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APPENDIX A
PROOFS

A.1 Proof of Proposition 1
We will show that the estimates for the area above the ROC curve, Alr(zA), Al(zA) and Aur(zA) defined in
(6) in the paper can be equivalently expressed as

Alr(zA) =
1

2
+

U(zA) +V(zA)

2W(zA)

Al(zA) =
1

2
+

U(zA)

2W(zA)

Aur(zA) =
1

2
+

U(zA)−V(zA)

2W(zA)

where

U(zA) =

M∑
i=1

(2i−M − 1)Pr(Xr(i) = 1|zA) (1a)

V(zA) =

M∑
i=1

Pr(Xi = 1|zA)Pr(Xi = 0|zA) (1b)

W(zA) =

M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA).

The result in Proposition 1 will then follow by observing that under a single fault approximation, W(zA) =
M − 1.

To prove the above equivalences, we will first show this result for Aur(zA), and the other two results follow
by observing that

Alr(zA) = Aur(zA) +
V(zA)

W(zA)

Al(zA) = Aur(zA) +
V(zA)

2W(zA)
.

We will now show the equivalence result for Aur(zA). Let N(zA) :=
∑M−1
i=1

∑M
j=i+1 Pr(Xr(i) = 0|zA)Pr(Xr(j) =
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1|zA) denote its numerator. Then, the result follows by observing that

M∑
i=1

Pr(Xi = 0|zA)
M∑
i=1

Pr(Xi = 1|zA)

=

M∑
i=1

Pr(Xr(i) = 0|zA)
M∑
i=1

Pr(Xr(i) = 1|zA)

= N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)
i∑

j=1

Pr(Xr(j) = 1|zA)

= N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)Pr(Xr(i) = 1|zA)

+

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA), (2)

where the last term in the above expression can be expressed in terms of N(zA) using the relation Pr(Xr(i) =
0|zA) = 1− Pr(Xr(i) = 1|zA),

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA)

=

M∑
i=2

i−1∑
j=1

[
1− Pr(Xr(i) = 1|zA)− Pr(Xr(j) = 0|zA) + Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)

]
=

M∑
i=2

i−1∑
j=1

[
− Pr(Xr(i) = 1|zA) + Pr(Xr(j) = 1|zA) + Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)

]
=

M∑
i=2

−(i− 1)Pr(Xr(i) = 1|zA) +
M−1∑
i=1

(M − i)Pr(Xr(i) = 1|zA)

+

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)

=

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

+

M−1∑
j=1

M∑
i=j+1

Pr(Xr(j) = 0|zA)Pr(Xr(i) = 1|zA)

=

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA) +N(zA).

Finally, substituting the above relation in (2), we get

M∑
i=1

Pr(Xi = 0|zA)
M∑
i=1

Pr(Xi = 1|zA)

= 2N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)Pr(Xr(i) = 1|zA) +
M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

= 2N(zA) +

M∑
i=1

Pr(Xi = 0|zA)Pr(Xi = 1|zA) +
M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

from which, the result follows.

A.2 Adaptive Monotonicity Property
As we show below, AUC approximated using lower rectangles or a linear approximation exhibits another
interesting property. In particular, it can be shown that these two AUC estimators are adaptive monotone [1],
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i.e., the accuracy of diagnosis given by Alr(ZA) or Al(ZA) is guaranteed to increase by acquiring more query
information (equivalently, the area above the ROC curve given by Alr(ZA) or Al(ZA) is guaranteed to decrease
by acquiring more query information).

Theorem 1. Under a single fault approximation, the quality function A(ZA) estimated using either lower rectangles
or a linear approximation, is adaptive monotone, i.e., ∀A′ ⊆ A

Alr(ZA′) ≤ Alr(ZA) and Al(ZA′) ≤ Al(ZA)

Proof: Since A(zA) = 1−A(zA), the result in Theorem 1 follows by showing that ∀A′ ⊆ A

Alr(ZA) ≤ Alr(ZA′) and Al(ZA) ≤ Al(ZA′)

Let zA denote the responses to queries in the set A. To prove adaptive monotonicity for Alr(ZA), it suffices
to show that for any query j /∈ A, Alr(zA)−EZj [Alr(zA∪Zj)] ≥ 0 [1]. Similarly, for Al(ZA), we need to show
that Al(zA)− EZj [Al(zA ∪ Zj)] ≥ 0.

