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1 Background on Kernels

The function k : Ω×Ω→ R is called a kernel on Ω if the matrix (k(xi, xj))1≤i,j≤n is positive semi-
definite for all positive integers n and all x1, . . . , xn ∈ Ω. It is well-known that if k is a kernel on Ω,
then there exists a Hilbert space H̃ and Φ̃ : Ω→ H̃ such that k(x, x′) = 〈Φ̃(x), Φ̃(x′)〉H̃. While H̃
and Φ̃ are not uniquely determined by k, the Hilbert space of functionsHk = {〈v, Φ̃(·)〉H̃ : v ∈ H̃}
is uniquely determined by k, and is called the reproducing kernel Hilbert space (RKHS) of k.

One way to envisionHk is as follows. Define Φ(x) := k(·, x), which is called the canonical feature
map associated with k. Then Hk is the completion of the span of {Φ(x) : x ∈ Ω}. We also recall
the reproducing property, which states that 〈f,Φ(x)〉 = f(x) for all f ∈ Hk.

A kernel k on a compact metric space Ω is said to be universal when its RKHS is dense in C(Ω),
the set of continuous functions on Ω, with respect to the supremum norm. Universal kernels are
important for establishing universal consistency of many learning algorithms.

If k is a kernel on Ω, then

k∗(x, x′) :=
k(x, x′)√

k(x, x)k(x′, x′)

is the associated normalized kernel. If a kernel is universal, then so is its associated normalized
kernel. For example, the exponential kernel k(x, x′) = exp(κ〈x, x′〉Rd), κ > 0, can be shown to be
universal on Rd through a Taylor series argument. Consequently, the Gaussian kernel

kσ(x, x′) :=
exp( 1

σ2 〈x, x′〉)
exp( 1

2σ2 ‖x‖2) exp( 1
2σ2 ‖x′‖2)

is universal, being the normalized kernel associated with the exponential kernel with κ = 1/σ2. See
[1] for additional details and discussion.

2 Implementation

We describe an implementation of our methodology for the hinge loss, `(t, y) = max(0, 1 − yt).
To make the presentation more concise, we will employ the extended feature representation X̃ =
(P̂X , X), and we will also employ a single index on these variables and on the labels. Thus the
training data are (X̃i, Yi)1≤i≤M , where M =

∑N
i=1 ni, and we seek a solution to

min
f∈Hk

M∑
i=1

ci max(0, 1− Yif(X̃i)) +
1
2
‖f‖2 .
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Here ci = 1
2λNnm

, where m is the smallest positive integer such that i ≤ n1 + · · · + nm. By the
representer theorem [1], the solution of (3) has the form

f̂λ =
M∑
i=1

rik(X̃i, ·)

for real numbers ri. Plugging this expression into the objective function of (3), and introducing the
auxiliary variables ξi, we have the quadratic program

min
r,ξ

1
2
rTKr +

M∑
i=1

ciξi

s.t. Yi
M∑
j=1

rjk(X̃i, X̃j) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i,

where K := (k(X̃i, X̃j))1≤i,j≤M . Using Lagrange multiplier theory, and provided K is positive
definite, the dual quadratic program is

max
α
− 1

2

M∑
i,j=1

αiαjYiYjk(X̃i, X̃j) +
M∑
i=1

αi

s.t. 0 ≤ αi ≤ ci ∀i,

and the optimal function is

f̂λ =
M∑
i=1

αiYik(X̃i, ·).

This is equivalent to the dual of a cost-sensitive support vector machine, without offset, where the
costs are given by ci. Therefore we can learn the weights αi using any existing software package
for SVMs that accepts example-dependent costs and a user-specified kernel matrix, and allows for
no offset. Returning to the original notation, the final predictor has the form

f̂λ(P̂X , x) =
N∑
i=1

ni∑
j=1

αijYijk((P̂ (i)
X , Xij), (P̂X , x))

where the αij are nonnegative. Like the SVM, the solution is often sparse, meaning most αij are
zero.

Finally, we remark on the computation of kP (P̂X , P̂ ′X). When K has the form of (7) or (8), calcula-

tion of kP may be reduced to the calculation of
〈

Ψ(P̂X),Ψ(P̂ ′X)
〉

. If P̂X and P̂ ′X are based on the
samples X1, . . . , Xn and X ′1, . . . , X

′
n′ , then

〈
Ψ(P̂X),Ψ(P̂ ′X)

〉
=

〈
1
n

n∑
i=1

k′X(Xi, ·),
1
n′

n′∑
j=1

k′X(X ′j , ·)

〉

=
1
nn′

n∑
i=1

n′∑
j=1

k′X(Xi, X
′
j).

