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Abstract

Decision trees are surprisingly adaptive in three important respects: They
automatically (1)adaptto favorable conditions near the Bayes decision
boundary; (2)focuson data distributed on lower dimensional manifolds;
(3) reject irrelevant features. In this paper we examine a decision tree
based on dyadic splits that adapts to each of these conditions to achieve
minimax optimal rates of convergence. The proposed classifier is the
first known to achieve these optimal rates while being practical and im-
plementable.

1 Introduction

This paper presents three adaptivity properties of decision trees that lead to faster rates of
convergence for a broad range of pattern classification problems. These properties are:

Noise Adaptivity: Decision trees can automatically adapt to the (unknown) regularity of
the excess risk function in the neighborhood of the Bayes decision boundary. The
regularity is quantified by a condition similar to Tsybakov’s noise condition [1].

Manifold Focus: When the distribution of features happens to have support on alower di-
mensional manifold, decision trees can automatically detect and adapt their struc-
ture to the manifold. Thus decision trees learn the “effective” data dimension.

Feature Rejection: If certain features are irrelevant (i.e., independent of the class labels),
then decision trees can automatically ignore these features. Thus decision trees
learn the “relevant” data dimension.

Each of the above properties can be formalized and translated into a class of distributions
with known minimax rates of convergence. Adaptivity is a highly desirable quality of
classifiers since in practice the precise characteristics of the distribution are unknown.

We show thatdyadic decision treesachieve the (minimax) optimal rate (to within a log
factor) without needing to know the specific parameters defining the class. Such trees
are constructed by minimizing a complexity penalized empirical risk over an appropriate
family of dyadic partitions. The complexity term is derivedfrom a new generalization error
bound for trees, inspired by [2]. This bound in turn leads to an oracle inequality from which
the optimal rates are derived. Full proofs of all results aregiven in [11].



The restriction to dyadic splits is necessary to achieve a computationally tractable classifier.
Our classifiers have computational complexity nearly linear in the training sample size.
The same rates may be achieved by more general tree classifiers, but these require searches
over prohibitively large families of partitions. Dyadic decision trees are thus preferred
because they are simultaneously implementable, analyzable, and sufficiently flexible to
achieve optimal rates.

1.1 Notation

Let Z be a random variable taking values in a setZ, and letZn = {Z1, . . . , Zn} be iid
realizations ofZ. Let PZ be the probability measure forZ, and letP̂n be the empirical
estimate ofPZ based onZn: P̂n(B) = (1/n)

∑n
i=1 I{Zi∈B}, B ⊆ Z, whereI denotes

the indicator function. In classification we takeZ = X × Y, whereX is the collection
of feature vectors andY is a finite set of class labels. AssumeX = [0, 1]d, d ≥ 2, and
Y = {0, 1}. A classifier is a measurable functionf : [0, 1]d → {0, 1}. Each classifierf
induces a setBf = {(x, y) ∈ Z | f(x) 6= y}. Define the probability of error and empirical
error (risk) off by R(f) = PZ(Bf ) and R̂n(f) = P̂n(Bf ), respectively. The Bayes
classifierf∗ achieves minimum probability of error and is given byf∗(x) = I{η(x)>1/2},
whereη(x) = PY |X(1 |x) is the posterior probability that the correct label is 1. The
Bayes error isR(f∗) and denotedR∗. The Bayes decision boundary, denoted∂G∗, is the
topological boundary of the Bayes decision setG∗ = {x | f∗(x) = 1}.

1.2 Rates of Convergence in Classification

In this paper we study the rate at whichEZn{R(f̂n)} − R∗ goes to zero asn → ∞,
where f̂n is a classification learning rule, i.e., a rule for constructing a classifier from
Zn. Yang [3] shows that forη(x) in certain smoothness classes minimax optimal rates
are achieved by appropriate plug-in density estimates. Tsybakov and collaborators replace
global restrictions onη by restrictions onη near∂G∗. Faster rates are then possible, al-
though existing optimal classifiers typically rely onε-nets or otherwise non-implementable
methods. [1, 4, 5]. Other authors have derived rates of convergence for existing practical
classifiers, but these rates are suboptimal in the minimax sense considered here [6–8]. Our
contribution is to demonstrate practical classifiers that adaptively attain minimax optimal
rates for some of Tsybakov’s and other classes.