Under a single fault approximation, we have

Alr(zA) =
1

2
+

U(zA) +V(zA)

2(M − 1)
, and

Al(zA) =
1

2
+

U(zA)

2(M − 1)
,

where U(zA) and V(zA) are as defined in (1a) and (1b), respectively. Hence, the adaptive monotonicity of
Alr(zA) and Al(zA) follows by showing that ∀j /∈ A

U(zA)− EZj
[U(zA ∪ Zj)] ≥ 0, and

V(zA)− EZj
[V(zA ∪ Zj)] ≥ 0,

which follow from Lemma 1 and 2, below.

Lemma 1. Let zA denote the observed responses to queries in the set A. Then, for any query j /∈ A,

U(zA)− EZj
[U(zA ∪ Zj)] ≥ 0

Proof: Under a single fault approximation, U(zA) = −(M+1)+
∑M
i=1 2iPr(Xr(i) = 1|zA). Hence, the result

follows by showing that ∀ j /∈ A,

M∑
i=1

i

{
Pr(Xr(i) = 1|zA)−

[
Pr(Zj = 0|zA)Pr(Xr0(i) = 1|zA, 0)

+ Pr(Zj = 1|zA)Pr(Xr1(i) = 1|zA, 1)

]}
≥ 0. (3)

As mentioned earlier, the rank order depends on the queries chosen A and their observed responses zA.
Hence, to differentiate the rank orders in the above expression, we use r(i) to denote the rank order of the
objects based on the observed responses zA, and r0(i), r1(i) to denote the rank order of the objects based on
the observed responses zA ∪ 0 and zA ∪ 1 to queries in A ∪ {j}.

Note that (3) is equivalent to showing

M∑
i=1

(M − i+ 1)

{[
Pr(Zj = 0|zA)Pr(Xr0(i) = 1|zA, 0) + Pr(Zj = 1|zA)Pr(Xr1(i) = 1|zA, 1)

]

− Pr(Xr(i) = 1|zA)

}
≥ 0. (4)

Let ft(r, zA) :=
∑t
i=1 Pr(Xr(i) = 1|zA), i.e., the probability mass of the top t objects in the ranked list given

by r. Then,

M∑
i=1

(M − i+ 1)Pr(Xr(i)|zA) =
M∑
t=1

ft(r, zA),
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and hence (4) is equivalent to showing

M∑
t=1

[
Pr(Zj = 0|zA)ft(r0, zA ∪ 0) + Pr(Zj = 1|zA)ft(r1, zA ∪ 1)

]
− ft(r, zA) ≥ 0.

Now, note that

ft(r0, zA ∪ 0) ≥ ft(r, zA ∪ 0)

=

t∑
i=1

Pr(Xr(i) = 1|zA, 0).

Since the rank order r0 corresponds to the decreasing order of the posterior probabilities in {Pr(Xi = 1|zA, 0)}Mi=1,
the probability mass of the top t objects in this ranked list is greater than any other t objects. Similarly,
ft(r1, zA ∪ 1) ≥ ft(r, zA ∪ 1). Hence,

Pr(Zj = 0|zA)ft(r0, zA ∪ 0) + Pr(Zj = 1|zA)ft(r1, zA ∪ 1) (5a)
≥ Pr(Zj = 0|zA)ft(r, zA ∪ 0) + Pr(Zj = 1|zA)ft(r, zA ∪ 1) (5b)

=
t∑
i=1

[
Pr(Zj = 0|zA)Pr(Xr(i) = 1|zA, 0) + Pr(Zj = 1|zA)Pr(Xr(i) = 1|zA, 1)

]
(5c)

=

t∑
i=1

[
Pr(Zj = 0|Xr(i) = 1)Pr(Xr(i) = 1|zA)

+ Pr(Zj = 1|Xr(i) = 1)Pr(Xr(i) = 1|zA)

]
(5d)

=

t∑
i=1

Pr(Xr(i) = 1|zA) = ft(r, zA). (5e)

Thus proving the inequality.
Note that in the above equation, (5d) follows from (5c) by observing that under a single fault approximation,