Note that when k′X is a (normalized) Gaussian kernel, Ψ(P̂X) is just a kernel density estimate for
PX .
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3 Proof of Theorem 5.1

We control the difference between the training loss and the idealized test loss via the following
decomposition:

sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

`(f(X̃ij), Yij)− E(f,∞)

∣∣∣∣∣∣
≤ sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

(
`(f(P̂ (i)

X , Xij), Yij)− `(f(P (i)
X , Xij), Yij)

)∣∣∣∣∣∣
+ sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

`(f(P (i)
X , Xij), Yij)− E(f,∞)

∣∣∣∣∣∣
=: (I) + (II).

3.1 Control of term (I)

Using the assumption that the loss ` is L`-Lipschitz in its first coordinate, we can bound the first
term as follows:

(I) ≤ L` sup
f∈Bk(R)

1
N

N∑
i=1

1
ni

ni∑
i=1

∣∣∣f(P̂ (i)
X , Xij)− f(P (i)

X , Xij)
∣∣∣

≤ L` sup
f∈Bk(R)

1
N

N∑
i=1

∥∥∥f(P̂ (i)
X , .)− f(P (i)

X , .)
∥∥∥
∞

We now use the following result:

Lemma 3.1. Assume the general conditions in (Kernels-A) hold. Let PX be an arbitrary distribu-
tion on X and P̂X denote an empirical distribution on X based on an iid sample of size n from PX .
Then with probability at least 1− δ over the draw of this sample, it holds that

sup
f∈Bk(R)

∥∥∥f(P̂ (i)
X , .)− f(P (i)

X , .)
∥∥∥
∞
≤ 3RBkBk′LK

(
log 2δ−1

n

)α
2

.

Proof. Let X1, . . . , Xn denote the n-sample from PX . Let us denote Φ′X the canonical mapping
x 7→ k′X(x, .) from X into Hk′X . We have for all x ∈ X , ‖Φ′X(x)‖ ≤ Bk′ , so, as a consequence of
Hoeffding’s inequality in a Hilbert space (see, e.g., [2]) we have with probability 1− δ:

∥∥∥Ψ(PX)−Ψ(P̂X)
∥∥∥ =

∥∥∥∥∥ 1
n

n∑
i=1

Φ′X(Xi)− EX∼PX [Φ′X(X)]

∥∥∥∥∥ ≤ 3Bk′

√
log 2δ−1

n
. (1)
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On the other hand, using the reproducing property of the kernel k, we have for any x ∈ X and
f ∈ Bk(R):

|f(P̂X , x)− f(PX , x)|

=
∣∣∣〈k((P̂X , x), .)− k((PX , x), .), f

〉∣∣∣
≤ ‖f‖

∥∥∥k((P̂X , x), .)− k((PX , x), .)
∥∥∥

≤ RkX(x, x)
1
2

(
K(Ψ(PX),Ψ(PX))

+ K(Ψ(P̂X),Ψ(P̂X))− 2K(Ψ(PX),Ψ(P̂X))
) 1

2

≤ RBk
∥∥∥ΦK(Ψ(PX))− ΦK(Ψ(P̂X))

∥∥∥
≤ RBkLK

∥∥∥Ψ(PX)−Ψ(P̂X)
∥∥∥α ,

where we have used the fact that for all P ∈ PX , ‖Ψ(P )‖ ≤
∫
X ‖k

′
X(x, ·)‖ dPX(x) ≤ Bk′ , so that

Ψ(P ) ∈ Bk′X (Bk′). Combining with (1) gives the result.

Conditionally to the draw of (P (i)
X )1≤i≤N , we can now apply this lemma to each (P (i)

X , P̂
(i)
X ) then

the union bound over i = 1, . . . , N to get that with probability 1− δ (conditionally to (P (i)
X )1≤i≤N ,

and thus also unconditionally):

(I) ≤ 3RBkBk′L`LK

(
log δ−1 + log 2N

n

)α
2

.

3.2 Control of term (II)

First define the conditional (idealized) test error for a given test distribution PTXY as

E(f,∞|PTXY ) := E(XT ,Y T )∼PTXY

[
`(f(PTX , X

T ), Y T )
]
. (2)

We can further decompose (II) as

(II) ≤ 1
N

N∑
i=1

1
ni

ni∑
j=1

(
`(f(P (i)

X , Xij), Yij)− E(f,∞|P (i)
XY )

)
+

1
N

N∑
i=1

(
E(f,∞|P (i)

XY )− E(f,∞)
)

=: (IIa) + (IIb).

