MINIMAX SUPPORT VECTOR MACHINES

Mark A. Davenport, Richard G. Baraniuk *

Rice University

Department of Electrical and Computer Engineering

ABSTRACT

We study the problem of designing support vector machine (SVM)
classifiers that minimize the maximum of the false alarm and miss
rates. This is a natural classification setting in the absence of prior
information regarding the relative costs of the two types of errors
or true frequency of the two classes in nature. Examining two ap-
proaches — one based on shifting the offset of a conventionally trained
SVM, the other based on the introduction of class-specific weights —
we find that when proper care is taken in selecting the weights, the
latter approach significantly outperforms the strategy of shifting the
offset. We also find that the magnitude of this improvement depends
chiefly on the accuracy of the error estimation step of the training
procedure. Furthermore, comparison with the minimax probability
machine (MPM) illustrates that our SVM approach can outperform
the MPM even when the MPM parameters are set by an oracle.

1. INTRODUCTION

In a typical classification setting we are given a sample of train-
ing vectors X1, . .., %X, € R? each belonging to one of two classes,
along with corresponding labels y1, . .., yn € {—1,+1} indicating
the class for each training vector. Our task is then to find a function
f:RY — {41, -1} that “accurately” predicts the label when pre-
sented with a new sample, where accuracy is usually equated with
having a small probability of error. However, there is a significant
problem with this approach: in assuming that a classifier which has
a small error rate on the training data will have a small probability of
error when applied to the larger population we are implicitly assum-
ing that the class frequencies in the training data accurately reflect
the true prior probabilities in nature, which is frequently not the case.
Moreover, in many cases the training data is unbalanced — meaning
that we have many more samples from one class than from the other.
Without knowledge of the true prior probabilities and the relative
costs of the two types of errors, we have no reason to favor one class
over the other. However, an algorithm that attempts to minimize the
probability of error will tend to emphasize a class in proportion to its
representation is the training set, which may reflect neither the true
prior probability of the class nor the actual cost of the errors from
that class.

For these reasons, many researchers prefer to use classifiers op-
erating at the the break even point (BEP) or equal error rate (EER),
meaning that Pr(f) = Pu(f), where

Pr(f) =Pr(f(x) =+1ly=-1) and (1)
Pu(f) =Pr(f(x) = —1ly = +1) 2

*Supported by NSF, DARPA, AFOSR, ONR, and the Texas Instruments
Leadership University Program.
Email: {md.richb} @rice.edu, Web: dsp.rice.edu

Clayton D. Scott

University of Michigan

Department of Electrical Engineering and Computer Science

denote the false alarm and miss rates of f, respectively. See, for
example, [1, 2]. Of course, if an algorithm is sufficiently flexible,
it is possible that many classifiers will satisfy Pr(f) = Pum(f).
We seek the best one possible, which we shall denote the minimax
classifier." Specifically, the minimax classifier is defined as

f;:rm :argmifnmax (PF(f)aPIW(f)) 3)

Traditional wisdom holds that we should be able to estimate the
minimax classifier by simply applying the “cost-sensitive” exten-
sions that exist for many common classification algorithms. These
algorithms seek to minimize a more general “misclassification cost”
rather than the probability of error. However, assigning the costs ap-
propriately in practical settings is often difficult (see [5, 6]). In this
work we emphasize the importance of accurate error estimation in
solving these problems — it is precisely the ability of an algorithm to
leverage accurate error estimation techniques to tune the free param-
eters appropriately that will determine whether an algorithm will be
able to give us the desired performance.

This paper studies support vector machines (SVMs) for mini-
max classification. We evaluate two approaches for adjusting the
false alarm and miss rates. One involves shifting an offset param-
eter, resulting in an affine shift of the decision boundary, and the
other entails introducing an additional parameter to control the rela-
tive weight given to each class. It is clear that both approaches affect
the desired tradeoff between false alarms and misses. As might be
expected, we find that shifting the offset does not perform as well as
introducing an additional parameter to control the relative weights.
However, optimizing over this additional parameter significantly in-
creases the training time, and thus we also evaluate a method for
greatly reducing the complexity of the expanded search with no sig-
nificant loss in performance. We also suggest a method for decreas-
ing the variance of the error estimates — which significantly affects
the performance of our algorithms — highlighting the importance of
accurate error estimation in minimax classification. We then com-
pare the proposed algorithms to the minimax probability machine,
showing that the 2v-SVM can outperform the MPM even when the
MPM parameters are set by an oracle. Our code (based on the LIB-
SVM packaged [7]) is available at www.dsp.rice.edu/software.