Xi = 1 ⇐⇒ X = Ii, and hence, using the conditional independence assumption of Section 2, the posterior
probability can be expressed as

Pr(Xi = 1|zA, z) = Pr(X = Ii|zA, z)

=
Pr(X = Ii)Pr(zA|X = Ii)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)Pr(ZA = zA)

=
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

=
Pr(Xi = 1|zA)Pr(Zj = z|Xi = 1)

Pr(Zj = z|zA)
. (6)

Lemma 2. Let zA denote the observed responses to queries in the set A. Then, for any query j /∈ A,

V(zA)− EZj
[V(zA ∪ Zj)] ≥ 0

Proof: Note that under a single fault approximation, V(zA) = 1 −
∑M
i=1 Pr

2(Xi = 1|zA). Hence, we need
to show that ∀ j /∈ A,

M∑
i=1

{[
Pr(Zj = 0|zA)Pr2(Xi = 1|zA, 0) + Pr(Zj = 1|zA)Pr2(Xi = 1|zA, 1)

]

− Pr2(Xi = 1|zA)

}
≥ 0. (7)
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Substituting the expression for posterior probability from (6) in the LHS of (7), we get

M∑
i=1

{
Pr2(Xi = 1|zA)

[
Pr2(Zj = 0|Xi = 1)

Pr(Zj = 0|zA)
+

Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}

=

M∑
i=1

{
Pr2(Xi = 1|zA)

[(
1− Pr(Zj = 1|Xi = 1)

)2
Pr(Zj = 0|zA)

+
Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}
,

=

M∑
i=1

{
Pr2(Xi = 1|zA)

[(Pr(Zj = 1|Xi = 1)− Pr(Zj = 1|zA)

)2

Pr(Zj = 1|zA)Pr(Zj = 0|zA)

]}
≥ 0

where the last equality follows by using the relation Pr(Zj = 0|zA) = 1− Pr(Zj = 1|zA), and completing the
square.

A.3 Proof of Proposition 2
The entropy-based query selection criterion is given by

j∗ = argmin
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|zA, z). (8)

Since, under a single fault approximation, Xi = 1⇐⇒ X = Ii, we need to show that the above query selection
criterion reduces to

j∗ := argmin
j /∈A

M∑
i=1

Pr(X = Ii|zA)H
(
Pr(Zj = 0|X = Ii)

)
−H

(
Pr(Zj = 0|zA)

)
.

We show this by first noting that under a single fault approximation, the conditional entropy reduces to

H(X|zA, z) = −
M∑
i=1

Pr(X = Ii|zA, z) log Pr(X = Ii|zA, z).

In addition, as noted in (6), under the conditional independence assumption of Section 2, the posterior
probability can be expressed as

Pr(X = Ii|zA, z) =
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)
. (9)

Substituting the above expression in (8), we get∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z) = −
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z)

log
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

]
. (10)

This expression can be broken down into 3 different terms. The first term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z) log Pr(X = Ii|zA)

]

= −
M∑
i=1

[
Pr(X = Ii|zA) log Pr(X = Ii|zA)

∑
z=0,1

Pr(Zj = z|X = Ii)

]
= H(X|zA),

where the second equality follows from (9) and the last equality follows since
∑
z Pr(Zj = z|X = Ii) = 1.
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The second term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z) log

1

Pr(Zj = z|zA)

]

= −
∑
z=0,1

[
Pr(Zj = z|zA) log

1

Pr(Zj = z|zA)

M∑
i=1

Pr(X = Ii|zA, z)

]
= −H

(
Pr(Zj = 0|zA)

)
,

where the last equality follows since
∑M
i=1 Pr(X = Ii|zA, z) = 1.

The last term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z) log Pr(Zj = z|X = Ii)

]

= −
M∑
i=1

[
Pr(X = Ii|zA)

( ∑
z=0,1

Pr(Zj = z|X = Ii) log Pr(Zj = z|X = Ii)

)]

=

M∑
i=1

Pr(X = Ii|zA)H
(
Pr(Zj = 0|X = Ii)

)
.

Substituting these 3 terms back into (10), we get∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z)

= H(X|zA)−H
(
Pr(Zj = 0|zA)

)
+

M∑
i=1

Pr(X = Ii|zA)H
(
Pr(Zj = 0|X = Ii)

)
,

and the result follows since H(X|zA) does not depend on the query j.

