Appendix to Nonparametric Assessment of Contamination in

Multivariate Data Using Generalized Quantile Sets and FDR, published in the Journal of Computational and Graphical Statistics

Clayton Scott* and Eric Kolaczyk ${ }^{\dagger}$

January 18, 2010

Proofs

The proofs of Propositions 1 and 3 rely on certain ROCs (or CDFs) which we discuss here in more detail. Consider the optimal test for the null hypothesis $X \sim P$ against the alternative $X \sim \mu$. By definition of $G_{P, \beta}$, and since these sets are unique under [B] and [C], the critical region $G_{P, \beta}^{c}$ is the most powerful test of size $P\left(G_{P, \beta}^{c}\right)=1-P\left(G_{P, \beta}\right)=1-\beta$, with power equal to $\mu\left(G_{P, \beta}^{c}\right)=1-\mu\left(G_{P, \beta}\right)$. Thus, $\left\{\left(1-\beta, 1-\mu\left(G_{P, \beta}\right)\right): 0 \leq \beta \leq 1\right\}$ traces out the ROC of the optimal test. In functional form, the ROC is given by

$$
C(s):=1-\mu\left(G_{P, 1-s}\right) .
$$

In a similar way, we can associate

$$
\tilde{C}(s)=1-\mu\left(G_{Q, 1-s}\right)
$$

[^0]with the optimal test for $X \sim Q$ versus $X \sim \mu$.
The estimation of π is facilitated by consideration of what might be called the dual ROCs to the primal ROCs above. In particular, we now view μ as the null distribution and P as the alternative. While this is the opposite of the scenario considered throughout the paper, it will be a useful analytical device. By definition of $G_{P, \beta}$, the critical region $G_{P, \beta}$ gives the most powerful test of size $\mu\left(G_{P, \beta}\right)$ with power equal to $P\left(G_{P, \beta}\right)=\beta$. Thus, $\left\{\left(\mu\left(G_{P, \beta}\right), \beta\right): 0 \leq \beta \leq 1\right\}$ traces out the ROC of the optimal test. In functional form, the ROC is given by
$$
D(t):=\inf \left\{\beta: \mu\left(G_{P, \beta}\right) \leq t\right\} .
$$

Note that the dual ROC can be obtained by reflecting $C(s)$ about the anti-diagonal of the unit square.

Similarly, the dual ROC corresponding to the optimal test of the null $X \sim \mu$ versus the alternative $X \sim Q$ (again, this test is viewed as purely an analytical device) is given by

$$
\tilde{D}(t):=\inf \left\{\tilde{\beta}: \mu\left(G_{Q, \tilde{\beta}}\right) \leq t\right\},
$$

and is traced out by the curve $\left\{\left(\mu\left(G_{Q, \tilde{\beta}}\right), \tilde{\beta}\right): 0 \leq \tilde{\beta} \leq 1\right\}$. Again, this curve may be obtained by reflecting $\tilde{C}(s)$ about the anti-diagonal of the unit square.

Proof of Proposition 1.

For any pair of indices i, i^{\prime}, we wish to show $\beta_{i} \leq \beta_{i^{\prime}}$ iff $\gamma_{i} \leq \gamma_{i^{\prime}}$. Note that

$$
\begin{equation*}
\gamma_{i}=1-\operatorname{pFDR}\left(G_{P, \beta_{i}}\right)=\frac{\pi \mu\left(G_{P, \beta_{i}}^{c}\right)}{Q\left(G_{P, \beta_{i}}^{c}\right)}=\left[1+\frac{1-\pi}{\pi} \frac{P\left(G_{P, \beta_{i}}^{c}\right)}{\mu\left(G_{P, \beta_{i}}^{c}\right)}\right]^{-1}=\left[1+\frac{1-\pi}{\pi} \frac{1-\beta_{i}}{C\left(1-\beta_{i}\right)}\right]^{-1} . \tag{1}
\end{equation*}
$$

So $\gamma_{i} \leq \gamma_{i^{\prime}}$ iff $C\left(1-\beta_{i^{\prime}}\right) /\left(1-\beta_{i^{\prime}}\right) \geq C\left(1-\beta_{i}\right) /\left(1-\beta_{i}\right)$, which is true by assumption.

Proof of Proposition 2:

To establish the first statement, that $G_{P, \beta}$ is the Q-GQ set at level $\tilde{\beta}$, we must establish (a)
$Q\left(G_{P, \beta}\right) \geq \tilde{\beta}$ and (b) if $Q(G) \geq \tilde{\beta}$, then $\mu(G) \geq \mu\left(G_{P, \beta}\right)$. To establish (a), observe

$$
Q\left(G_{P, \beta}\right)=\pi \mu\left(G_{P, \beta}\right)+(1-\pi) P\left(G_{P, \beta}\right) \geq \pi \mu\left(G_{P, \beta}\right)+(1-\pi) \beta=\tilde{\beta} .
$$