ISomewhat related to minimax classification is the Neyman-Pearson (NP)
framework, in which the user sets a target false alarm rate «, and the goal of
the algorithm is to minimize the miss rate subject to the condition that the
false alarm rate is no greater than «. This is quite natural in many settings,
especially when one class is more or less important than the other. In a sense,
we can view minimax classification as NP classification where « is automati-
cally chosen to obtain equal false alarm and miss rates. For more information
on NP classification see [3, 4].

2. SUPPORT VECTOR MACHINES

SVMs are among the most effective methods for classification [8].
Conceptually, we construct a support vector classifier in a two step
process. In the first step, we transform the training vectors x; via
a mapping & : RY — H where M is a high (possibly infinite) di-
mensional Hilbert space. Our intuition is that we should be able to
more easily separate the two classes in H than in R?. For algorith-
mic reasons, ¢ is chosen so that we can compute inner products in H
without explicitly evaluating & through the use of a kernel operator
k(x,x") = (2(x), ©(x'))2.

In the second step, we determine a hyperplane in the induced
feature space according to the max-margin principle. In the case
where we can separate the two classes by a hyperplane, the SVM
chooses the hyperplane that maximizes the margin — the distance
between the decision boundary and the closest point to the boundary.
When we cannot separate the classes by a hyperplane, we relax the
constraints through the introduction of slack variables &;. If £&; > 0,
this means that the corresponding x; lies inside the margin and is
called a margin error. If w € H and b € R are the normal vector and
affine shift defining the max-margin hyperplane, then the support
vector classifier is given by fw »(x) = sgn(k(w,x)+b). The offset
parameter b is often called the bias.

One possible SVM formulation is the so-called v-SVM [9]:

L 1 X
(P.) min Swl?—vp+ L g
whp 2 LY
st. yi(k(w,x:)+b)>p—¢& fori =1,2,...,n
& >0 fori =1,2,...,n
p=0

where v € [0, 1] is a parameter set by the user. This formulation
implicitly penalizes any error equally regardless of its class. How-
ever, as described in the introduction, this is not desirable in minimax
classification. To address this issue, we consider the cost-sensitive
extension of the v-SVM - the 2v-SVM [10]:

.1 > 1~ X
(Po) min Sfwl®—vp+l ey —T " g
w,b,&,p n . n .
i€l y i€l
st. yi(k(w,x;))+b)>p—¢& fori=1,2,...,n
& >0 fori =1,2,...,n
p=0

where v € [0,1] is a parameter for trading off the two types of
errors. An equivalent parametrization replaces v and v with vy =
vn/(2y|14+]) and v— = vn/(2(1 — 7)|I-|). This parametrization
has the benefit that (P,) is feasible if and only if v < 1 and
v— < 1 (see [11]), and thus we focus on this parametrization.

3. MINIMAX LEARNING

We now return to the problem of minimax classification. We con-
sider two main strategies for controlling false alarms. The first is to
use the 2v-SVM to achieve the desired false alarm and miss rates by
adjusting v and v_ appropriately. The second approach is to train a
v-SVM and then shift b (the bias) to achieve the desired false alarm
and miss rates. In what follows Pr () and Pas(f) denote empirical
estimates of Pr(f) and Pas(f).

3.1. 2v-SVM Approach to Minimax Classification

As described in Section 2, the 2v-SVM has two possible parame-
terizations. The (v4,v_) parameterization has the benefit that the
dual formulation of (P,) is feasible if and only if ¥4 < 1 and
v_ < 1, with a trivial solution if vy < 0 or v— < 0 (see [11]).
Therefore, to search over the parameters of the 2v-SVM it suffices to
conduct a search over a uniform grid of (v, v—) in [0, 1]%. Hence,
the full algorithm for minimax classification with the 2v-SVM is
to search over vy, v_, and any kernel parameters, obtain estimates
of Pr(f) and Pas(f) using an error estimation technique such as
cross-validation, and select the parameter combination minimizing

max{Pr(f), Par (f)}.