A.4 Proof of Lemma 1
For any given k and h, let g(p) := log[ph(1 − p)k−h]. It can be easily verified that g′(p) = 0 when p = h

k and
g′′(p)|p=h

k
< 0 which implies that g(p) ≤ g(hk ), ∀ p, from which the inequality in (12) shown in the paper

follows.
In addition, when p ≤ p2, we need to show that the bound can be improved to

ph(1− p)k−h ≤

{
ph2 (1− p2)k−h if p2 ≤ h

k ,(
h
k

)h (
1− h

k

)k−h
if p2 > h

k .

Note that the second part of this result, where p2 > h/k follows from the above result. Hence, it remains to
show that ∀ p2 ≤ h

k , ph(1−p)k−h ≤ ph2 (1−p2)k−h, which is equivalent to showing that ∀h ≥ kp2, g(p2)−g(p) ≥ 0.

g(p2)− g(p) = h log
p2(1− p)
p(1− p2)

+ k log
1− p2
1− p

≥ kp2 log
p2(1− p)
p(1− p2)

+ k log
1− p2
1− p

= k

[
p2 log

p2
p

+ (1− p2) log
1− p2
1− p

]
≥ 0

where the first inequality follows from h ≥ kp2 (the first log is ≥ 0 since p ≤ p2) and the last inequality follows
from the non-negativity of Kullback-Leibler divergence. The other two cases can be proved in a similar manner.

A.5 Proof of Proposition 3
Let |A| = k. Consider the case where ∃ p ∈ (0, ρ/(1 + ρ)) such that 0 < p ≤ p (The other case where
∃ p ∈ (1/(1 + ρ), 1) such that 1 > p ≥ p can be proved in a similar manner). Note from the definitions of
rwc(θ|zA) and rwc(θ|zA) that the result follows by showing the following relational equivalence between the
true probabilities and the estimated probabilities: ∀i, j

πiPr(zA|Xi = 1) ≥ πjPr(zA|Xj = 1)⇐⇒ πiPr(zA|Xi = 1) ≥ πjPr(zA|Xj = 1), (11)
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where the true likelihood and the estimated likelihood of any object θi are given by Pr(zA|Xi = 1) = phi(1−
p)k−hi and Pr(zA|Xi = 1) = εhi

i (1− εi)k−hi , hi = δi,A and εi := min{hi/k, p}.
The above equivalence follows trivially for any pair of objects θi, θj whose hi = hj . To show that the

equivalence holds even when hi 6= hj , we will show that, for any two objects θi, θj with priors πi, πj ,

πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1) & (hi 6= hj)⇐⇒ hj > hi (12a)

and πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1) & (hi 6= hj)⇐⇒ hj > hi. (12b)

We will first prove (12a), followed by (12b). Note that hj > hi is equivalent to hj ≥ hi+1. Using the fact that
p < ρ

1+ρ and that for any i, j, πj

πi
≤ maxk πk

mink πk
= 1

ρ , we can show the converse of (12a) as follows. If hj − hi ≥ 1,
then

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p
=⇒ log πip

hi(1− p)k−hi > log πjp
hj (1− p)k−hj .

To prove the forward direction, we need to show that

hj ≤ hi =⇒ (hi = hj) or πiPr(zA|Xi = 1) ≤ πjPr(zA|Xj = 1).

If hj < hi, then πiPr(zA|Xi = 1) < πjPr(zA|Xj = 1) using the converse result with dummy variables i and j
interchanged, thereby proving (12a). Similarly, to prove the converse of (12b), we need to show that hj > hi
leads to πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1), for which we need to consider three different cases.

Case 1 : Let hj > hi ≥ kp =⇒ εi = εj = p. Then,

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p
=⇒ log πip

hi(1− p)k−hi > log πjp
hj (1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj .

