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Abstract—Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems.

Well-known examples include the kernel density estimate (KDE) for density estimation and the support vector machine (SVM) for

classification. We propose a kernel classifier that optimizes the L2 or integrated squared error (ISE) of a “difference of densities.” We

focus on the Gaussian kernel, although the method applies to other kernels suitable for density estimation. Like a support vector

machine (SVM), the classifier is sparse and results from solving a quadratic program. We provide statistical performance guarantees

for the proposed L2 kernel classifier in the form of a finite sample oracle inequality and strong consistency in the sense of both ISE and

probability of error. A special case of our analysis applies to a previously introduced ISE-based method for kernel density estimation.

For dimensionality greater than 15, the basic L2 kernel classifier performs poorly in practice. Thus, we extend the method through the

introduction of a natural regularization parameter, which allows it to remain competitive with the SVM in high dimensions. Simulation

results for both synthetic and real-world data are presented.

Index Terms—Kernel methods, sparse classifiers, integrated squared error, difference of densities, SMO algorithm.

Ç

1 INTRODUCTION

IN the binary classification problem, we are given
realizations ðX1; Y1Þ; . . . ; ðXn; YnÞ of a jointly distributed

pair ðX; Y Þ, where X 2 IRd is a pattern and Y 2 f�1;þ1g is
a class label. The goal of classification is to build a classifier,
i.e., a function taking X as input and outputting a label such
that some measure of performance is optimized. Kernel
classifiers [1] are an important family of classifiers that have
drawn much recent attention for their ability to represent
nonlinear decision boundaries and to scale well with
increasing dimension d. A kernel classifier (without offset)
has the form

gðxÞ ¼ sign
Xn
i¼1

�iYikðx;XiÞ
( )

;

where �i are parameters and k is a kernel function. For

example, support vector machines (SVMs) without offset

have this form [2], as does the standard kernel density

estimate (KDE) plug-in rule.
In this paper, we employ an L2 or integrated squared

error (ISE) criterion to design the coefficients �i of a kernel
classifier. Like the SVM, L2 kernel classifiers are the
solutions of convex quadratic programs (QPs) that can be
solved efficiently using standard decomposition algorithms.
In addition, the classifiers are sparse, meaning most of the
coefficients �i ¼ 0, which has advantages for representation
and evaluation efficiency. The L2 objective function also has
appealing geometric interpretations in that it estimates a
hyperplane in kernel feature space. Unlike the SVM, the

most basic version of our method has no free parameters to
be set by the user, except perhaps the kernel bandwidth
parameter. However, this basic L2 kernel classifier is not
competitive with the SVM for problems of dimensionality
exceeding 15-20. Thus, we also extend the method to
incorporate a regularization parameter, which allows it to
remain competitive with the SVM in high dimensions.

We provide statistical performance guarantees for the
proposed L2 kernel classifier. The linchpin of our analysis is
a new concentration inequality bounding the deviation of a
cross-validation-based ISE estimate from the true ISE. This
bound is then applied to prove an oracle inequality and
consistency in both ISE and probability of error. In addition,
as a special case of our analysis, we are able to deduce
performance guarantees for the method of L2 kernel density
estimation described in [3], [4], which has not previously
been analyzed.

1.1 Related Work

The ISE criterion has a long history in the literature on
bandwidth selection for kernel density estimation [5] and
more recently in parametric estimation [6]. The use of ISE
for optimizing the weights of a KDE via quadratic
programming was first described in [3] and later redis-
covered in [4]. In [7], an ‘1 penalized ISE criterion was used
to aggregate a finite number of predetermined densities.
Linear and convex aggregation of densities, based on an
L2 criterion, are studied in [8], where the densities are based
on a finite dictionary or an independent sample. In contrast,
our proposed method allows data-adaptive kernels, and
does not require an independent (holdout) sample.

In classification, some connections relating SVMs and
ISE are made in [9], although no new algorithms are
proposed. The application of the ISE-based kernel method
to classification problem is first studied in [10], where each
class-conditional density is estimated separately and
plugged into the final classifier. However, our ISE criterion
is a more natural choice for classification in that we directly
estimate the difference of densities (DOD). It also leads to
interesting geometric interpretations and relationships
between our method and SVMs.
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The “difference of densities” perspective has been
applied to classification in other settings by several authors.
In [11] and [12], a difference of densities is used to find
smoothing parameters or kernel bandwidths. In [13],
conditional densities are chosen among a parameterized
set of densities to maximize the average (bounded) density
differences. The relationship between the consistency of ISE
and the consistency of the probability of error is studied in
[14]. Finally, Pelckmans et al. [15] consider a kernel classifier
that maximizes the average (as opposed to worst case)
empirical margin. The resulting classifier amounts to an
estimate of the difference of densities having uniform �is.

1.2 Organization

Section 2 introduces our L2 criterion for classification and
formulates the criterion as a quadratic program. Statistical
performance guarantees are presented in Section 3. Geo-
metric interpretations for the proposed method are provided
in Section 4. Extension and variations of the basic method are
presented in Section 5, including one extension that makes the
method competitive in higher dimensions at the expense of
an extra regularization parameter. We demonstrate experi-
mental results in Section 6. Conclusions are offered in the final
section. The appendices contain proofs of theorems, and an
efficient Sequential Minimal Optimization (SMO) algorithm
for implementing the classifier and can be found in the
IEEE Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2009.188.
Matlab software implementing our algorithm, including fast
C++/Mex code for the core computations, is available at
http://www-personal.umich.edu/~stannum/l2kernel.zip.
Preliminary versions of this work appeared in [16], [17].