Smoothing the error estimates. @~ We have observed across a
wide range of datasets that PF(f) and by (f) tend to display a
slowly varying (low-frequency) trend when plotted as functions of
(v4,v—). However, these estimates also appear somewhat “noisy”.
Without smoothing, some grid points will look much better than
they actually are, due to chance variation. Thus, a heuristic offer-
ing potential improvement for the full grid search over (v4,v_) is
to smooth both Pr(f) and Py (f) with a low-pass filter after es-
timating the error at each point on the grid. In our experiments
we consider two smoothing strategies: we can either apply a two-
dimensional smoothing filter (we use a simple Gaussian window)
to the error estimates for (v4,v—) € [0,1]? separately for each
value of the kernel parameter, or we can apply a three-dimensional
smoothing filter to the error estimates, smoothing across different
kernel parameter values. Both strategies effectively reduce the vari-
ance of the error estimates. This approach is especially effective for
high variance estimates like cross-validation. This technique illus-
trates another advantage of the (v4,v_) parametrization since the
ability to discretize the parameter space of the 2v-SVM with a uni-
form grid plays a key role in justifying this heuristic.

Coordinate descent: Speeding up the 20-SVM. The additional
parameter in the 2-SVM renders a full grid search somewhat time
consuming, especially for large data sets. Fortunately, a simple
speed-up is possible. Again inspired by the smoothness of Pr(f)
and Py (f) as functions of (v4,v_), instead of conducting a full
grid search over (v4,v_) we propose a coordinate descent search.
Several variants are possible, but the ones we employ run as follows:
For a fixed value of the kernel parameter, find the best parameters
on grids placed along the lines v+ = 1/2 and v— = 1/2. From
then on, conduct a line search in the direction orthogonal to the pre-
vious line search, at each step selecting the parameters minimizing
max{Pr(f), Prr(f)}. repeating this procedure for each kernel pa-
rameter value. Just as before, a simple three-dimensional extension
of this algorithm is also considered, along with various approaches
to smoothing P (f) and Pos(f).

3.2. Alternative Approaches to Minimax Classification

Bias-shifting. A potential advantage of the bias-shifting strategy is
the ability to separate the training into two stages. First, we search
over the parameters of the SVM (v and any kernel parameters). Us-
ing an error estimation method such as cross-validation (CV), we
then select the parameters that minimize either the misclassification
rate or max{Pr(f), Prr(f)}. Second, once v has been selected
we shift the bias of the corresponding classifier and, again using
some form of error estimation, select the bias that further minimizes
max{pp(1), Par(f)}. In our experiments, we use the resubstitu-
tion estimate to select the bias. Resubstitution is generally a poor

estimate when the set of classifiers is complex; however, once we fix
a normal vector w, the set of possible shifted hyperplanes is a class
with low complexity, and so resubstitution is in fact a reasonable er-
ror estimate. Note that we can apply the same technique to an SVM
trained using the 2v-SVM approach described above in the hope that
it will improve the performance of that method as well.

Balanced v-SVM. A common motivation for minimax classifica-
tion is that some datasets are unbalanced in the sense that they have
many more samples from one class than from the other. In this sce-
nario, another possible algorithm is to apply the strategy described
above for the v-SVM, but instead to use a 2v-SVM with vy = v_.
We refer to this method as the balanced v-SVM. Since v and v_ are
upper bounds on the fractions of margin errors from their respective
classes, we might expect that this method will be superior to the tra-
ditional v-SVM. Note that this method has the same computational
complexity as the traditional v-SVM.