Case 2 : Let hj ≥ kp > hi =⇒ εi = hi/k and εj = p. Then, following along the same lines as above, we have

log πip
hi(1− p)k−hi > log πjp

hj (1− p)k−hj

=⇒ log πi

(
hi
k

)hi
(
1− hi

k

)k−hi

> log πjp
hj (1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj

where the second statement follows from (12) in Lemma 1.
Case 3 : Let kp > hj > hi, which implies εi = hi/k and εj = hj/k. Defining g1(h) = log[(h/k)h(1− h/k)k−h]

and g2(h) = log ph(1− p)k−h, we have,

dg1
dh

= log
h/k

1− h
k

<
dg2
dh

= log
p

1− p
< 0,

when h < kp. This implies that g1(h) has a larger slope than g2(h) when h ∈ [0, kp), and hence

log (εi)
hi (1− εi)k−hi − log (εj)

hj (1− εj)k−hj

> log phi(1− p)k−hi − log phj (1− p)k−hj

= (hj − hi) log
1− p
p

> log
πj
πi

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj ,

thus proving the converse of (12b). The forward direction can be proved using the converse result in the same
way as it is done for (12a).
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APPENDIX B
MISCELLANIES
B.1 Choice of upper rectangles
As mentioned in the paper, query selection based on AUC approximated using the upper rectangles performs
better than the other two. We will now provide an intuitive explanation for this phenomenon.

Using the result in Proposition 1, and noting that Pr(Xi = 0|zA) = 1− Pr(Xi = 1|zA), we can re-write the
expressions for the area above the ROC curve given by (9) in the paper as

Alr(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)− Pr2(Xi = 1|zA)

2(M − 1)
+ cl,

Al(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)

2(M − 1)
+ cm,

Aur(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA) + Pr2(Xi = 1|zA)

2(M − 1)
+ cu,

where cl, cm and cu are constants that do not contribute to query selection.
Now note that all three approximations have the same first term, which corresponds to the expected rank

of the faults in the ranked list. However, they differ with respect to the second term, which makes the crucial
difference in terms of the query selected. More specifically, given two or more queries with the the same
expected rank value (i.e., same value for the first term), query selected using Aur(zA) chooses the one that
most evenly distributes the posterior probability mass of 1 among all the objects, while query selected using
Alr(zA) chooses the one that assigns most of the probability mass to one object, and the query selected using
Al(zA) just picks one at random. Hence, the queries selected using Alr(zA) and Al(zA) are more prone
to increasing the posterior fault probability of one (or few) object(s), thereby creating a bias towards those
objects in the queries selected there after. However, this is overcome by the AUC-based query selection criterion
approximated using the upper rectangles.

B.2 GBS as a special case
As shown in the paper, in the single fault scenario, the rank-based greedy strategy reduces to

j∗ = argmin
j /∈A

∑
z=0,1

M∑
i=1

πiPr(zA, z|Xi = 1)rwc(i|zA ∪ z). (13)

In the noise-free case with uniform prior on the objects (i.e., πi = 1/M , ∀i), the above strategy can be shown
to be equivalent to GBS [2], [3].

We begin by noting that in the noise-free case, the likelihood values are binary with Pr(zA|Xi = 1) = 1 for
all those objects whose true responses to queries in A are equal to the observed responses zA, and 0 otherwise.
Given the responses zA to queries in A, let M(zA) be defined as follows,

M(zA) :=

M∑
i=1

I{Pr(zA|Xi = 1) = 1}.

Then, the worst case rank of all those objects with a likelihood value equal to 1 is given by M(zA), and that
of the remaining objects is equal to M .

Under a uniform prior, the greedy query selection criterion in (13) then reduces to

j∗ = argmin
j /∈A

1

M

∑
z=0,1

M(zA∪z)∑
i=1

M(zA ∪ z)

= argmin
j /∈A

1

M

[
M2(zA ∪ 0) +M2(zA ∪ 1)

]
,

where M(zA ∪ 0) +M(zA ∪ 1) = M(zA), and zA ∪ z corresponds to the observed responses to queries in
A ∪ j. The solution to this constrained optimization problem is to choose a query that most evenly divides
the M(zA) objects, which is the standard splitting algorithm or GBS.
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B.3 Details of networks generated for experiments
We will now briefly describe how the networks used in the experiments were generated.
• Random Networks: The Erdös-Rényi random networks were generated using an edge density value (p)

between 0.02 and 0.2, where p corresponds to the probability that a particular object and query are
connected. The Preferential Attachment random network model consists of two parameters, α and ν,
where α corresponds to the probability with which an edge is generated uniformly at random, and
ν corresponds to the maximum edge degree of the objects in the bipartite diagnosis graph. For more
details, refer to [4]. In the networks we generated, we used α values in the range of [0.1, 0.3] and ν was
chosen to be less than 10% of the maximum possible edge degree.

