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ABSTRACT
This paper investigates a class of learning problems called
learning satisfiability (LSAT) problems, where the goal is to
learn a set in the input (feature) space that satisfies a number
of desired output (label/response) constraints. LSAT prob-
lems naturally arise in many applications in which one is in-
terested in the class of inputs that produce desirable outputs,
rather than simply a single optimum. A distinctive aspect of
LSAT problems is that the output behavior is assessed only on
the solution set, whereas in most statistical learning problems
output behavior is evaluated over the entire input space. We
present a novel support vector machine (SVM) algorithm for
solving LSAT problems and apply it to a synthetic data set to
illustrate the impact of the LSAT formulation.

Index Terms— Machine Learning, Satisfiability, SVM,
Minimum Volume Sets, One-class Neighbor Machines.

1. INTRODUCTION

In most statistical learning problems, one is interested in
minimizing a risk function such as expected squared error or
probability of error. However, in many applications, one is
interested in a solution to the learning problem that satisfies
several criteria simultaneously, rather than simply optimizing
one. In this paper, we introduce and study learning satisfia-
bility (LSAT) problems, a class of learning problems where
the goal is to learn a set in the input (feature) space that sat-
isfies a number of desired properties expressed in terms of
expectations and/or event probabilities.

LSAT problems arise in a number of important applica-
tions in classification and statistics. An example is an ex-
tension of the false discovery rate approach for controlling
the number of false positives in multiple hypothesis tests [1].
Another example is the portfolio selection problem where one
is interested in identifying a set of stocks based on historical
data such that not only is the expected return positive but large
losses are rare. In this latter problem, we seek the largest set
in the input space such that: (i) the expected output value at
every point in the set is non-negative; and (ii) the probability
that the output stays above a lower limit is guaranteed to be
large. Both criteria are in the form of constraints and express
different measures of confidence in a favorable output.

The rest of the paper is organized as follows. In Sect. 2,
we mathematically define LSAT problems, and we then
present a methodology and algorithm to solve them in Sect. 3.
In Sect. 4, we compare our algorithm to standard weighted
support vector machine (SVM) techniques on a synthetic data
set. We conclude and propose future research avenues in
Sect. 5.

1.1. Related Work

One example of learning with multiple criteria is the Neyman-
Pearson (NP) learning problem, in which one seeks a clas-
sifier that minimizes the false negative rate subject to a con-
straint on the false positive rate [2, 3]. An important dis-
tinction between NP learning and LSAT problems is that in
LSAT problems output behavior is assessed on the solution
set, whereas in NP learning (as well as most other standard
learning problems) one is concerned with output behavior
over the entire input space. Thus, LSAT criteria generally
involve conditional probabilities/expectations that are func-
tions of the target set, i.e. conditioning is on membership in
the output set. In contrast, the conditioning in the constraints
used in Neyman-Pearson learning (and in the performance
metrics used in many standard classification approaches) is
on the input class label. This difference leads to requirements
for new theory and learning methods.

LSAT problems are also related to classical satisfiabil-
ity (SAT) problems, most closely perhaps to stochastic SAT
(SSAT) problems [4, 5]. SSAT problems involve criteria that
depend on a mixture of controllable decision variables and
stochastic variables, and the main objective is to determine
whether there exist values for the decision variables such that
the probability that the criteria are satisfied exceeds a cer-
tain threshold. A major difference between SSAT and LSAT
problems is that the randomness in SSAT problems is typi-
cally known and therefore learning from data is not involved.
Also, LSAT does not involve decision variables, but focuses
on identification of the (possibly empty) set of inputs that
satisfy stochastic criteria. Finally, since LSAT involves the
maximization of set size, there are relationships with one-
class neighbor (and support vector) machines and methods
for learning minimum volume sets [6, 7, 8].