2 L2 KERNEL CLASSIFICATION

Let fþðxÞ and f�ðxÞ denote the class-conditional densities of
the pattern given the label. From decision theory, the
optimal classifier has the form

g�ðxÞ ¼ sign fþðxÞ � �f�ðxÞf g: ð1Þ

Denote the “DOD” by d�ðxÞ :¼ fþðxÞ � �f�ðxÞ.
Here, we view � as a fixed parameter to be set by the user

to reflect prior class probabilities and class-conditional error
costs. For example, if we are interested in minimizing the
probability of error, � should be set to �� ¼ 1�p

p , where 0 <
p < 1 is the prior probabilities of the positive class. If p is
unknown, we may set � to be the natural empirical estimate
for ��. We analyze this exact strategy in Section 3, and also
employ it in our experiments in Section 6.

Recall that we are given realizations ðX1; Y1Þ; . . . ; ðXn; YnÞ,
where Xi 2 IRd is a pattern and Yi 2 f�1;þ1g is a class label.
For convenience, we relabel Y so that it belongs to f1;��g
and denote Iþ ¼ fi j Yi ¼ þ1g and I� ¼ fi j Yi ¼ ��g. The
class-conditional densities are modeled as KDEs with variable
weights �� ¼ ð�1; . . . ; �nÞ:bfþ x;��ð Þ ¼

X
i2Iþ

�ik� x;Xið Þ;

bf� x;��ð Þ ¼
X
i2I�

�ik� x;Xið Þ;

with constraints �� 2 A where

A ¼ ��
���X
i2Iþ

�i ¼
X
i2I�

�i ¼ 1; �i � 0 8i
( )

and

k� x;Xið Þ ¼ 2��2
� ��d=2

exp �kx�Xik2

2�2

( )
is the Gaussian kernel with bandwidth � > 0. In general, �
is a tuning parameter that will need to set using standard
model selection strategies, such as cross validation. As
explained in Section 5, other kernels besides the Gaussian
also fit naturally into our framework.

We take as our goal estimating d�ðxÞ directly withbd�ðx;��Þ :¼ bfþðx;��Þ � �bf�ðx;��Þ, rather than estimating
fþðxÞ and f�ðxÞ separately and “plug-in” to (1) as in [10].
In particular, we propose estimating �� by minimizing the
L2 distance or ISE between the model bd�ðx;��Þ and the truth
d�ðxÞ. The ISE associated with �� is

ISEð��Þ ¼ kbd� x;��ð Þ � d� xð Þk2
L2

¼
Z �bd� x;��ð Þ � d� xð Þ

�2
dx

¼
Z bd2

� x;��ð Þdx� 2

Z bd� x;��ð Þd� xð Þ dx

þ
Z
d2
� xð Þ dx:

Since we do not know the true d�ðxÞ, we need to estimate
the second term in the above equation

Hð��Þ ¼4
Z bd� x;��ð Þd� xð Þ dx; ð2Þ

by Hnð��Þ which will be explained in detail in Section 2.1.
Then, the empirical ISE becomes

dISEð��Þ ¼ Z bd2
� x;��ð Þ dx� 2Hnð��Þ þ

Z
d2
� xð Þ dx: ð3Þ

Now, b�� is defined as

b�� ¼ arg min
��2A

dISEð��Þ; ð4Þ

and the final classifier will be

gðxÞ ¼ þ1; bd�ðx; b��Þ � 0;

��; bd�ðx; b��Þ < 0:

(
ð5Þ

2.1 Estimation of Hð��Þ
In this section, we propose a method of estimating Hð��Þ in
(2). The basic idea is to view Hð��Þ as an expectation and
estimate it using a sample average. In [16], the resubstitu-
tion estimator for Hð��Þ was used. However, since this
estimator is biased, we use a leave-one-out cross-validation
(LOOCV) estimator which is unbiased and facilitates our
theoretical analysis. Note that the DOD can be expressed as

bd� x;��ð Þ ¼ bfþðxÞ � �bf�ðxÞ ¼Xn
i¼1

�iYik�ðx;XiÞ:

KIM AND SCOTT: L2 KERNEL CLASSIFICATION 1823



Then,

Hð��Þ ¼
Z bd�ðx;��Þd�ðxÞdx

¼
Z bd�ðx;��ÞfþðxÞdx� �

Z bd�ðx;��Þf�ðxÞ dx

¼
Z Xn

i¼1

�iYik�ðx;XiÞ fþðxÞdx

� �
Z Xn

i¼1

�iYik�ðx;XiÞf�ðxÞdx

¼
Xn
i¼1

�iYihðXiÞ;

where

hðXiÞ ¼4
Z
k�ðx;XiÞ fþðxÞ dx

� �
Z
k�ðx;XiÞ f�ðxÞ dx:

ð6Þ

We estimate each hðXiÞ in (6) for i ¼ 1; . . . ; n using leave-
one-out cross validation

bhi ¼4
1

Nþ � 1

X
j2Iþ;j 6¼i

k� Xj;Xi

� �
� �

N�

X
j2I�

k� Xj;Xi

� �
; i 2 Iþ;

1

Nþ

X
j2Iþ

k� Xj;Xi

� �
� �

N� � 1

X
j2I�;j6¼i

k� Xj;Xi

� �
; i 2 I�;

8>>>>>>>>>>>><>>>>>>>>>>>>:
where Nþ ¼ jIþj, N� ¼ jI�j. Then, the estimate of Hð��Þ is
Hnð��Þ ¼

Pn
i¼1 �iYi

bhi. We emphasize that here cross valida-
tion is employed as a method of estimation and is distinct
from any procedure that may be used for tuning the
bandwidth �.