• Computer Networks: The computer networks used in this paper were generated in a two-stage process
consisting of (1) network topology generation and (2) probe set selection. In the first stage, network
topologies were created using the BRITE [5] and the INET 3.0 [6] generators, which simulate an Internet
like topology at the Autonomous Systems (AS) level. More specifically, the BRITE networks were generated
using the AS Waxman model under default parameters, where the plane dimensions were scaled based
on the number of components. The INET network was also generated using an AS model with default
parameters.
Given this network topology, a random set of K network components were chosen to be designated as
probe stations. Probes were then generated by computing the shortest path from each probe station to
every component. This set is then decreased in size using a greedy process known as Subtractive search
[7], where the probes were selected passively such that the resulting probe set guarantees single fault
diagnosis. Once this set has been created, additional probes were added greedily to allow for multiple
fault diagnosis. In the INET network we generated, Subtractive search was slow, and hence the probes
were selected based on greedy covering.

B.4 Experiments
In this section, we provide more experimental evidence to support our argument that AUC-based query
selection under single-fault approximation (AUC+SF) is a reliable, practical alternative to BPEA in large scale
diagnosis problems.

We compare the performance of the three query selection criteria, i.e., BPEA, AUC-based query selection un-
der single fault approximation (AUC+SF), and entropy-based query selection under single fault approximation
(Entropy+SF), on two different datasets. The first dataset is a random bipartite diagnosis graph generated using
the standard Preferential Attachment (PA) random network model. The second dataset is a network topology
built using the BRITE generator, which simulates an Internet-like topology at the Autonomous Systems level.

Figures 1 and 2 compare the performance of the three query selection criteria on the two datasets, for
different values of prior fault probability α, leak and inhibition probabilities ρl and ρi. In these figures, the area
under the ROC curve (AUC) is obtained by ranking the objects based on their posterior probabilities, which
in turn are computed using a single-fault approximation. Alternatively, note that these posterior probabilities
could be estimated using belief propagation on these networks (as the networks are small in size), and the
ranking obtained there after could be used to compute the AUC. Figures 3 and 4 compare the three query
selection criteria using AUC computed through BP based ranking. In all the experiments, the information
gain is computed using BPEA as described in Zheng et al. [8]. Finally, note from Figure 5 that the time com-
plexity of selecting a query grows exponentially for BPEA, whereas for AUC+SF, it grows near quadratically
(O(NM logM)) with the time taken to select a probe being less than 2 seconds even in networks with 2000
components.

These experiments demonstrate that AUC+SF invariably performs better than Entropy+SF, and often com-
parable to BPEA, while having a computational complexity that is orders less than that of BPEA, thereby
making it a robust, practical alternative to BPEA in large scale diagnosis problems.
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Fig. 1. The plots in the first column correspond to a dataset generated using the PA model, and the second
column corresponds to a BRITE network. The figure in the top corresponds to (α, ρi, ρl) = (0.03, 0.05, 0.05), and
the figure in the bottom corresponds to (α, ρi, ρl) = (0.03, 0.1, 0.1).
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Fig. 2. The plots in the first column correspond to a dataset generated using the PA model, and the second
column corresponds to a BRITE network. The figure in the top corresponds to (α, ρi, ρl) = (0.05, 0.05, 0.05), and
the figure in the bottom corresponds to (α, ρi, ρl) = (0.05, 0.1, 0.1).
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Fig. 3. The plots in this figure correspond to a dataset generated using PA model. The AUC is computed
by ranking the objects using posterior probabilities obtained from Belief Propagation (rather than single fault
approximation).
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Fig. 4. The plots in this figure correspond to a dataset generated using BRITE. The AUC is computed by ranking
the objects using posterior probabilities obtained from Belief Propagation (rather than single fault approximation).
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Fig. 5. This plot compares the time complexity of selecting a query using BPEA and AUC+SF.