Minimax probability machine. The minimax probability machine
(MPM) is a kernel-based alternative to the SVM that is specifically
designed for minimax classification [12]. The general idea is to
use the training data to estimate the mean and covariance matri-
ces for each of the two classes, and then select the (hyperplane)
classifier that minimizes max{Pr(f), Par(f)} for the worst-case
over all possible choices of class-conditional densities whose (class-
conditional) means and covariance matrices match those estimated
from the training data. Since the means and covariance matrices es-
timated from the training data will be subject to some error, the user
must set up to four parameters that reflect the uncertainty in these
estimates. The MPM can be kernelized in a similar manner to the
SVM, and the two algorithms have similar computational complex-
ity, although the MPM has a greater number of free parameters to
tune.

4. EXPERIMENTS
4.1. Experimental setup

We ran our algorithms on a collection of benchmark datasets that are
available online with documentation.> The datasets comprise a mix-
ture of synthetic datasets and datasets based on real data collected
from various repositories on the web. The datasets are summarized
in Table 1. For each of the first 9 data sets, we have 100 permuta-
tions of the training and test data, and for the last two (“image” and
“splice””) we have 20 permutations.

In all of our experiments we used a radial basis function (Gaus-
sian) kernel and searched for the bandwidth parameter o over a log-
arithmically spaced grid of 50 points from 10~* to 10*. For the
v-SVM method we searched over a uniform grid of 50 points of the
parameter v, and for the balanced »-SVM we searched over a uni-
form grid of 50 points of the parameter v, = v_. For the 2v-SVM
methods we considered a 50 x 50 regular grid of (v, v_) € [0, 1]°.
For each parameter combination, we estimated Pr(f) and Pas(f)
using 5-fold cross-validation. In adjusting the bias for any of these
methods we selected the optimal bias according to the resubstitution
estimate. We applied a 3 x 3 Gaussian window to the error estimates
to implement 2-dimensional smoothing, and we applieda 3 x 3 x 3
Gaussian window to the error estimates to implement 3-dimensional
smoothing. The standard deviation of the Gaussian window was set
to the length of one grid interval. Different window sizes and widths
were tried, but without much change in performance. For the coor-
dinate descent methods we used the same grid structure described
above. In our experiments with the v-SVM we used the LIBSVM

Zhttp://ida.first.fhg.de/projects/bench/

Table 1. Description of benchmark datasets used in our experiments:
d denotes the dimension of the feature vectors, n (Training/Testing)
the number of feature vectors in the training and test sets, and n
(n—) the average number of feature vectors in the training set from
the positive (negative) class.

l Dataset [d [n (Training) [N4 [n_ [n (Testing) ‘
banana 2 400 182 | 218 4900
cancer 9 200 59 141 77
diabetes 8 468 164 | 304 300
flare-solar | 9 666 368 | 298 400
heart 13 170 76 94 100
ringnorm | 20 400 199 | 201 7000
thyroid 5 140 43 97 75
twonorm 20 400 202 | 198 7000
waveform | 21 400 132 | 268 4600
image 18 1300 746 | 554 1010
splice 60 1000 483 | 517 2175

package [7]. For the 2v-SVM we implemented our own version that
is available online at www.dsp.rice.edu/software.

For each permutation of each dataset we ran our algorithms on
the training data and estimated the false alarm and miss rates using
the test data. On any given permutation, our performance metric is
max{Pr(f), Prr(f)}, where Pr(f) and Py (f) now denote the
false positive and miss rates estimated using the test data. To gen-
erate a more reliable performance estimate, we repeat this for each
permutation and then average the minimax scores over all permu-
tations — a procedure known as Monte Carlo cross-validation [13].
To evaluate performance on unbalanced datasets, we repeated these
experiments retaining only 10% of the negatively labeled training
data.

We use two main statistical tests to compare the algorithms de-
scribed above, as advocated in [14]. In the case where we want to
make a direct comparison between only two algorithms, we use the
Wilcoxon signed-ranks test, which ranks the differences in perfor-
mances of the two classifiers over the 11 datasets, and then compares
the ranks for the positive and negative differences to test if the ob-
served differences between the two algorithms is statistically signif-
icant. When reporting results from the Wilcoxon signed-ranks test,
we will give the p-value, or probability of obtaining the observed
differences by chance.