We recall in what follows that the loss function ` is positive and bounded by the constant B`, and
that the kernel K is bounded by B2

K.

Control of term (IIa). We study term (IIa) conditional to (P (i)
XY )1≤i≤N . In this case, note that

for this conditional distribution, the variables (Xij , Yij)ij are now independent (but not identically
distributed) variables. We can thus apply the Azuma-McDiarmid inequality [3] to the function

ζ((Xij , Yij)ij) := sup
f∈Bk(R)

1
N

N∑
i=1

1
ni

ni∑
j=1

(
`(f(P (i)

X , Xij), Yij)− E(f,∞|P (i)
XY )

)
.

We deduce that with probability 1 − δ over the (conditional, then also unconditional) draw of
(Xij , Yij)ij , it holds ∣∣∣ζ − E

[
ζ
∣∣∣(P (i)

XY )1≤i≤N
]∣∣∣ ≤√Cζ log δ−1 ;

where

Cζ :=
B2
`

N2

N∑
i=1

1
ni

;
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note that when all nis are equal to n, this simplifies to

Cζ :=
B2
`

Nn
.

Next, to bound E
[
ζ
∣∣∣(P (i)

XY )1≤i≤N
]
, we can use relatively standard Rademacher complexity analy-

sis. Denote (εij)1≤i≤N,1≤j≤ni iid Rademacher variables (independent from everything else). We
have

E
[
ζ
∣∣∣(P (i)

XY )1≤i≤N
]

= E(Xij ,Yij)

 1
N

sup
f∈Bk(R)

N∑
i=1

1
ni

ni∑
j=1

(
`(f(P (i)

X , Xij), Yij)− E(f,∞|P (i)
XY )

) ∣∣∣(P (i)
XY )1≤i≤N


≤ 2
N

E(Xij ,Yij)E(εij)

 sup
f∈Bk(R)

N∑
i=1

1
ni

ni∑
j=1

εij

(
`(f(P (i)

X , Xij), Yij)
) ∣∣∣(P (i)

XY )1≤i≤N


≤ 2RL`BkBK

N

√√√√ N∑
i=1

1
ni
.

The first inequality is a standard symmetrization argument. The last inequality is a variation (with
possibly unequal weights 1/ni) on the standard bound (see [4], Theorem 7 and Lemma 22) for the
Rademacher complexity of a Lipschitz loss function on the ball of radius R of Hk, the kernel k
being bounded by B2

kB
2
K. In case all nis are equal, this boils down to

E
[
ζ
∣∣∣(P (i)

XY )1≤i≤N
]
≤ 2L`RBXBK

√
1
Nn

.

Control of term (IIb). Since the (P (i)
XY )1≤i≤N are iid, we can apply the Azuma-McDiarmid in-

equality to the function

ξ((P (i)
XY )1≤i≤N ) := sup

f∈Bk(R)

1
N

N∑
i=1

(
E(f,∞|P (i)

XY )− E(f,∞)
)
,

obtaining that with probability 1− δ over the draw of (P (i)
XY )1≤i≤N , it holds

|ξ − E [ξ]| ≤ B`

√
log δ−1

2N
;

Rademacher complexity analysis for bounding E [ξ]: below, we will denote (Xi, Yi) a (single)
draw from distribution P

(i)
XY (and these draws are independent). We also denote (εi)1≤i≤N iid

Rademacher variables (independent from everything else). We have

E [ξ] = E
(P

(i)
XY )1≤i≤N

[
sup

f∈Bk(R)

1
N

N∑
i=1

E
(X,Y )∼P (i)

XY

[`(f(PX , X), Y )]

− EPXY ∼µE(X,Y )∼PXY [`(f(PX , X), Y )]

]

≤ 2
N

E
(P

(i)
XY )1≤i≤N

E(εi)1≤i≤N

[
sup

f∈Bk(R)

N∑
i=1

εiE(Xi,Yi)∼P (i)
XY

[
`(f(P (i)

X , Xi), Yi)
]]

≤ 2
N

E
(P

(i)
XY )1≤i≤N

E(Xi,Yi)1≤i≤NE(εi)1≤i≤N

[
sup

f∈Bk(R)

N∑
i=1

εi`(f(P (i)
X , Xi), Yi)

]

≤ 2RL`BkBK√
N

.
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The first inequality is a standard symmetrization argument. In the second inequality, the inner expec-
tation on the (Xi, Yi) is pulled outwards. The last inequality is a standard bound for the Rademacher
complexity of a Lipschitz loss function on the ball of radius R of Hk, the kernel k being bounded
by B2

kB
2
K.