2.2 Optimization

The optimization problem (4) can be formulated as a
quadratic program. The first term in (3) isZ bd2

� x;��ð Þ dx ¼
Z Xn

i¼1

�iYik� x;Xið Þ
 !2

dx

¼
Xn
i¼1

Xn
j¼1

�i�jYiYj

Z
k� x;Xið Þk� x;Xj

� �
dx

¼
Xn
i¼1

Xn
j¼1

�i�jYiYjk ffiffi2p � Xi;Xj

� �
;

by the convolution theorem for Gaussian kernels [18]. As
we have seen in Section 2.1, the second term Hnð��Þ in (3) is
linear in �� and can be expressed as

Pn
i¼1 �ici, where

ci ¼ Yi bhi. Finally, since the third term does not depend on ��,
the optimization problem (4) becomes the following QP:

b�� ¼ arg min
��2A

1

2

Xn
i¼1

Xn
j¼1

�i�jYiYjk ffiffi2p � Xi;Xj

� �
�
Xn
i¼1

ci�i:

ð7Þ

We refer to the resulting classifier as L2QP (L2 classification
via Quadratic Programming). Since the Gaussian kernel is
positive definite [1], the objective function in (7) is strictly
convex if the Xis are distinct, and thus it has a unique
solution. As discussed in [4], quadratic programs derived
from ISE-based criteria induce sparse solutions, and the
nonzero �is tend to be concentrated in regions of space with
greater probability mass. Another explanation of this is
presented in Section 4. The QP (7) is similar in some
respects to the dual QP of the 2-norm SVM with hinge loss
[2]. However, unlike the SVM, (7) does not include a
regularization parameter, and therefore the computational
cost required for training the L2QP classifier will typically
be less than that of the SVM. The QP can be solved by a
variant of the Sequential Minimal Optimization (SMO)
algorithm [19] explained in Appendix A.

3 STATISTICAL PERFORMANCE ANALYSIS

We give theoretical performance guarantees for our proposed
method. We assume that fXigi2Iþ and fXigi2I� are i.i.d.
samples from fþðxÞ and f�ðxÞ, respectively, and treatNþ and
N� as deterministic variables nþ and n� such that nþ ! 1
and n� ! 1 as n!1. Proofs are found in Appendices B-D,
which can be found in the IEEE Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2009.188.

3.1 Concentration Inequality for Hnð��Þ
Lemma 1. Conditioned on Xi, bhi is an unbiased estimator of
hðXiÞ, i.e.,

E
�bhi��Xi

�
¼ h ðXiÞ:

Furthermore, for any � > 0

P sup
��2A

��Hnð��Þ �Hð��Þ
�� > �

� 	
� 2n

�
e�cðnþ�1Þ�2 þ e�cðn��1Þ�2�;

where c ¼ 2
� ffiffiffiffiffiffi

2�
p

�
�2d
= ð1þ �Þ4.

Lemma 1 implies that Hnð��Þ ! Hð��Þ almost surely for
all �� 2 A simultaneously, provided that �, nþ and n�
evolve as functions of n such that nþ�

2d= lnn!1 and
n��

2d= lnn!1.

3.2 Oracle Inequality

Next, we establish on oracle inequality, which relates the
performance of our estimator to that of the best possible
kernel classifier.

Theorem 1. Let � > 0 and set � ¼ �ð�Þ ¼ 2nðe�cðnþ�1Þ�2 þ
e�cðn��1Þ�2Þ where c ¼ 2ð

ffiffiffiffiffiffi
2�
p

�Þ2d=ð1þ �Þ4. Then, with prob-
ability at least 1� �,

ISEðb��Þ � inf
��2A

ISEð��Þ þ 4�:

Proof. From Lemma 1, with probability at least 1� �,

jISEð��Þ � dISEð��Þj � 2�; 8�� 2 A;

by using the fact ISEð��Þ � dISEð��Þ ¼ 2ðHnð��Þ �Hð��ÞÞ.
Then, with probability at least 1� �, for all �� 2 A, we have
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ISEðb��Þ � dISEðb��Þ þ 2� � dISEð��Þ þ 2� � ISEð��Þ þ 4�;

where the second inequality holds from the definition ofb��. This proves the theorem. tu

3.3 ISE Consistency

Next, we have a theorem stating that ISEðb��Þ converges to

zero in probability.

Theorem 2. Suppose that for f ¼ fþ and f�, the Hessian HfðxÞ
exists and each entry of HfðxÞ is piecewise continuous and

square integrable. If �, nþ, and n� evolve as functions of n

such that �! 0, nþ�
2d= lnn!1, and nþ�

2d= lnn!1,

then ISEðb��Þ ! 0 in probability as n!1.

This result intuitively follows from the oracle inequality

since the standard Parzen window density estimate is

consistent and uniform weights are among the simplex A.

The rigorous proof is presented in Appendix C, which can be

found in the IEEE Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2009.188.