When we wish to compare more than two algorithms on multi-
ple datasets, we use a two-step procedure. First we use the Friedman
test, which is a statistical test similar to the Wilcoxon signed-ranks
test in that it allows us to determine the probability of obtaining the
observed performances by chance. Next, once we have rejected the
null-hypothesis (that the differences have occurred by chance) we
apply the Nemenyi test which involves computing a ranking of the
algorithms for each dataset, and then an average ranking for each al-
gorithm. Along with these rankings, we provide the so-called critical
difference for a significance level of 0.05. (If the average ranking of
two algorithms differs by more than this value, the performance of
the two algorithms is significantly different with a p-value of 0.05.)
See [14] for a more thorough discussion of and motivation for these
techniques.

4.2. Results

Preliminary results. We begin by evaluating the performance of
the 2v-SVM. Perhaps somewhat surprisingly, bias-shifting actually

Table 2. The effect of bias-shifting on the 2v-SVM methods for
minimax classification applied to both balanced and unbalanced
datasets. In every case bias-shifting leads to worse performance. The
table lists the p-values calculated using the Wilcoxon signed-ranks
test indicating the significance of this difference in performance are
listed for each 2v-SVM method.

Table 4. Comparison of coordinate descent methods for the 2v-
SVM for minimax classification. The table lists the average ranking
for each approach. (Friedman test yields p-values of .002 for bal-
anced and .001 for unbalanced experiments. The critical difference
for the Nemenyi test at 0.05 is 1.92.)

l Smoothing ‘ Coordinate Descent ‘ Balanced | Unbalanced
None 2-D 4.18 4.18
None 3-D 391 4.00
2-D 2-D 2.73 2.82
3-D 2-D 2.00 2.00
3-D 3-D 2.18 2.00

Smoothing | Coordinate Descent | Balanced | Unbalanced ‘
None None .148 .042
2-D None .001 .001
3-D None .005 .001
None 2-D .107 .007
None 3-D .032 .007
2-D 2-D .001 .001
3-D 2-D .002 .001
3-D 3-D .032 .001

Table 3. Comparison of smoothing methods for the 2v-SVM for
minimax classification. The table lists the average ranking for each
approach. (Friedman test yields p-values of .001 for both balanced
and unbalanced experiments. The critical difference for the Nemenyi
test at 0.05is 1.10.)

l Smoothing [Balanced | Unbalanced
None 291 291
2-D 1.73 1.64
3-D 1.36 1.45

results in uniformly worse performance for every 2v-SVM-based
method, with p-values below 0.05 in almost every case (see Ta-
ble 2). As we will see again in our discussion of the balanced v-
SVM and the v-SVM, bias-shifting only leads to improved perfor-
mance when the SVM parameters have been selected to minimize
the error rate. When the SVM parameters are selected to minimize
max{PF(), Pu(rf)}, bias-shifting has a negative impact on over-
all performance.

On the other hand, smoothing and coordinate descent are ex-
tremely effective. The results of smoothing are shown in Table 3,
and they clearly indicate that 2-D and 3-D smoothing offer a statisti-
cally significant gain in performance, with 3-D smoothing offering a
slight edge. Similarly, the results in Table 4 show that 3-D smoothing
combined with either 2-D or 3-D coordinate descent offer gains in
performance as well, which is particularly helpful since these meth-
ods speed up the parameter selection process considerably.

Before we directly compare the smoothing and coordinate de-
scent methods, we note that for the balanced v»-SVM and the
traditional v-SVM there are three main strategies: (1) adjust
the SVM parameters to minimize max{Px(f), Par(f)}, and do
not adjust the bias, (2) adjust the SVM parameters to minimize
max{Pr(f), Prsr(f)}, and do adjust the bias, or (3) adjust the SVM
parameters to minimize the misclassification rate, and adjust the bias
to minimize max{Pr(f), Pas(f)}. We refer the reader to [11] for
a detailed comparison of these approaches. In general we find that
strategy (2) always performs worst. For the traditional v-SVM, we
find that strategy (3) is most effective, while for the balanced »-SVM
the results indicate that the best method is to follow strategy (1). In
all cases it is again beneficial to smooth the error estimates. Thus, we
will compare the 2v-SVM methods to the balanced v-SVM without
bias-shifting and the v-SVM with bias-shifting.