2. LSAT PROBLEM FORMULATION

To formally define our problem, let us first introduce the fol-
lowing notation. Features X are elements in the input space
X . An output Y ∈ Y is associated with each input. Let P de-
note a collection of probability measures on X ×Y . Each pair
(X, Y ) is distributed independently and identically according
to an unknown probability measure P ∈ P on X × Y . We
are interested in identifying the largest set in the input space
where certain output constraints are met. Let G denote a col-
lection of candidate sets and let C : G × P → Rk+1 be
a constraint function mapping each set and probability mea-
sure to a (k + 1)-dimensional vector of real numbers. For a
given probability measure P , we are interested in the largest
set G ∈ G that satisfies the constraint C(G, P ) ≥ 0, where
the inequality is applied element-by-element. Let µ(G) de-
note a positive measure of choice, then

max
G∈G

µ(G) subject to C(G, P ) ≥ 0

A solution may not exist, depending on the nature of the
constraints and P (in such cases, we consider the empty set
to be a default solution). An alternate expression of the LSAT
problem, which also lends itself naturally to the identification
of the µ-largest feasible set, is to express one of the constraint
criteria as a risk function to be minimized subject to the other
constraints. Let R(G, P ) be a risk function chosen such that
it is minimized by the largest set satisfying C0(G, P ) ≥ 0.

min
G∈G

R(G, P ) subject to Cj(G, P ) ≥ 0, j = 1, . . . , k

We wish to stress that any such risk function must satisfy
two important properties with respect to the other constraints:
(i) if there exists a non-empty solution to the standard LSAT
formulation, the (constrained) risk minimizer must coincide
with this solution, and (ii) if there is no solution, the empty
set must have smaller risk than any set failing to satisfy C0.

2.1. Two Types of Constraints

One of the distinctive features of LSAT problems is that the
output behavior is assessed only on the solution set, whereas
in most statistical learning problems output behavior is eval-
uated over the entire input space. We consider two types of
set-based output constraints.

1. Point-wise Constraint: C(G, P ) = C(x, G, P ) is a
function of the input variable x, and the constraint
takes the form C(x, G, P ) ≥ 0, ∀ x ∈ G.

2. Set-average Constraint: C(G, P ) is only a function of
the set G, and the constraint C(G, P ) ≥ 0 is only sat-
isfied “on-average” over the set G.

Examples of the point-wise type of constraint include E[Y |X =
x] ≥ 0 and P (Y ≥ L|X = x) − p ≥ 0, ∀x ∈ G. Corre-
sponding examples for the set-average constraint type are
E[Y |X ∈ G] ≥ 0 and P (Y ≥ L|X ∈ G)− p ≥ 0.

3. SOLUTIONS TO LSAT PROBLEMS

3.1. Methodology

We are interested in identifying the set G ∈ G that satisfies the
constraints C(G, P ) ≥ 0 and has minimum risk R(G, P ).
However, since the probability measure P is unknown, we
aim to learn this set from a training sample {Xi, Yi}n

i=1. Sup-
pose that we form empirical versions of the constraint func-
tions Ci(G, P̂ ) and risk R(G, P̂ ), based on the empirical dis-
tribution P̂ of the training sample. For the remainder of the
paper we will no longer explicitly indicate the dependence of
the constraints on the underlying probability measure P , sim-
ply writing C(G) = C(G, P ), Ĉ(G) = C(G, P̂ ), R(G) =
R(G, P ), and R̂(G) = R(G, P̂ ). Define the optimal set

G∗ = arg min
G∈G

R(G) subject to Cj(G) ≥ 0, j = 1, . . . , k.

Let ε0, . . . , εk > 0 be fixed and define

Ĝ = arg min
G∈G

R̂(G) subject to Ĉj(G) ≥ −ε1, j = 1, . . . , k.

By allowing constraints to be violated by the small tolerances
εi, we are can relate the performance of Ĝ to that of G∗.

Lemma 1. If supG∈G |R(G)−R̂(G)| ≤ ε0 and supG∈G |Cj(G)−
Ĉj(G)| ≤ εj for j = 1, . . . , k then

R(Ĝ) ≤ R(G∗) + 2ε0 and Cj(Ĝ) ≥ −2εj , j = 1, . . . , k

Proof. Under the assumed deviation bounds Ĉj(G∗) ≥
Cj(G∗)−εj ≥ −εj , which implies that G∗ is in the empirical
constraint set. Thus Ĝ minimizes R̂ subject to the empirical
constraints: R(Ĝ) ≤ R̂(Ĝ) + ε0 ≤ R̂(G∗) + ε0. Applying
the deviation bound to R̂(G∗) produces the result.

3.2. Support Vector Machine (SVM) algorithm

We describe an SVM algorithm for solving the empirical con-
strained optimization problem in some common LSAT sce-
narios. We focus on the case where there is one pointwise
constraint C0, and we assume that it is possible to identify
an associated risk R0 (and empirical version R̂0) that satisfies
the properties identified in Sect. 2.