Combining all of the above inequalities, we obtained the announced result of the theorem.

3.3 Regularity conditions for the kernel K

We investigate sufficient conditions on the kernel K to ensure the regularity condition (9). Roughly
speaking, the regularity of the feature mapping of a reproducing kernel is “one half” of the regularity
of the kernel in each of its variables. The next result considers the situation where K is itself simply
a Hölder continuous function of its variables.

Lemma 3.2. Let α ∈ (0, 1
2 ]. Assume that the kernel K is Hölder continuous of order 2α and constant

L2
K/2 in each of its two variables on Bk′X (Bk′). Then (9) is satisfied.

Proof. For any v, w ∈ Bk′X (Bk′):

‖ΦK(v)− ΦK(w)‖ = (K(v, v) + K(w,w)− 2K(v, w))
1
2 ≤ LK ‖v − w‖

α
2

The above type of regularity only leads to a Hölder feature mapping of order at most 1
2 (when the

kernel function is Lipschitz continuous in each variable). Since this order plays an important role in
the rate of convergence of the upper bound in the main error control theorem, it is desirable to study
conditions ensuring more regularity, in particular a feature mapping which has at least Lipschitz
continuity. For this, we consider the following stronger condition, namely that the kernel function is
twice differentiable in a specific sense:

Lemma 3.3. Assume that, for any u, v ∈ Bk′X (Bk′) and unit norm vector e of Hk′X , the function
hu,v,e : (λ, µ) ∈ R2 7→ K(u+ λe, v+µe) admits a mixed partial derivative ∂1∂2hu,v,e at the point
(λ, µ) = (0, 0) which is bounded in absolute value by a constant C2

K independently of (u, v, e).

Then (9) is satisfied with α = 1 and LK = CK, that is, the canonical feature mapping of K is
Lipschitz continuous on Bk′X (Bk′).

Proof. The argument is along the same lines as [1], Lemma 4.34. Observe that, since hu,v,e(λ +
λ′, µ+ µ′) = hu+λe,v+µe,e(λ′, µ′), the function hu,v,e actually admits a uniformly bounded mixed
partial derivative in any point (λ, µ) ∈ R2 such that (u + λe, v + µe) ∈ Bk′X (Bk′) . Let us denote
∆1hu,v,e(λ, µ) := hu,v,e(λ, µ) − hu,v,e(0, µ) . For any u, v ∈ Bk′X (Bk′) , u 6= v , let us denote
λ := ‖v − u‖ and the unit vector e := λ−1(v − u); we have

‖ΦK(u)− ΦK(v)‖2 = K(u, u) + K(u+ λe, u+ λe)− K(u, u+ λe)− K(u+ λe, u)
= ∆1hu,v,e(λ, λ)−∆1hu,v,e(λ, 0)

= λ∂2∆1hu,v,e(λ, λ′) ,

where we have used the mean value theorem, yielding existence of λ′ ∈ [0, λ] such that the last
equality holds. Furthermore,

∂2∆1hu,v,e(λ, λ′) = ∂2hu,v,e(λ, λ′)− ∂2hu,v,e(0, λ′)

= λ∂1∂2hu,v,e(λ′′, λ′) ,

using again the mean value theorem, yielding existence of λ′′ ∈ [0, λ] in the last equality. Finally,
we get

‖ΦK(u)− ΦK(v)‖2 = λ2∂1∂2hu,v,e(λ′, λ′′) ≤ C2
K ‖v − u‖

2
.
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Lemma 3.4. Assume that the kernel K takes the form of either (a) K(u, v) = g(‖u− v‖2) or (b)
K(u, v) = g(〈u, v〉) , where g is a twice differentiable real function of real variable defined on
[0, 4B2

k′ ] in case (a), and on [−B2
k′ , B

2
k′ ] in case (b). Assume ‖g′‖∞ ≤ C1 and ‖g′′‖∞ ≤ C2.

Then K satisfies the assumption of Lemma 3.3 with CK := 2C1 + 16C2B
2
k′ in case (a), and CK :=

C1 +B2
k′C2 for case (b).

Proof. In case (a), we have hu,v,e(λ, µ) = g(‖u− v + (λ− µ)e‖2). It follows

|∂1∂2hu,v,e(0, 0)| =
∣∣∣−2g′(‖u− v‖2) ‖e‖2 − 4g′′(‖u− v‖2) 〈u− v, e〉2

∣∣∣
≤ 2C1 + 16B2

k′C2 .