3.4 Bayes Error Consistency

In classification, we are ultimately interested in minimizing

the probability of error. The consistency with respect to the

probability of error could be easily shown if we set � to

�� ¼ 1�p
p and apply Theorem 3 in [14], where 0 < p < 1 is the

prior probability of the positive class. However, since p is

unknown, we must estimate ��. Let us now assume fXigni¼1

is an i.i.d. sample from fðxÞ ¼ pfþðxÞ þ ð1� pÞf�ðxÞ. Then,

Nþ and N� are binomial random variables, and we may

estimate �� as � ¼ N�
Nþ

. The next theorem says the L2 kernel

classifier is consistent with respect to the probability of error.

Theorem 3. Suppose that the assumptions in Theorem 2 are

satisfied. In addition, suppose that f� 2 L2ðIRÞ, i.e.,

kf�k2 <1. Let � ¼ N�=Nþ be an estimate of �� ¼ 1�p
p . If �

evolves as a function of n such that �! 0 and n�2d= lnn!1
as n!1, then the L2 kernel classifier is consistent. In other

words, given training data Dn ¼ ððX1; Y1Þ; . . . ; ðXn; YnÞÞ, the

classification error

Ln ¼ P



sign

bd�ðX; b��Þ� 6¼ Y j Dn

�
converges to the Bayes error L� in probability as n!1.

The proof is given in Appendix D, which can be found in

the IEEE Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2009.188.

3.5 Application to Density Estimation

By setting � ¼ 0, our goal becomes estimating fþ and we

recover the L2 kernel density estimate of [3], [4] using leave-

one-out cross validation. Given an i.i.d. sample X1; . . . ;Xn

from fðxÞ, theL2 kernel density estimate of fðxÞ is defined as

bfðx; b��Þ ¼Xn
i¼1

b�ik�ðx;XiÞ;

with b�is optimized such that

b�� ¼ arg minP
�i¼1

�i�0

1

2

Xn
i¼1

Xn
j¼1

�i�jk ffiffi2p �ðXi;XjÞ

�
Xn
i¼1

�i
1

n� 1

X
j 6¼i

k�ðXi;XjÞ
 !

:

Our concentration inequality, oracle inequality, and
L2 consistency result immediately extend to provide the
same performance guarantees for this method. In particular,
we state the following corollaries:

Corollary 1. Let � > 0 and set � ¼ �ð�Þ ¼ 2ne�cðn�1Þ�2 , where
c ¼ 2ð

ffiffiffiffiffiffi
2�
p

�Þ2d. Then, with probability at least 1� �,Z �bfðx; b��Þ � fðxÞ�2
dx

� infP
�i¼1

�i�0

Z �bfðx;��Þ � fðxÞ
�2
dxþ 4�:

Corollary 2. Suppose that the Hessian HfðxÞ of a density
function fðxÞ exists and each entry of HfðxÞ is piecewise
continuous and square integrable. If �! 0 and n�2d= lnn!
1 as n!1, thenZ �bfðx; b��Þ � fðxÞ�2

dx! 0

in probability.

4 GEOMETRIC INTERPRETATIONS

In this section, we present two geometric interpretations of
the L2QP classifier.

4.1 Separating Hyperplane in Kernel Feature Space

The first interpretation views the QP (7) as the dual of a
primal problem defined in a kernel feature space. The
corresponding primal problem is

min
w;�þ;��

1

2
kwk2 þ �þ þ ��

s:t: Yi � hw;� ffiffi
2
p

�ðXiÞi � ci � �þ; for i 2 Iþ;
Yi � hw;� ffiffi

2
p

�ðXiÞi � ci � ��; for i 2 I�;

ð8Þ

where ��ðxÞ is the implicit kernel mapping into the feature
space associated with the Gaussian kernel Hilbert space [1].

This primal formulation differs from that of the standard
2-norm SVM with hinge loss (and without offset) in the
following aspects: First, in the right-hand sides of the
constraints, cis appear instead of 1. This means if ci is larger
(i.e., Xi is accurately classified by the Parzen window plug-
in formula), this modified SVM places more emphasis on
correctly classifying Xi. Second, there exist only two slack
variables, �þ and ��, one per class, and these are not
required to be nonnegative. Finally, after finding the
optimal solution bw ¼Pn

i¼1 b�iYi� ffiffi
2
p

�ðXiÞ, the final classifier
takes the sign of the inner product between ew ¼Pn

i¼1 b�iYi��ðXiÞ and ��ðxÞ, not between bw and � ffiffi
2
p

�ðxÞ, i.e.,

g xð Þ ¼ sign
�ew;��ðxÞ



 �
¼ sign

Xn
i¼1

b�iYik� x;Xið Þ
( )

:
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The primal offers another explanation of why the points
with nonzero �is are concentrated in regions of space with
greater probability mass. First note that since we are
minimizing �þ and ��, they satisfy

�þ ¼ max
i2Iþ



ci � Yi � hw;� ffiffi

2
p

�ðXiÞi
�
;

�� ¼ max
i2I�



ci � Yi � hw;� ffiffi

2
p

�ðXiÞi
�
:

As �i is the Lagrangian multiplier associated with each
constraint, the optimal �i should satisfy the Karush-
Kuhn-Tucker (KKT) conditions, in particular the compli-
mentary slackness condition. Thus, for nonzero �i > 0,
the associated constraint should be met with equality, i.e.,

ci � Yi � hw;� ffiffi
2
p

�ðXiÞi ¼ �þ
¼ max

j2Iþ



cj � Yj � hw;� ffiffi

2
p

�ðXjÞi
�

for �i > 0; i 2 Iþ;

ci � Yi � hw;� ffiffi
2
p

�ðXiÞi ¼ ��
¼ max

j2I�



cj � Yj � hw;� ffiffi

2
p

�ðXjÞi
�

for �i > 0; i 2 I�:

Therefore, we can see that if ci is larger, ci � Yi � hw;� ffiffi
2
p

�ðXiÞi
is more likely to be a maximum value and thus the
corresponding �i is nonzero. Since ci ¼ Yi bhðXiÞ, where bh is
the Parzen window plug-in estimate of d� , it tends to be
largest in regions of space with high probability mass.