Our algorithmic approach is to map the constrained opti-
mization into a cost-sensitive classification problem. We as-
sociate with each data point a cost of inclusion and of exclu-
sion. This cost is a Lagrangian sum of the risk R̂0 and indi-
vidual cost terms for each setwise constraint. We thus map
each data point (Xi, Yi) to a triple (Xi, Zi, γi), where Zi is
a class label and γi is the penalty incurred through misclassi-
fication of this point. In the LSAT setting, we have multiple
constraints, so we generate a label Zi,j and a cost γi,j for
each data point i and constraint j. In order to apply cost-
sensitive classification, we must collapse the Zi,j to a single



label Zi. For each constraint, we assign a weight λj that pro-
vides a mechanism for adjusting the relative importance of
each of them. Note that γi,0 is determined by the contribu-
tion of point i to R̂0 and λ0 = 1. If Zi,j = 1 for all j, then
we set Zi = 1 and γi =

∑k
j=0 λjγi,j . A similar procedure

applies if Zi,j = 0 for all j. The situation is more compli-
cated if Zi,j differs for various constraints. In this case, we
set Zi = 1 and γi =

∑
Zi,j=1 λjγi,j . However, we also con-

struct an auxiliary data point (Xĩ, Zĩ, γĩ), with Zĩ = 0 and
γĩ =

∑
Zi,j=0 λjγi,j .

To solve the cost-sensitive classification, we iteratively
apply a modified version of the cost-sensitive 2ν-SVM [9,
10]. Performance is dependent on the choice of kernel, as
with any SVM, but we do address that issue here; the results
we present are derived using a Gaussian kernel, and explor-
ing a set of logarithmically-spaced variances. The 2ν-SVM
solves the optimization problem in (1), where w and b deter-
mine the separating hyperplane in the kernel-space, ε and ρ
are slack variables, ν+ and ν− provide a method for globally
adjusting the weight associated with exclusion and inclusion
(to encourage large sets), and n+ and n− are the number of
points included in, and excluded from, the identified set.

min
w,b,ε,ρ

||w||2

2
−2ν+ν−ρ+

ν−
n+

∑
i∈I+

εiγi +
ν+

n−

∑
i∈I−

εiγi (1)

s.t. Zi(k(w, xi) + b) ≥ ρ− εi for i = 1, . . . , n
εi ≥ 0 for i = 1, . . . , n
ρ ≥ 0.

We conduct this optimization for a range of λj , ν+ and
ν−, effectively conducting a grid search over these parameters
to find the largest set. In each case, we test whether the set
satisfies constraints by performing k-fold cross-validation on
the input data. This algorithm is limited to constraints where
one can identify an appropriate mapping to labels and costs.
This can, however, be achieved for a wide range of important
constraints, including those involving bounds on pointwise or
set-average expectation or tail probabilities.

3.3. Example

Consider the portfolio selection problem outlined in the in-
troduction. We are interested in the set G ∈ X of largest
P -measure that satisfies E[Y |X = x] ≥ U , for all x ∈ G,
and P (Y > L|X ∈ G) ≥ p. The parameters U , L < U , and
p > 0 are specified by the user.

C(G, P ) =
[

minx∈G E[Y |X = x]− U
P (Y > L|X ∈ G)− p

]
As discussed in [10], minimizing the risk R̂0(G) =∑n

i=1(U − yi)(1xi∈G− 1xi∈G) can be achieved by assigning
to each training point a class-label Zi,0 = 1Yi>U and a cost

γi,0 = |Yi − U | and then applying a cost-sensitive classifica-
tion algorithm. We now consider the case of the empirical set-
average constraint Ĉ1 :

∑n
i=1 1Y <L,X∈G/

∑n
i=1 1X∈G <

1 − p. This poses a greater challenge due to the inher-
ent self-normalization in the constraint. Developing a cor-
rect mapping to labels and costs for this constraint is dif-
ficult, so we first consider an alternative constraint Ĉ

′

1 :∑n
i=1 1Y <L,X∈G < P ∗(1 − p) for a selected constant P ∗.