To establish (b), assume it does not hold. That is, assume there exists G such that $Q(G) \geq \tilde{\beta}$ and $\mu(G)<\mu\left(G_{P, \beta}\right)$. Then

$$
P(G)=\frac{Q(G)-\pi \mu(G)}{1-\pi} \geq \frac{\tilde{\beta}-\pi \mu(G)}{1-\pi} \geq \frac{\tilde{\beta}-\pi \mu\left(G_{P, \beta}\right)}{1-\pi}=\beta
$$

which contradicts the definition of $G_{P, \beta}$ as the $P-\mathrm{GQ}$ set at level β.
To prove the second half of the proposition, consider $0 \leq \tilde{\beta} \leq \tilde{\beta}_{\max }$. Consider the function $\tau\left(\beta^{\prime}\right):=\pi \mu\left(G_{P, \beta^{\prime}}\right)+(1-\pi) P\left(G_{P, \beta^{\prime}}\right)$. Since, by assumption [C], f has no plateaus, $P\left(G_{P, \beta^{\prime}}\right)=\beta^{\prime}$. In addition, since μ is absolutely continuous with respect to Lebesgue measure, by assumption [B], $\mu\left(G_{P, \beta^{\prime}}\right)$ is continuous and nondecreasing. Therefore τ is continuous and increasing as a function of $0 \leq \beta^{\prime} \leq 1$, taking values between 0 and $\tilde{\beta}_{\text {max }}$. By the intermediate value theorem, there exists β^{\prime} such that $\tilde{\beta}=\tau\left(\beta^{\prime}\right)=\pi \mu\left(G_{P, \beta^{\prime}}\right)+(1-\pi) \beta^{\prime}$. Furthermore, this β^{\prime} is unique since τ is increasing. By the first part of this theorem, we conclude $G_{Q, \tilde{\beta}}=G_{P, \beta^{\prime}}$. Combining this fact with the equation

$$
\pi \mu\left(G_{Q, \tilde{\beta}}\right)+(1-\pi) \beta=\pi \mu\left(G_{P, \beta^{\prime}}\right)+(1-\pi) \beta^{\prime},
$$

which results from equating two different expressions for $\tilde{\beta}$, we conclude that $\beta=\beta^{\prime}$. Since the P-GQ sets are unique, it follows that $G_{Q, \tilde{\beta}}=G_{P, \beta}$.

Proof of Corollary 1
Consider first the case $X_{i} \in G_{P, 1}$, which implies $\tilde{\beta}_{i} \leq \tilde{\beta}_{\text {max }}$. By Proposition 2 we have that $G_{P, \beta_{i}}=G_{Q, \tilde{\beta}_{i}}$. By Bayes' rule,

$$
\begin{aligned}
\gamma_{i} & =\operatorname{Pr}\left(Y=1 \mid X \notin G_{P, \beta_{i}}\right)=\frac{\pi \mu\left(G_{P, \beta_{i}}^{c}\right)}{Q\left(G_{P, \beta_{i}}^{c}\right)} \\
& =\frac{\pi\left(1-\mu\left(G_{P, \beta_{i}}\right)\right)}{1-Q\left(G_{P, \beta_{i}}\right)}=\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{1-Q\left(G_{Q, \tilde{\beta}_{i}}\right)}
\end{aligned}
$$

$$
=\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{1-\tilde{\beta}_{i}} .
$$

If $X \notin G_{P, 1}$, then $\beta_{i}=1$, and $G_{P, \beta_{i}}=G_{P, 1}$ is a subset of $G_{Q, \tilde{\beta}_{i}}$. Thus

$$
\begin{aligned}
\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{1-\tilde{\beta}_{i}} & =\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{1-Q\left(G_{Q, \tilde{\beta}_{i}}\right)}=\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{1-\left(\pi \mu\left(G_{Q, \tilde{\beta}_{i}}\right)+(1-\pi) P\left(G_{Q, \tilde{\beta}_{i}}\right)\right)} \\
& =\frac{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}{\pi\left(1-\mu\left(G_{Q, \tilde{\beta}_{i}}\right)\right)}=1
\end{aligned}
$$

which is the value of γ_{i} in this case.
Proof of Proposition 3:

$$
\begin{aligned}
\operatorname{Pr}(Z \leq t \mid X \sim Q) & =\operatorname{Pr}(\mu(G(X)) \leq t \mid X \sim Q)=Q(\{\mu(G(X)) \leq t\}) \\
& =Q\left(G_{Q, \tilde{D}(t)}\right)=\tilde{D}(t) .
\end{aligned}
$$

Thus $\tilde{D}(t)=\pi \operatorname{Pr}(Z \leq t \mid X \sim \mu)+(1-\pi) \operatorname{Pr}(Z \leq t \mid X \sim P)$. Now

$$
\begin{aligned}
\operatorname{Pr}(Z \leq t \mid X \sim \mu) & =\operatorname{Pr}(\mu(G(X)) \leq t \mid X \sim \mu)=\mu(\{\mu(G(X)) \leq t\}) \\
& =\mu\left(G_{Q, \tilde{D}(t)}\right)=t
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\operatorname{Pr}(Z \leq t \mid X \sim P) & =\operatorname{Pr}(\mu(G(X)) \leq t \mid X \sim P)=P(\{\mu(G(X)) \leq t\}) \\
& =P\left(G_{Q, \tilde{D}(t)}\right)=P\left(G_{P, D(t)}\right)=D(t) .
\end{aligned}
$$

The result follows by differentiating $\tilde{D}(t)$.

[^0]: *Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48105 (email: cscott-at-eecs-dot-umich-dot-edu).
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215 (email: kolaczyk-at-math-dot-bu-edu).

