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Proofs

The proofs of Propositions 1 and 3 rely on certain ROCs (or CDFs) which we discuss here in

more detail. Consider the optimal test for the null hypothesis X ∼ P against the alternative

X ∼ µ. By definition of GP,β, and since these sets are unique under [B] and [C], the critical

region Gc
P,β is the most powerful test of size P (Gc

P,β) = 1− P (GP,β) = 1− β, with power equal to

µ(Gc
P,β) = 1−µ(GP,β). Thus, {(1−β, 1−µ(GP,β)) : 0 ≤ β ≤ 1} traces out the ROC of the optimal

test. In functional form, the ROC is given by

C(s) := 1− µ(GP,1−s).

In a similar way, we can associate

C̃(s) = 1− µ(GQ,1−s)
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with the optimal test for X ∼ Q versus X ∼ µ.

The estimation of π is facilitated by consideration of what might be called the dual ROCs

to the primal ROCs above. In particular, we now view µ as the null distribution and P as the

alternative. While this is the opposite of the scenario considered throughout the paper, it will be

a useful analytical device. By definition of GP,β , the critical region GP,β gives the most powerful

test of size µ(GP,β) with power equal to P (GP,β) = β. Thus, {(µ(GP,β), β) : 0 ≤ β ≤ 1} traces out

the ROC of the optimal test. In functional form, the ROC is given by

D(t) := inf{β : µ(GP,β) ≤ t}.

Note that the dual ROC can be obtained by reflecting C(s) about the anti-diagonal of the unit

square.

Similarly, the dual ROC corresponding to the optimal test of the null X ∼ µ versus the alter-

native X ∼ Q (again, this test is viewed as purely an analytical device) is given by

D̃(t) := inf{β̃ : µ(GQ,β̃) ≤ t},

and is traced out by the curve {(µ(GQ,β̃), β̃) : 0 ≤ β̃ ≤ 1}. Again, this curve may be obtained by

reflecting C̃(s) about the anti-diagonal of the unit square.

Proof of Proposition 1.

For any pair of indices i, i′, we wish to show βi ≤ βi′ iff γi ≤ γi′ . Note that

γi = 1− pFDR(GP,βi) =
πµ(Gc

P,βi
)

Q(Gc
P,βi

)
=

[
1 +

1− π

π

P (Gc
P,βi

)
µ(Gc

P,βi
)

]−1

=
[
1 +

1− π

π

1− βi

C(1− βi)

]−1

. (1)

So γi ≤ γi′ iff C(1− βi′)/(1− βi′) ≥ C(1− βi)/(1− βi), which is true by assumption. ¤

Proof of Proposition 2:

To establish the first statement, that GP,β is the Q-GQ set at level β̃, we must establish (a)
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Q(GP,β) ≥ β̃ and (b) if Q(G) ≥ β̃, then µ(G) ≥ µ(GP,β). To establish (a), observe

Q(GP,β) = πµ(GP,β) + (1− π)P (GP,β) ≥ πµ(GP,β) + (1− π)β = β̃.

To establish (b), assume it does not hold. That is, assume there exists G such that Q(G) ≥ β̃ and

µ(G) < µ(GP,β). Then

P (G) =
Q(G)− πµ(G)

1− π
≥ β̃ − πµ(G)

1− π
≥ β̃ − πµ(GP,β)

1− π
= β,

which contradicts the definition of GP,β as the P -GQ set at level β.

To prove the second half of the proposition, consider 0 ≤ β̃ ≤ β̃max. Consider the function

τ(β′) := πµ(GP,β′) + (1− π)P (GP,β′). Since, by assumption [C], f has no plateaus, P (GP,β′) = β′.

In addition, since µ is absolutely continuous with respect to Lebesgue measure, by assumption [B],

µ(GP,β′) is continuous and nondecreasing. Therefore τ is continuous and increasing as a function

of 0 ≤ β′ ≤ 1, taking values between 0 and β̃max. By the intermediate value theorem, there exists

β′ such that β̃ = τ(β′) = πµ(GP,β′)+(1−π)β′. Furthermore, this β′ is unique since τ is increasing.

By the first part of this theorem, we conclude GQ,β̃ = GP,β′ . Combining this fact with the equation

πµ(GQ,β̃) + (1− π)β = πµ(GP,β′) + (1− π)β′,

which results from equating two different expressions for β̃, we conclude that β = β′. Since the

P -GQ sets are unique, it follows that GQ,β̃ = GP,β. ¤

Proof of Corollary 1

Consider first the case Xi ∈ GP,1, which implies β̃i ≤ β̃max. By Proposition 2 we have that

GP,βi = GQ,β̃i
. By Bayes’ rule,

γi = Pr (Y = 1|X /∈ GP,βi) =
πµ(Gc

P,βi
)

Q(Gc
P,βi

)

=
π(1− µ(GP,βi))
1−Q(GP,βi)

=
π(1− µ(GQ,β̃i

))

1−Q(GQ,β̃i
)
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=
π(1− µ(GQ,β̃i

))

1− β̃i

.

If X /∈ GP,1, then βi = 1, and GP,βi = GP,1 is a subset of GQ,β̃i
. Thus

π(1− µ(GQ,β̃i
))

1− β̃i

=
π(1− µ(GQ,β̃i

))

1−Q(GQ,β̃i
)

=
π(1− µ(GQ,β̃i

))

1− (πµ(GQ,β̃i
) + (1− π)P (GQ,β̃i

))

=
π(1− µ(GQ,β̃i

))

π(1− µ(GQ,β̃i
))

= 1

which is the value of γi in this case. ¤

Proof of Proposition 3:

Pr (Z ≤ t|X ∼ Q) = Pr (µ(G(X)) ≤ t|X ∼ Q) = Q({µ(G(X)) ≤ t})

= Q(GQ,D̃(t)) = D̃(t).

Thus D̃(t) = πPr (Z ≤ t|X ∼ µ) + (1− π)Pr (Z ≤ t|X ∼ P ). Now

Pr (Z ≤ t|X ∼ µ) = Pr (µ(G(X)) ≤ t|X ∼ µ) = µ({µ(G(X)) ≤ t})

= µ(GQ,D̃(t)) = t.

Similarly,

Pr (Z ≤ t|X ∼ P ) = Pr (µ(G(X)) ≤ t|X ∼ P ) = P ({µ(G(X)) ≤ t})

= P (GQ,D̃(t)) = P (GP,D(t)) = D(t).

The result follows by differentiating D̃(t). ¤
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