In Section 5, we introduce an extension of the L2 kernel
classification that amounts to augmenting the primal with
an additional parameter multiplying the slack variables.

4.2 Weighted Centroids in Kernel Feature Space

Another interpretation can be obtained by expressing the L2

criterion itself in the kernel feature space, not considering it
as a dual problem. Define

mþ� ¼
1

Nþ

X
i2Iþ

��ðXiÞ; m�� ¼
1

N�

X
i2I�

��ðXiÞ;

mþ� ð��Þ ¼
X
i2Iþ

�i��ðXiÞ; m�� ð��Þ ¼
X
i2I�

�i��ðXiÞ:

With this notation, by adding the constant term

1

Nþ � 1
þ �2

N� � 1

� �
k�ð0;0Þ;

the L2 objective function may be expressed as

1

2

��mþffiffi
2
p

�
ð��Þ � �m�ffiffi

2
p

�
ð��Þ
��2

� mþ� ð��Þ;
Nþ

Nþ � 1
mþ� � �m��

� �
� � m�� ð��Þ;mþ� � �

N�
N� � 1

m��

� �
:

Since Nþ�1
Nþ

and N��1
N�

approach 1 as nþ and n� go to 1, for
large n, (7) is equivalent to

b�� ¼ arg min
��2A

1

2

��mþffiffi
2
p

�
ð��Þ � �m�ffiffi

2
p

�
ð��Þ
��2

� hmþ� ð��Þ � �m�� ð��Þ;mþ� � �m�� i:

This has an appealing geometric interpretation. The first
term, by itself, gives rise to the max-margin hyperplane in

feature space in the case of separable data [20], [21]. In

particular, because of the constraints
P

i2Iþ �i ¼
P

i2I� �i ¼ 1

and �i � 0; 8i, the first term is minimized when mþffiffi
2
p

�
ð��Þ

and m�ffiffi
2
p

�
ð��Þ are on the boundaries of their respective convex

hulls, giving rise to the maximum margin separating hyper-

plane. The second term tries to align mþ� ð��Þ � �m�� ð��Þ with

mþ� � �m�� , which is the normal vector defining the nearest

centroid classifier. Interestingly, with � ¼ 1, the nearest

centroid classifier in feature space is identical to the Parzen

window plug-in classifier [1] up to an offset term. Thus, we

may say that the second term regularizes the SVM (an

alternative to the SVM’s soft-margin-based regularization),

or the first term sparsifies the Parzen window. Note,

however, that the first and second terms involve different

kernel bandwidths so that the two terms correspond to

different Hilbert spaces.

5 VARIATIONS AND EXTENSIONS

5.1 Weighted L2 Distance in Fourier Domain

One variation of the L2QP classifier is obtained by

minimizing the weighted L2 distance in the Fourier domain.

For density estimation, weighted ISE applied to character-

istic functions was previously considered in a parametric

setting in [22], [23]. We denote the Fourier transforms ofbd�ðx;��Þ and d�ðxÞ by bD�ð!!;��Þ and D��ð!!Þ, respectively, each

of which is a difference of characteristic functions. Define

the weighted L2 distance associated with ��

ISE	 ��ð Þ :¼
Z bD� !!;��ð Þ �D� !!ð Þ
��� ���2e�	2!!2

d!!;

where 	 � 0 is a fixed parameter. The effect of the

weighting term e�	
2!!2

and the choice of 	 will be discussed

below. We may write

ISE	 ��ð Þ

¼
Z bD� !!;��ð Þe�	2!!2=2 �D� !!ð Þe�	

2!!2=2
��� ���2d!!

¼ 2�

Z bd� x;��ð Þ � k	 x; 0ð Þ � d� xð Þ � k	 x; 0ð Þ
� �2

dx

¼ 2�

Z �Xn
i¼1

�iYik ffiffiffiffiffiffiffiffiffiffi�2þ	2
p x;Xið Þ

�
Z
d�ðx0Þk	ðx;x0Þdx0

�2

dx;

ð9Þ

where the second equality holds by Parseval’s theorem and

� denotes convolution.
After expanding the square in (9), the first term becomesZ �Xn

i¼1

�iYik ffiffiffiffiffiffiffiffiffiffi�2þ	2
p x;Xið Þ

�2

dx

¼
Xn
i¼1

Xn
j¼1

�i�jYiYjk
 Xi;Xj

� �
;

where 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 þ 2	2
p

by the convolution theorem for

Gaussian kernels [18]. The second term can be written
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Z Xn
i¼1

�iYik ffiffiffiffiffiffiffiffiffiffi�2þ	2
p ðx;XiÞ

 !