Table 5. Minimax rates on the balanced datasets for the best 2v-
SVM methods, the balanced v-SVM, and the v-SVM with bias-
shifting. Scores reported are max{Pr(f), Prr(f)}, averaged over
all 100 (or 20) permutations.

| Dataset [3D-GS | 2D-CD [3D-CD [Bv-SVM[v-SVM]|

banana 129 .129 .129 133 132
cancer 414 419 431 490 425
diabetes 302 301 .303 304 .289
flare-solar 355 352 433 415 .365
heart 226 219 224 231 221
ringnorm .024 .023 .021 .022 .027
thyroid .075 .078 .070 .076 .081
twonorm .032 .031 .030 .029 .034
waveform .119 117 116 123 135
image .043 .050 .065 .039 .040
splice 114 118 118 113 157

Overall results. We are now in a position to compare the 2v-SVM
strategies to the balanced v-SVM and traditional -SVM. In Tables
5 and 6 we give the minimax error rates for the 3-D smoothing ap-
proach (labeled 3D-GS), the 2-D and 3-D coordinate descent meth-
ods (labeled 2D-CD and 3D-CD - both use 3-D smoothing), the bal-
anced v-SVM (labeled Bv-SVM), and the traditional v-SVM with
bias-shifting (labeled v-SVM). Table 5 shows the performance of
each algorithm on each dataset averaged over the permutations, and
Table 6 shows the same for the unbalanced datasets. Table 7 gives
the results of the Nemenyi test for these algorithms. In the balanced
dataset experiments, the 2v-SVM methods appear to exhibit stronger
performance, but according to the Nemenyi test this difference is
not statistically significant. However, for the unbalanced datasets,
there is a statistically significant difference with the 2v-SVM meth-
ods being clearly superior. The 3D-GS method appears to be the best
performing overall, but the coordinate descent methods exhibit very
similar performance.

Finally, we also compare the 2v-SVM with the MPM. Recall
that the parameters for the MPM represent the uncertainty in our
knowledge of the class-dependent means and covariance matrices.
We can calculate this uncertainty exactly by calculating the differ-
ences between the means and covariances based on the training set
and those based on the test set, which allows us to realize the best
performance possible with the MPM. To make a fair comparison, we
only set two free parameters — we follow [12] and assume that the un-
certainty in the means and covariances is the same for both classes,
and thus the MPM and 2v-SVM would require roughly the same

Table 6. Minimax rates on the unbalanced datasets for the best
2v-SVM methods, the balanced v-SVM, and the v-SVM with bias-
shifting. Scores reported are max{Pr(f), Pr(f)}, averaged over
all 100 (or 20) permutations.

| Dataset | 3D-GS [2D-CD [3D-CD [Bv-SVM[v-SVM|

banana .193 .194 .189 226 218
cancer 451 460 AT77 564 737
diabetes .340 .340 338 455 449
flare-solar 410 412 425 .595 .548
heart 271 .286 275 413 490
ringnorm .048 .049 .040 .055 .088
thyroid 133 .139 126 126 135
twonorm .060 .060 .058 .079 .099
waveform .168 171 .168 210 181
image 134 133 157 151 .097
splice 195 .196 .200 .379 335

Table 7. Comparison of best 2v-SVM methods for minimax clas-
sification, the balanced v-SVM (without bias-shifting), and the v-
SVM (with bias-shifting). The table lists the average ranking for
each approach. (Friedman test yields p-values of .502 for balanced
and .0003 for unbalanced experiments. The critical difference for
the Nemenyi test at 0.05 is 1.92.)

l Method [Balanced [Unbalanced
3D-GS 2.73 2.00
2D-CD 2.64 2.64
3D-CD 2.73 2.00
v-SVM 3.64 4.09

Bal »-SVM 3.27 4.27

computational complexity to set the parameters in a practical setting.
We have also observed that the MPM algorithm is somewhat unsta-
ble with regard to kernel parameters, so we limit our experiments to
the linear kernel, which also simplifies the comparison somewhat.
We then compare this to the performance of the 2v-SVM where the
parameters for the 2v-SVM are chosen via cross-validation. The re-
sults are given in Table 8. In the unbalanced case we do not see a
significant difference, with each algorithm doing better on roughly
half the datasets, although in this case we do see that when the 2v-
SVM outperforms the MPM it tends to do so by a large amount com-
pared to cases where the MPM outperforms the 2v-SVM. However,
in the balanced case we get a clear difference in performance. Fur-
thermore, in a more practical setting, in which the parameters for the
MPM are set imperfectly, the 2v-SVM would likely out-perform the
MPM by an even greater margin.