2 Dyadic Decision Trees

A dyadic decision tree(DDT) is a decision tree that divides the input space by meansof
axis-orthogonal dyadic splits. More precisely, a dyadic decision treeT is specified by
assigning an integers(v) ∈ {1, . . . , d} to each internal nodev of T (corresponding to the
coordinate/attribute that is split at that node), and a binary label 0 or 1 to each leaf node.

The nodes of DDTs correspond to hyperrectangles (cells) in[0, 1]d (see Figure 1). Given a
hyperrectangleA =

∏d
r=1[ar, br], let As,1 andAs,2 denote the hyperrectangles formed by

splitting A at its midpoint along coordinates. Specifically, defineAs,1 = {x ∈ A | xs ≤
(as + bs)/2} andAs,2 = A\As,1. Each node of a DDT is associated with a cell according
to the following rules: (1) The root node is associated with[0, 1]d; (2) If v is an internal
node associated to the cellA, then the children ofv are associated toAs(v),1 andAs(v),2.

Let π(T ) = {A1, . . . , Ak} denote the partition induced byT . Let j(A) denote the depth
of A and note thatλ(A) = 2−j(A) whereλ is the Lebesgue measure onR

d. DefineT to
be the collection of all DDTs andA to be the collection of all cells corresponding to nodes



Figure 1: A dyadic decision tree (right) with the associatedrecursive dyadic partition (left)
whend = 2. Each internal node of the tree is labeled with an integer from 1 to d indicating
the coordinate being split at that node. The leaf nodes are decorated with class labels.

of trees inT .

Let M be a dyadic integer, that is,M = 2L for some nonnegative integerL. DefineTM to
be the collection of all DDTs such that no terminal cell has a sidelength smaller than2−L.
In other words, no coordinate is split more thanL times when traversing a path from the
root to a leaf.

We will consider classifiers of the form

T̂n = arg min
T∈TM

R̂n(T ) + Φn(T ) (1)

whereΦn is a “penalty” or regularization term specified below. An algorithm of Blan-
chard et al. [9] may be used to computeT̂n in O(ndLd log(ndLd)) operations. For all of
our theorems on rates of convergence below we haveL = O(log n), in which case the
computational cost isO(nd(log n)d+1).

3 Generalization Error Bounds for Trees

In this section we state a uniform error bound and an oracle inequality for DDTs. These two
results are extensions of our previous work on DDTs [10]. Thebounding techniques are
quite general and can be extended to larger (even uncountable) families of trees using VC
theory, but for the sake of simplicity we confine the discussion to DDTs. Complete proofs
may be found in [11]. Before stating these results, some additional notation is necessary.

Let A ∈ A, and defineJAK = (2 + log2 d)j(A). JAK represents the number of bits needed
to uniquely encodeA and will be used to measure the complexity of a DDT havingA as a
leaf cell. These “codelengths” satisfy a Kraft inequality

∑
A∈A 2−JAK ≤ 1.

For a cellA ⊆ [0, 1]d, definepA = PX(A) andp̂A = (1/n)
∑n

i=1 I{Xi∈A}. Further define
p̂′A = 4max(p̂A, (JAK log 2 + log n)/n) andp′A = 4max(pA, (JAK log 2 + log n)/(2n)).
It can be shown that with high probability,pA ≤ p̂′A and p̂A ≤ p′A uniformly over all
A ∈ A [11]. The mutual boundedness ofpA and p̂A is a key to making our proposed
classifier both computable on the one hand and analyzable on the other.



Define the data-dependent penalty

Φn(T ) =
∑

A∈π(T )

√
2p̂′A

JAK log 2 + log(2n)

n
. (2)

Our first main result is the following uniform error bound.

Theorem 1. With probability at least1 − 2/n,

R(T ) ≤ R̂n(T ) + Φn(T ) for all T ∈ T . (3)

Traditional error bounds for trees involve a penalty proportional to
√
|T | log n/n, where

|T | denotes the number of leaves inT (see [12] or the “naive” bound in [2]). The penalty
in (2) assigns adifferentweight to each leaf of the tree depending on both the depth of the
leaf and the fraction of data reaching the leaf. Indeed, for very deep leaves, little data will
reach those nodes, and such leaves will contribute very little to the overall penalty. For
example, we may bound̂p′A by p′A with high probability, and ifX has a bounded density,
thenp′A decays likemax{2−j , log n/n}, wherej is the depth ofA. Thus, asj increases,
JAK grows additively withj, but p̂′A decays at a multiplicative rate. The upshot is that the
penaltyΦn(T ) favors unbalanced trees. Intuitively, if two trees have the same size and
empirical error, minimizing the penalized empirical risk with this new penalty will select
the tree that is more unbalanced, whereas a traditional penalty based only on tree size would
not distinguish the two. This has advantages for classification because unbalanced trees are
what we expect when approximating a lower dimensional decision boundary.