�
Z
d�ðx0Þk	ðx;x0Þ dx0

� �
dx

¼
Xn
i¼1

�iYi

�
Z
d�ðx0Þ

Z
k ffiffiffiffiffiffiffiffiffiffi�2þ	2
p ðx;XiÞ k	 ðx;x0Þ dx

� �
dx0

¼
Xn
i¼1

�iYi

Z
d�ðx0Þ k ffiffiffiffiffiffiffiffiffiffiffi�2þ2	2

p ðx0;XiÞ dx0 �
Xn
i¼1

�i~ci;

where we used leave-one-out cross-validation estimate in

the last step and

~ci ¼
4

Yi

 
1

Nþ � 1

X
j2Iþ;j6¼i

k ffiffiffiffiffiffiffiffiffiffiffi�2þ2	2
p Xj;Xi

� �
� �

N�

X
j2I�

k ffiffiffiffiffiffiffiffiffiffiffi�2þ2	2
p Xj;Xi

� �!
; i 2 Iþ;

Yi

 
1

Nþ

X
j2Iþ

k ffiffiffiffiffiffiffiffiffiffiffi�2þ2	2
p Xj;Xi

� �
� �

N� � 1

X
j2I� ;j6¼i

k ffiffiffiffiffiffiffiffiffiffiffi�2þ2	2
p Xj;Xi

� �!
; i 2 I�:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Therefore, an empirical minimizer of the weighted

L2 distance ISE	ð��Þ is obtained by solving

b�� ¼ arg min
��2A

1

2

Xn
i¼1

Xn
j¼1

�i�jYiYjk
 Xi;Xj

� �
�
Xn
i¼1

~ci�i:

From the Fourier domain definition of ISE	ð��Þ, we may

interpret the Gaussian weight function e�	
2!2

as a low-pass

filter that deemphasizes high-frequency content in the

unknown densities. Thus, larger values of 	 place more

emphasis on the slowly varying features of d�ðxÞ. A similar

interpretation results if we consider the effect of 	 in the x

domain. In (9), we see that �� is chosen to optimize the

L2 distance between an ��-weighted DOD with kernel

bandwidth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2
p

and a uniformly weighted DOD with

kernel bandwidth 	. That is, the “target” DOD is increas-

ingly smooth as 	 increases.
We refer to this method as L2QP-k, where k determines 	

through 	 ¼ k � �. Since L2QP-0 corresponds to the previous

L2QP, L2QP-k is a generalization of L2QP method. Our

experiments have primarily focused on 	 ¼ 0 and 	 ¼ �, the

latter being motivated by the belief that the “target” DOD

and final classifier should be accurately represented by the

same kernel bandwidth. Our evidence thus far suggests that

both of these choices of 	, as well as others much larger,

lead to comparable classifiers. We have observed, however,

that smaller values of 	 tend to yield sparser classifiers.

5.2 L2 Criterion with Inequality Constraints

Our theoretical analysis carries through if we replace the

constraint set A ¼ f�� : �i � 0;
P

i2Iþ �i ¼
P

i2I� �i ¼ 1g
with the set

A0 ¼ �� : �i � 0; 1�
X
i2Iþ

�i

 !
¼ � 1�

X
i2I�

�i

 !
� 0

( )
:

By requiring
�
1�

P
i2Iþ �i

�
¼ �

�
1�

P
i2I� �i

�
, we still en-

force that d� integrate to the true value of 1� �. However,
by allowing the coefficients in each class to sum to less than
one, we allow for the possibility that some positive and
negative coefficients might “cancel out” in regions of space
where fþ and f� overlap. This could potentially lead to
even sparser solutions.

5.3 L2 Criterion without Constraints

Since our goal is classification and not density estimation, it
is not necessary that bfþðx;��Þ and bf�ðx;��Þ be proper density
estimates, and hence the constraints �� 2 A may be dropped.
In this case, the unconstrained quadratic objective function,
in the matrix/vector form,

1

2
��TQ��� ecT��;

is minimized by the solution of

Q�� ¼ ec; ð10Þ

where ec ¼ ½~c1; ~c2; . . . ; ~cn�T , Q :¼ ðYiYjKijÞni;j¼1, and K :¼
ðk
ðXi;XjÞÞni;j¼1. If K is positive definite and � 6¼ 0, then Q

is also positive definite, and thus the objective is strictly
convex.

The optimization problem now becomes the problem of
solving a linear system of (10). It is similar in that respect to
the 2-norm SVM with squared error loss, or least-squares
SVM (LS-SVM) [24], but again does not include a regular-
ization parameter. The resulting L2LE-k (L2 classification
via Linear system of Equations) classifier is not sparse,
again like the LS-SVM. Since Q is positive definite, (10) can
be solved efficiently by the conjugate gradient descent
(CGD) algorithm [25].

5.4 Other Kernels

Our methodology allows for any kernel kðx;x0Þ such that
kðx;x0Þ � 0 and, for any fixed x0,

R
kðx;x0Þdx ¼ 1, e.g., the

multivariate Cauchy kernel,

k�ðx;XiÞ ¼
�ð1þd2 Þ

�ðdþ1Þ=2 � �d 1þ kx�Xik2

�2

 !�1þd
2

;

or the multivariate Laplacian kernel,

k�ðx;XiÞ ¼
1

ð2�Þd
exp �kx�Xik1

�

� 	
:

The L2 kernel classifier is still the solution of

b�� ¼ arg min
��2A

1

2

Xn
i¼1

Xn
j¼1

�i�jYiYjKij �
Xn
i¼1

ci�i;

where

Kij ¼
Z
kðx;XiÞkðx;XjÞdx;

and ci is as before.
We make two important observations regarding this QP.

