthwhile to continue ex-
ploring unaligned methods for G2P classifi-
cation, since intermediate alignment by hu-
mans is extremely costly and ML techniques
can introduce more noise. Given our results,
future work may see unaligned G2P classi-
fication outperform aligned classification.

REFERENCES
[1] A'W. Black, K. Lenzo, V. Pagel.
Issues in Building General Letter
to Sound Rules. ESCA Workshop
on Speech Synthesis ’98. pp. 77-80.
http://www.cs.cmu.edu/ awb/papers/
ESCA98_1ts.pdf

Mellon Pro-

Dictionary.

Carnegie
nouncing

http://www.speech.cs.cmu.edu/cgi-bin/

cmudict

Y. Freund, R. E. Schapire. Experiments
with a New Boosting Algorithm. ICML
'96. pp. 148-156

S. Hanov. Automatic Letter-To-Sound
Rules for Speech Synthesis. Lec-
ture notes at University of Waterloo.

http://gandolf .homelinux.org/~smhanov/

cs886_hanov_2007.pdf

International ~ Phonetic ~ Association.
International Phonetic Alphabet. 2005.
http://www.arts.gla.ac.uk/IPA/
IPA_chart_(C)2005.pdf

T. Kohonen. Dynamically Expanding
Context, with application to the correc-
tion of symbol strings in the recogni-

tion of continuous speech. ICPR ’86. pp.
1148-1151.

D. Jurafsky and J. Martin. Speech and
Language Processing. Prentice Hall, Up-
per Saddle River, NJ: 2000.

The PASCAL Letter-to-Phoneme
Conversion Challenge 2007 (PRONAL-

SYL). http://pascal-network.org/
Challenges/PRONALSYL/

p. Roach. A little en-
cyclopedia of phonetics.

http://www.personal.reading.ac.uk/
“llsroach/peter/

[10] K. Torkkola. An efficient way to learn

English grapheme-to-phoneme rules au-

12

[11] Z.-R. Zhang,

tomatically. ICASSP ’93. Vol. 2. pp.
199-202.

M. Chu, E. Chang.
An Efficient Way to Learn Rules for
Grapheme-to-Phoneme Conversion in
Chinese. ISCSLP '02.

WORK DIVISION

Throughout this project, Terry focused
on the aligned algorithms whereas Kevin
focused on the unaligned algorithms.
Ideas were developed in joint brain-
storming sessions and subsequently di-
vided for implementation and improve-
ment.