This constraint is now a bound on the joint probability of
membership in G and Y < L, rather than on the conditional
probability as in the original constraint. It is easier to identify
a suitable mapping for this constraint. This can be achieved
by assigning a label Zi,1 = 1Yi>L and a cost γi,1 = 1. The
important observation is that constraints Ĉ1 and Ĉ

′

1 coincide
when P ∗ = 1X∈G∗

1
, where we denote by G∗

1 the maximum
probability set that satisfies constraint C1.

The second step involves the combination of the labels
and costs associated with C0 and C1. Using the procedure
outlined above, this leads to the following set of costs. If
Yi ≥ U , then Zi = 1 and γi = r+

i , whereas if Yi ≤ L, then
Zi = 0 and γi = r−i . If L < Yi < U , then Zi = 1, but we
also construct a point (Xĩ, Zĩ, γĩ) with Xĩ = Xi and Zĩ = 0.

r+
i = |yi − U |1yi>U + λ1 (2)

r−i = |yi − U |+ λ11yi<L (3)

With this set of points, class labels and costs, we itera-
tively apply 2ν-SVM, jointly maximizing over P ∗, ν+, ν−

and λ1 to identify the largest probability set that minimizes
the empirical risk R̂0(G) subject to satisfying the empiri-
cal constraints

∑n
i=1 1X∈G ≥ P ∗ and

∑n
i=1 1Y <L,X∈G <

P ∗(1−p). Note that it is not necessary to explicitly maximize
over P ∗ in (1), because maximizing over ν+ and ν− achieves
this maximization implicitly.

Table 1. Values for λ1, ν+, ν−, σ (kernel parameter)
Variable name Values

λ1 [0.01, 0.1, 1, 10]
ν+, ν− [0.1, 0.28, 0.46, 0.64, 0.82, 1.00]

σ [10−4, 10−2.4, 10−0.8, 100.8, 102.4, 104]

4. EXPERIMENTS
To test our approach and illustrate the impact of the LSAT
formulation, we attempt to solve the problem introduced in
Sect. 3.3 for a synthetically generated data set. The data set is
composed of three easily identifiable clouds of points. All the
points in the top-right cloud (Fig. 2) have y > U , all points
in the bottom-left cloud have y < L and the top-left cloud
mainly includes point with y > U , but also enough points
with y < L such that C1 is violated for this cluster of points.
We compare our approach (LSAT) to a regular weighted SVM
(WSVM) approach that only tries to identify the largest U-
level set. Note that this WSVM solves the same optimization
problem as (1), but the risk terms in (2) and (3) do not include
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Fig. 1. Synthetic data set. Fraction of included points violating
C0 (TOP), mass (MIDDLE) and probability of avoiding small return
(BOTTOM) of G as a function of number of points used for training.
Testing was performed using 2000 data points.

the λ1 terms, and there is no cross-validation to check that the
empirical constraint Ĉ1 is satisfied. In both cases, we perform
a grid search on the parameters shown in Tab. 1 to obtain the
best solution (λ1 only applies to LSAT).

We compare the performance of the algorithm for differ-
ent training set sizes Ntrain ([100, 200, 300, 400, 500, 1000]).
For each value of Ntrain, we average results over five training
sets generated by randomly selecting points out of the train-
ing data set of size 1500 and reserve 2000 points for testing.
We plot the fraction of points violating C0, the mass of the
selected sets as a fraction of the entire set and an estimate
p̂. From Fig. 1, we can see that the LSAT approach is suc-
cessful in satisfying the set-average constraint C1 at the ex-
pense of generating a level-set with smaller mass. On the
other hand, the standard WSVM includes more points in sets,
hence the higher mass, but fails to satisfy C1 and also has a
higher fraction of points violating the point-wise constraint
C0. The trade-off is shown explicitly in Fig. 2, WSVM in-
cludes points from the top-left cloud whereas LSAT excludes
them in order to satisfy C1.

5. CONCLUSIONS

This paper introduced a new learning framework for handling
LSAT problems and an algorithm based on weighted SVM
to solve them. Using a simple synthetic data set, we showed
the trade-off between the competing constraints of risk and
return; by reducing risk, the LSAT approach selected a set
G with smaller mass than the weighted SVM approach. The
future work will be directed at testing our approach and al-
gorithm on real-life data as well as developing a bilevel opti-

LSAT
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Fig. 2. Points included by LSAT and WSVM (synthetic data set).

mization framework to replace the current grid search on the
various optimization parameters.
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