First, from the identity
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Xn
i¼1

Xn
j¼1

�i�jYiYjKij ¼
Z Xn

i¼1

�iYikðx;XiÞ
 !2

dx;

we see that the matrix ðYiYjKijÞni;j¼1 is always positive
definite, and therefore the QP is strictly convex, provided
the Xi are distinct. Second, it is desirable that Kij be easily
computable. For some kernels, like the Gaussian, the
integral has a closed form expression. For example, the
multivariate Cauchy kernel satisfies [26]

k2�ðXi;XjÞ ¼
Z
k�ðx;XiÞ � k�ðx;XjÞ dx;

and the multivariate Laplacian (product) kernel satisfies

Z
k�ðx;XiÞ � k�ðx;XjÞdx

¼ 1

ð4�Þd
Yd
l¼1

1þ jXi;l �Xj;lj
�

� �
exp �kXi �Xjk1

�

� 	
:

For kernels without such a formula, values of the integral
may still be precomputed and stored. For radially sym-
metric kernels, such as an alternative multivariate Laplacian
kernel [27], k�ðx;XiÞ ¼ C � exp

�
�kx�Xik=�

�
, where C is a

normalizing constant, this entails a simple one-dimensional
table, as Kij will depend only on kXi �Xjk. We experi-
mented briefly with multivariate Cauchy kernels, but did
not see significant differences compared to the Gaussian.

5.5 Regularization for High-Dimensional Data

Our experimental results show that our L2QP thus far
discussed perform poorly on most high-dimensional data.
Similarly, in [10], where the class-conditional densities are
estimated separately based on the L2 criterion, the authors
only consider low-dimensional data (the 20-dimensional
German data set was reduced to 7-dimensional). In this
section, we offer an explanation for this phenomenon. We
also present a variation that significantly improves the
performance in high dimensions at the expense of introdu-
cing a new regularization parameter that must be tuned.

To understand the impact of dimension on L2QP, it is

important to realize that the method involves Gaussian

kernels of bandwidth
ffiffiffi
2
p

� (quadratic term) and � (linear

term). The normalizing constants for these kernels are

ð4��2Þ�d=2 and ð2��2Þ�d=2, respectively. The ratio of the

second normalizing constant to the first one is
ffiffiffi
2
p d

. In

other words, the ratio exponentially increases as a function

of dimension and thus in high-dimensional data the linear

term in (7) dominates the quadratic term. In this case,

minimizing (7) causes a few data points associated with

larger cis to monopolize the weights and yields a too

sparse solution.
To address this problem, we introduce a new parameter

� > 0 that balances the linear term and the quadratic term

min
��2A

1

2

Xn
i¼1

Xn
j¼1

�i�jYiYjk ffiffi2p � Xi;Xj

� �
� 1

�

Xn
i¼1

ci�i:

The corresponding primal is

min
w;�þ;��

1

2
kwk2 þ �ð�þ þ ��Þ

s:t: Yi � hw;� ffiffi
2
p

�ðXiÞi � ci � �þ; for i 2 Iþ
Yi � hw;� ffiffi

2
p

�ðXiÞi � ci � ��; for i 2 I�:

ð11Þ

Therefore, (8) can be thought as a special case of (11) where

the regularization parameter � is set to 1. In the primal point

of view, � controls the trade-off between the complexity of

the classifier, kwk2 and how much the classifier fits to

Parzen window plug-in classifier ci � Yi � hw;� ffiffi
2
p

�ðXiÞi.
This new algorithm may also be viewed as minimizing an

estimated of a modified ISE, given by

ISE� ð��Þ ¼ bd� x;��ð Þ � 1

�
d� xð Þ

���� ����2

L2

¼
Z bd� x;��ð Þ � 1

�
d� xð Þ

� �2

dx:

This new method may also be combined with the Fourier
domain extension discussed previously, and we refer to
resulting classifier as L2QP�-k.

6 EXPERIMENTS

We implement our methods1 (L2QP-0, L2QP-1,

L2QP� � 0, L2QP� � 1) based on LIBSVM [28] by modify-

ing an SMO subroutine (see Appendix A, which can be

found in the IEEE Computer Society Digital Library at

http://doi.ieeecom-putersociety.org/10.1109/TPAMI.2009.

188). For comparison, we also experiment with the 2-norm

SVM with hinge loss (S-SVM, S for “soft margin”), the 2-

norm SVM with hinge loss and C !1 (H-SVM, H for

“hard margin”), and a plug-in classifier based on Parzen

window density estimates (Parzen).
To illustrate some of the basic properties of L2 kernel

classifiers, we first experiment with one-dimensional data.
Both classes are equally likely and

fþ xð Þ ¼ 0:2�ðx; 4;
ffiffiffi
2
p
Þ þ 0:8� x; 8; 1ð Þ;

f� xð Þ ¼ 0:7� x; 0; 1ð Þ þ 0:3�ðx; 10;
ffiffiffi
2
p
Þ;

where �ðx;
; �Þ is a univariate Gaussian pdf with mean 


and variance �2. We build a L2QP-0 classifier from
200 training samples. To find a classifier with the smallest
probability error, we set � ¼ N�=Nþ and use fivefold cross
validation to estimate the bandwidth � from a logarith-
mically spaced grid of 50 points from 10�2 to 101.

The results are shown in Fig. 1. The estimate bd�ðx; b��Þ is
fairly close to the true d�ðxÞ. For b�i > 0, b�iYi are shown at
the corresponding Xi in Fig. 1d and the number of nonzero
weights is 9.

Next, we demonstrate our algorithms on 18 artificial and
real-world benchmark data sets, available online2 [28], [29].
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1. The code is available at http://www-personal.umich.edu/~stannum/
l2kernel.zip.

