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Example 4.2: Jack’s Car Rental Jack Imanages two locations for a nationwide
car rental company. Each day, some number of customers arrive at each location
to rent cars. If Jack has a car available, he rents it out and is credited $10 by the
national company. If he is out of cars at that location, then the business is lost.
Cars become available for renting the day after they are returned. To help ensure
that cars are available where they are needed, Jack can move them between the two
locations overnight, at a cost of $2 per car moved. We assume that the number of
cars requested and returned at each location are Poisson random variables, meaning

that the probability that the number is # is %e"*, where A is the expected number,
Suppose A is 3 and 4 for rental requests at the first and second locations and 3 and
2 for returns. To simplify the problem slightly, we assume that there can be no more
than 20 cars at each location (any additional cars are returned to the nationwide
company, and thus disappear from the problem) and a maximum of five cars can
be moved from one location to the other in one night. We take the discount rate to be
y = 0.9 and formulate this as a continuing finite MDP, where the time steps are days,
the state is the number of cars at each location at the end of the day, and the actions
are the net numbers of cars moved between the two locations overnight. Figure 4.4
shows the sequence of policies found by policy iteration starting from the policy that
Never moves any cars. [ ]
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Figure 4.4 The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location
to the second (negative numbers indicate transfers from the second location to the first).
Each successive policy is a strict improvement over the previous policy, and the last policy
is optimal.
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Example 4.3: Gambler’s Problem A gambler has the opportunity to make bets
on the outcomes of a sequence of coin flips. If the coin comes up heads, he wins
as many dollars as he has staked on that flip; if it is tails, he loses his stake. The
game ends when the gambler wins by reaching his goal of $100, or loses by running
out of money. On each flip, the gambler must decide what portion of his capital to

stake, in integer numbers of dolars. This problem can be formulated as an undis-
counted, episodic, finite MDP. The state is the gambler’s capital, s € {1,2,...,99)
and the actions are stakes, a € {1, 2, ..., min(s, 100 — s)}. The reward is zero on
all transitions except those on which the gambler reaches his goal, when itis +1. A
state-value function then gives the probability of winning from each state. A policy is
a mapping from levels of capital to stakes. The optimal policy maximizes the proba-
bility of reaching the goal. Let p denote the probability of the coin coming up heads.
If p is known, then the entire problem is known and it can be solved, for instance,
by value iteration. Figure 4.6 shows the change in the value function over successive
sweeps of value iteration, and the final policy found, for the case of p=04. ]
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Figure 4.6 The solution to the gambler’s problem for p = 0.4. The upper graph shows the
value functions found by successive sweeps of value iteration. The lower graph shows the final

policy.
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