The derivation of (2) comes from applying standard concentration inequalities for sums
of Bernoulli trials (most notably the relative Chernoff bound) in a spatially decomposed
manner. Spatial decomposition allows the introduction of local probabilitiespA to offset
the complexity of each leaf nodeA. Our analysis is inspired by the work of Mansour and
McAllester [2].

The uniform error bound of Theorem 1 can be converted (using standard techniques) into
an oracle inequality that is the key to deriving rates of convergence for DDTs.

Theorem 2. Let T̂n be as in (1) withΦn as in (2). Define

Φ̃n(T ) =
∑

A∈π(T )

√
8p′A

JAK log 2 + log(2n)

n
.

Then

EZn{R(T̂n)} − R∗ ≤ min
T∈T

[
R(T ) − R∗ + 2Φ̃n(T )

]
+ O

(
1

n

)
. (4)

Note that with high probability,p′A is an upper bound on̂pA, and thereforẽΦn upper
boundsΦn. The use of̃Φn instead ofΦn in the oracle bound facilitates rate of convergence
analysis. The oracle inequality essentially says thatT̂n performs nearly as well as the
DDT chosen by an oracle to minimizeR(T ) − R∗. The right hand side of (4) bears the
interpretation of a decomposition into approximation error (R(T ) − R∗) and estimation
errorΦ̃n(T ).

4 Rates of Convergence

The classes of distributions we study are motivated by the work of Mammen and Tsybakov
[4] and Tsybakov [1] which we now review. The classes are indexed by the smoothness



γ of the Bayes decision boundary∂G∗ and a parameterκ that quantifies how “noisy” the
distribution is near∂G∗. We write an 4 bn whenan = O(bn) andan � bn if both
an 4 bn andbn 4 an.

Let γ > 0, and taker = dγe − 1 to be the largest integer not exceedingγ. Suppose
b : [0, 1]d−1 → [0, 1] is r times differentiable, and letpb,s denote the Taylor polynomial of
b of orderr at the points. For a constantc1 > 0, defineΣ(γ, c1), the class of functions
with Hölder regularityγ, to be the collection of allb such that

|b(s′) − pb,s(s
′)| ≤ c1|s − s′|γ for all s, s′ ∈ [0, 1]d−1.

Using Tsybakov’s terminology, the Bayes decision setG∗ is a boundary fragmentof
smoothnessγ if G∗ = epi(b) for someb ∈ Σ(γ, c1). Here epi(b) = {(s, t) ∈ [0, 1]d :
b(s) ≤ t} is the epigraph ofb. In other words, for a boundary fragment, the last coordinate
of ∂G∗ is a Hölder-γ function of the firstd − 1 coordinates.

Tsybakov also introduces a condition that characterizes the level of “noise” near∂G∗ in
terms of a noise exponentκ, 1 ≤ κ ≤ ∞. Let∆(f1, f2) = {x ∈ [0, 1]d : f1(x) 6= f2(x)}.
Let c2 > 0. A distribution satisfies Tsybakov’s noise condition with noise exponentκ and
constantc2 if

PX(∆(f, f∗)) ≤ c2(R(f) − R∗)1/κ for all f. (5)

The caseκ = 1 is the “low noise” case and corresponds to a jump ofη(x) at the Bayes
decision boundary. The caseκ = ∞ is the high noise case and imposes no constraint on
the distribution (providedc2 ≥ 1). See [6] for further discussion.

Define the classF = F(γ, κ) = F(γ, κ, c0, c1, c2) to be the collection of distributions of
Z = (X,Y ) such that

0A For all measurableA ⊆ [0, 1]d, PX(A) ≤ c0λ(A)

1A G∗ is a boundary fragment defined byb ∈ Σ(γ, c1).

2A The margin condition is satisfied with noise exponentκ and constantc2.