5. CONCLUSIONS

We have evaluated several strategies for minimax classification with
SVMs. As might be expected, the offset-shifting strategy does not
perform as well as introducing an additional parameter to control
the relative weights. This difference is especially pronounced in the
case where the dataset is unbalanced — a particularly natural setting
for minimax classification. A key insight from our study is that the
performance of these algorithms is significantly affected by the accu-
racy of the error estimates. As we have demonstrated, simple heuris-
tics for decreasing the variance of these estimates can significantly

Table 8. Minimax rates for the 2v-SVM with linear kernel (where
vy and v_ are selected through cross validation, with smoothing
of the error estimates) and the linear MPM where the parameters
are chosen to be optimal for the test data set. Scores reported are
max{Pr(f), Prr(f)}. averaged over all 100 (or 20) permutations.

Balanced Unbalanced
SVM [MPM | SVM [MPM

banana 558 482 .619 517
cancer .396 401 453 421
diabetes 291 311 332 319
flare-solar | .350 .360 392 .399
heart 218 205 285 238
ringnorm | .287 .308 335 302
thyroid 197 .387 253 .392
twonorm .031 .027 .064 .038
waveform | .141 .180 175 218
image .194 341 230 .362
splice 175 184 239 296

Dataset

improve the overall performance. Hence, future work on minimax
classification should focus on understanding how to improve these
heuristics further.

6. REFERENCES

[1] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Computing Surveys, vol. 34, pp. 1-47, 2002.

[2] S. Bengio, J. Mariéthoz, and M. Keller, “The expected performance
curve,” in Proc. Int. Conf. Machine Learning, 2005, Bonn, Germany.

[3] C.D. Scott and R. D. Nowak, “A Neyman-Pearson approach to sta-
tistical learning,” IEEE Trans. Inform. Theory, vol. 51, no. 11, pp.
3806-3819, 2005.

[4] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Controlling false
alarms with support vector machines,” in Proc. IEEE Int. Conf. Acoust.,
Speech, and Signal Processing (ICASSP), 2006, Toulouse, France.

A. P. Bradley, “The use of the area under the ROC curve in the evalua-
tion of machine learning algorithms,” Pattern Recognition, vol. 30, no.
7, pp. 1145-1159, 1997.

F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy

estimation for comparing induction algorithms,” in Proc. Int. Conf.

Machine Learning, 1998, San Francisco, CA.

[7]1 C.C. Chang and C. J. Lin, LIBSVM: a library for support vector ma-

chines, 2001, See http://www.csie.ntu.edu.tw/~cjlin/libsvm.

B. Scholkopf and A. J. Smola, Learning with Kernels, MIT Press,

Cambridge, MA, 2002.

B. Scholkopf, A. J. Smola, R. Williams, and P. Bartlett, “New support

vector algorithms,” Neural Computation, vol. 12, pp. 1083-1121, 2000.

[10] H. G. Chew, R. E. Bogner, and C. C. Lim, “Dual-v support vector
machine with error rate and training size biasing,” in Proc. IEEE Int.
Conf. Acoust., Speech, and Signal Processing (ICASSP), 2001.

[11] M. A. Davenport, Error control for support vector machines, MS
thesis, Department of Electrical and Computer Engineering, Rice Uni-
versity, Houston, TX, 2007.

[12] G.R. G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. L. Jordan,

“A robust minimax approach to classification,” J. Machine Learning

Research, vol. 3, pp. 555-582, 2002.

[13] J. Shao, “Linear model selection by cross-validation,” J. Amer. Statist.
Assoc., vol. 88, no. 422, pp. 486-494, 1993.

[14] J. Demsar, “Statistical comparisons of classifiers over multiple data
sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

[5

—_

[6

=

[8

—_

[9

—