2. http://ida.first.fhg.de/projects/bench/ for the first 13 data sets and
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ for the last five
data sets.



There are 100 randomly permuted partitions of each data set
into training and test sets (20 for Image, Splice, Adult,
Mushrooms, and Web). The dimension and sample sizes3 of
each data set are summarized in Table 1. We set� ¼ N�=Nþ to
minimize the probability of error. The parameters to be tuned
are � (all methods),C (S-SVM), and � (L2QP�-k, k ¼ 0; 1). The
following grids were used: For L2QP-0, L2QP-1, and Parzen,
we search a logarithmically spaced grid of 50 points from
10�2 to 101 for �. For the SVMs, we search the grid
2�2; 2�1; . . . ; 27 for � and for S-SVM we searched
2�5; 2�3; . . . ; 215 for C. For L2QP�-0 and L2QP�-1, we
searched a logarithmically spaced grid of 11 points from
10�2 to 101 for �, and a logarithmically spaced grid of
10 points from 1 to

ffiffiffi
2
p d

for �. The grids were chosen to
ensure that the two-parameter methods searched grids of
the same size. The parameters were taken to be the same for
all partitions. Each parameter was determined by taking the
median estimate based on the first five training sets. On
each of these training sets, we use five-fold cross validation
to determine the best parameters.

For the “banana” data set, we plot the decision boundary
of the L2QP-0, L2QP-1, and S-SVM in Fig. 2 along with
training samples. The number of training samples is 400 and
the first partition of the data set is used. The numbers of
nonzero weights of each method are 77, 66, and 142,
respectively. The decision boundaries of L2QP-0 and
L2QP-1 slightly differ in that L2QP-1 shows smoother
boundary than L2QP-0.

The results for all the data sets are presented in Tables 2, 3,
and 4. They show the average probability of error, the average
percentage of nonzero coefficients (reflecting the sparsity),
and training time over all permutations, respectively. Time
indicates the total time required to build a classifier, including
the cross-validation search for free parameters.

From these results, we can see that the L2QP-0 and L2QP-1
methods show comparable performance to SVMs except on
some high-dimensional data sets, e.g., German, Image,

Splice, Waveform, Adult, and Ionosphere. For low-dimen-
sional data sets, the default value � ¼ 1 works well, but for
dimensionality exceeding 15, this default method tends to be
too sparse, as explained in Section 5.5. Significantly im-
proved performance on high-dimensional data results from
optimizing �. The L2QP�-0 and L2QP�-1 are comparable to
SVMs for almost all data sets; their prediction accuracy is
2-3 percent worse on average. The primary exception is the
Splice data. A likely explanation for this is that the data set
consists of only categorical features, and thus density-based
methods may not be suitable.

Training time shows L2QP-0 and L2QP-1 are signifi-
cantly faster than the SVM, a reflection of not having to
search for an additional regularization parameter. Regard-
ing sparsity, the L2 methods are often much sparser than
the SVMs. One noticeable exception is the Ringnorm data.
We have discovered that allowing the two classes to have
separate bandwidths (which easily fits within our frame-
work) leads to greatly improved performance here, as
well as sparse L2 classifiers. To maintain a uniform
presentation, however, we do not present detailed results
for this extension.

Finally, we remark that the hard margin SVM was
considered as alternative method having only one tuning
parameter, like L2QP-0 and L2QP-1. In reality, however, we
were only able to implement H-SVM by taking C very large
in the S-SVM. Since the problem is not feasible for C too
large, depending on �, it was actually necessary to search
for C after all (not reflected in reported runtimes). In
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Fig. 1. (a) fþðxÞ and histogram of its samples. (b) f�ðxÞ and histogram
of its samples. (c) d�ðxÞ (solid line) and bd�ðx; b��Þ (dashed line).
(d) Sparsity of the proposed method.

3. The Adult and Web data sets were subsampled owing to their large
size.

TABLE 1
General Information About Benchmark Data Sets

Fig. 2. Decision boundary along with positive samples (+) and negative
samples (*) for banana data set. Points whose corresponding �i are
nonzero are enclosed by 	. (a) L2QP-0, (b) L2QP-1, (c) S-SVM.
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TABLE 4
Time (s): Runtime, Including Cross-Validation Search for a Regularization Parameter Where Appropriate

and Training Time for All Permutations

TABLE 3
Percentage of Nonzero Weights

TABLE 2
Probability of Error

Best method in bold face, second best emphasized.



addition, the running time for large C was far greater than
that of any other approach.

7 CONCLUSION

In this paper, the L2 kernel classification method is
proposed which minimizes the L2 distance between the
true unknown difference of densities d�ðxÞ and an estimatorbd�ðx;��Þ. Like the SVM, it is the solution of a convex
quadratic program and has a sparse representation.

Through the development of a novel concentration
inequality, we have established statistical performance
guarantees on the L2 kernel classifier. The results also
specialize to give performance guarantees for an existing
method of L2 kernel density estimation. The oracle inequal-
ity here has been applied to deduce consistency of the
procedure (in both ISE and probability of error), but we
suspect it may also yield adaptive rates of convergence.

Although formulated in terms of the L2 distance on the
difference of densities, the L2 kernel classifier has geometric
interpretations that more clearly reveal similarities and
differences to the SVM. One of these interpretations
motivates the incorporation of a regularization parameter
into the approach, which allows the method to remain
competitive with the SVM for dimensionality d > 15.
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