Introducing the parameterρ = (d − 1)/γ, Tsybakov [1] proved the lower bound

inf
f̂n

sup
F

[
EZn{R(f̂n)} − R∗

]
< n−κ/(2κ+ρ−1). (6)

The inf is over all rules for constructing classifiers from training data. Theoretical rules that
achieve this lower bound are studied by [1, 4, 5, 13]. Unfortunately, none of these works
provide computationally efficient algorithms for implementing the proposed discrimination
rules, and it is unlikely that practical algorithms exist for these rules.

It is important to note that the lower bound in (6) is tight only whenρ < 1. To see this,
fix ρ > 1. From the definition ofF(γ, κ) we haveF(γ, 1) ⊂ F(γ, κ) for anyκ > 1. As
κ → ∞, the right-hand side of (6)decreases. Therefore, the minimax rate forF(γ, κ) can
be no faster thann−1/(1+ρ), which is the lower bound forF(γ, 1).

In light of the above, Tsybakov’s noise condition does not improve the learning situation
whenρ > 1. To achieve rates faster thann−1/(1+ρ) whenρ > 1, clearly an alternate
assumption must be made. If the right-hand side of (6) is any indication, then the distribu-
tions responsible for slower rates are those with smallκ. Thus, it would seem that we need
a noise assumption that excludes those “low noise” distributions with smallκ that cause
slower rates whenρ > 1.

Since recursive dyadic partitions can well-approximateG∗ with smoothnessγ ≤ 1, we
are in the regime ofρ ≥ (d − 1)/γ ≥ 1. As motivated above, faster rates in this situation
require an assumption that excludes low noise levels. We propose such an assumption. Like



Tsybakov’s noise condition, our assumption is also defined in terms of constantsκ ≥ 1
andc2 > 0. Because of limited space we are unable to fully present the modified noise
condition, and we simply write

2B Low noise levels are excluded as defined in [11].

Effectively, 2B says that the inequality in (5) is reversed, not for all classifiers f , but only
for thosef that are the best DDT approximations tof∗ for each DDT resolutions parameter
M . Using techniques presented in [13], we show in [11] that lower bounds of the form in
(6) are valid when2A is replaced by2B. According to the results in the next section, these
lower bounds are tight to within a log factor forρ > 1.

5 Adaptive Rates for Dyadic Decision Trees

All of our rate of convergence proofs use the oracle inequality in the same basic way. The
objective is to find an “oracle tree”T ∗ ∈ T such that bothR(T ∗)−R∗ andΦ̃n(T ∗) decay
at the desired rate. This tree is roughly constructed as follows. First form a “regular”
dyadic partition (the exact construction will depend on thespecific problem) into cells
of sidelength1/m = 2−K , for a certainK ≤ L. Then “prune back” all cells that do
not intersect∂G∗. Both approximation and estimation error may now be boundedusing
the given assumptions and elementary bounding methods. Forexample,R(T ∗) − R∗ 4

(PZ(∆(T ∗, f∗)))κ (by 2B) 4 (λ(∆(T ∗, f∗)))κ (by 0A) 4 m−κ (by 1A). This example
reveals how the noise exponent enters the picture to affect the approximation error. See [11]
for complete proofs.

5.1 Noise Adaptive Classification

Dyadic decision trees, selected according to the penalizedempirical risk criterion discussed
earlier, adapt to the unknown noise level to achieve faster rates as stated in Theorem 3
below. For now we focus on distributions withγ = 1 (ρ = d − 1), i.e., Lipschitz decision
boundaries (the caseγ 6= 1 is discussed in Section 5.4), and arbitrary noise parameterκ.
The optimal rate for this class isn−κ/(2κ+d−2) [11]. We will see that DDTs can adaptively
learn at a rate of(log n/n)κ/(2κ+d−2).

In an effort to be more general and practical, we replace the boundary fragment condition
1A with a less restrictive assumption. Tysbakov and van de Geer[5] assume the Bayes
decision setG∗ is a boundary fragment, meaning it is known a priori that (a) one coordinate
of ∂G∗ is a function of the others, (b) that coordinate is known, and(c) class 1 corresponds
to the regionabove∂G∗. The following condition includes all piecewise Lipschitzdecision
boundaries, and allows∂G∗ to have arbitrary orientation andG∗ to have multiple connected
components. LetPm denote the regular partition of[0, 1]d into hypercubes of sidelength
1/m wherem is a dyadic integer (i.e., a power of 2). A distribution ofZ satisfies the
box-countingassumption with constantc1 > 0 if

1B For all dyadic integersm, ∂G∗ intersects at mostc1m
d−1 of themd cells inPm.

Condition1A (γ = 1) implies1B, (with a differentc1) so the minimax rate under0A, 1B,
and2B is no faster thann−κ/(2κ+d−2).

Theorem 3. LetM � (n/ log n). TakeT̂n as in (1) withΦn as in (2). Then

sup
[
EZn{R(T̂n)} − R∗

]
4

(
log n

n

) κ

2κ+d−2

. (7)

where the sup is over all distributions such that0A, 1B, and2B hold.



The complexity regularized DDT is adaptive in the sense thatthe noise exponentκ and
constantsc0, c1, c2 need not be known.̂Tn can always be constructed and in opportune
circumstances the rate in (7) is achieved.

5.2 When the Data Lie on a Manifold

For certain problems it may happen that the feature vectors lie on a manifold in the ambient
spaceX . When this happens, dyadic decision trees automatically adapt to achieve faster
rates of convergence. To recast assumptions0A and1B in terms of a data manifold1, we
again use box-counting ideas. Letc0, c1 > 0 and1 ≤ d′ ≤ d. The boundedness and
regularity assumptions for ad′ dimensional manifold are given by

0B For all dyadic integersm and allA ∈ Pm, PX(A) ≤ c0m
−d′

.

1C For all dyadic integersm, ∂G∗ passes through at mostc1m
d′−1 of themd hyper-

cubes inPm.

The minimax rate under these assumptions isn−1/d′

. To see this, consider the mapping of
featuresX ′ = (X1, . . . ,Xd′

) ∈ [0, 1]d
′

to X = (X1, . . . ,Xd′

, 1/2, . . . , 1/2) ∈ [0, 1]d.
ThenX lives on ad′ dimensional manifold, and clearly there can be no classifierachieving
a rate faster thann−1/d′

uniformly over all suchX, as this would lead to a classifier out-
performing the minimax rate forX ′. As the following theorem shows, DDTs can achieve
this rate to within a log factor.

Theorem 4. LetM � (n/ log n). TakeT̂n as in (1) withΦn as in (2). Then

sup
[
EZn{R(T̂n)} − R∗

]
4

(
log n

n

) 1

d′

. (8)

where the sup is over all distributions such that0B and1C hold.

Again, T̂n is adaptive in that it does not require knowledged′, c0, or c1.

5.3 Irrelevant Features

The “relevant” data dimension is the number of relevant features/attributes, meaning the
numberd′′ < d of features ofX that are not independent ofY . By an argument like that in
the previous section, the minimax rate under this assumption (and0A and1B) can be seen
to ben−1/d′′

. Once again, DDTs can achieve this rate to within a log factor.

Theorem 5. LetM � (n/ log n). TakeT̂n as in (1) withΦn as in (2).

sup
[
EZn{R(T̂n)} − R∗

]
4

(
log n

n

) 1

d′′

. (9)

where the sup is over all distributions with relevant data dimensiond′′ and such that0A
and1B hold.

As in the previous theorems, our learning rule is adaptive inthe sense that it does not need
to be toldd′′ or whichd′′ features are relevant.

1For simplicity, we eliminate the margin assumption here and in subsequent sections, although it
could be easily incorporated to yield faster adaptive rates.



5.4 Adapting to Bayes Decision Boundary Smoothness

Our results thus far apply to Tsybakov’s class withγ = 1. In [10] we show that DDTs with
polynomial classifiers decorating the leaves can achieve faster rates forγ > 1. Combined
with the analysis here, these rates can approachn−1 under appropriate noise assumptions.
Unfortunately, the rates we obtain are suboptimal and the classifiers are not practical.

For γ ≤ 1, free DDTs adaptively attain the minimax rate (within a log factor) of
n−γ/(γ+d−1). Due to space limitations, this discussion is deferred to [11]. Finding practi-
cal classifiers that adapt to the optimal rate forγ > 1 is a current line of research.

6 Conclusion

Dyadic decision trees adapt to a variation of Tsybakov’s noise condition, data manifold
dimension and the number of relevant features to achieve minimax optimal rates of con-
vergence (to within a log factor). DDTs are constructed by a computationally efficient
penalized empirical risk minimization procedure based on anovel, spatially adaptive, data-
dependent penalty. Although we consider each condition separately so as to simplify the
discussion, the conditions can be combined to yield a rate of(log n/n)κ/(2κ+d∗−2) where
d∗ is the dimension of the manifold supporting the relevant features.
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