In case (b), we have hu,v,e(λ, µ) = g(〈u+ λe, v + µe〉). It follows

|∂1∂2hu,v,e(0, 0)| =
∣∣∣g′(〈u, v〉) ‖e‖2 + g′′(〈u, v〉) 〈u, e〉 〈v, e〉

∣∣∣
≤ C1 +B2

k′C2 .

3.4 Proof of Lemma 5.2

Proof. Let H,H′ the RKHS associated to k, k′ with the associated feature mappings Φ,Φ′. Then
it can be checked that (x, x′) ∈ X × X ′ 7→ Φ(x) ⊗ Φ′(x′) is a feature mapping for k into the
Hilbert spaceH⊗H′. Using [1], Th. 4.21, we deduce that the RKHS H of k contains precisely all
functions of the form (x, x′) ∈ X × X ′ 7→ Fw(x, x′) = 〈w,Φ(x)⊗ Φ(x′)〉, where w ranges over
H⊗H′. Taking w of the form w = g ⊗ g′, g ∈ H, g ∈ H′, we deduce that H contains in particular
all functions of the form f(x, x′) = g(x)g(x′), and further

H̃ := span {(x, x′) ∈ X × X ′ 7→ g(x)g(x′); g ∈ H, g′ ∈ H′} ⊂ H.

Denote C(X ), C(X ′), C(X×X ′) the set of real-valued continuous functions on the respective spaces.
Let

C(X )⊗ C(X ′) := span {(x, x′) ∈ X × X ′ 7→ f(x)f ′(x′); f ∈ C(X ), f ′ ∈ C(X ′)} .

Let G(x, x′) be an arbitrary element of C(X ) ⊗ C(X ′), G(x, x′) =
∑k
i=1 λigi(x)g′i(x

′) with
gi ∈ C(X ), g′i ∈ C(X ′) for i = 1, . . . , k. For ε > 0, by universality of k and k′, there
exist fi ∈ H, f ′i ∈ H′ so that ‖fi − gi‖∞ ≤ ε, ‖f ′i − g′i‖∞ ≤ ε for i = 1, . . . , k. Let
F (x, x′) :=

∑k
i=1 λifi(x)f ′i(x

′) ∈ H̃. We have

‖F (x, x′)−G(x, x′)‖∞ ≤

∥∥∥∥∥
k∑
i=1

λi(gi(x)g′i(x)− fi(x)f ′i(x))

∥∥∥∥∥
∞

=

∥∥∥∥∥
k∑
i=1

λi

[
(fi(x)− gi(x))(g′i(x

′)− f ′i(x′))

+ gi(x)(g′i(x)− f ′i(x′)) + (gi(x)− fi(x))g′i(x
′)
]∥∥∥∥∥
∞

≤ ε
k∑
i=1

|λi| (ε+ ‖gi‖∞ + ‖g′i‖∞) .

This establishes that H̃ is dense in C(X )⊗ C(X ′) for the supremum norm. It can be easily checked
that C(X )⊗C(X ′) is an algebra of functions which does not vanish and separates points on X ×X ′.
By the Stone-Weiertrass theorem, it is therefore dense in C(X × X ′) for the supremum norm. We
deduce that H̃ (and thus alsoH) is dense in C(X × X ′), so that k is universal.
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3.5 Proof of Theorem 5.3

By Lemma 5.2, it suffices to show PX is a compact metric space, and that kP (PX , P ′X) is universal
on PX . The former statement follows from Theorem 6.4 of [5], where the metric is the Prohorov
metric. We will deduce the latter statement from of Theorem 2.2 of [6]. The statement of Theorem
2.2 there is in principle restricted to kernels of the form (8), but the proof actually only uses that
the kernel K is universal on any compact set of Hk′X . To apply Theorem 2.2, it remains to show
that Hk′X is a separable Hilbert space, and that Ψ is injective and continuous. Injectivity of Ψ is
equivalent to k′X being a characteristic kernel, which follows from the assumed universality of k′X
[7]. The continuity of k′X implies separability ofHk′X ([1], Lemma 4.33) as well as continuity of Ψ
([6], Lemma 2.3 and preceding discussion). Now Theorem 2.2 of [6] may be applied, and the result
follows.

The fact that kernels of the form (9), where G is analytic with positive Taylor coefficients, are
universal on any compact set ofHk′X was established in the proof of Theorem 2.2 of the same work
[6].

3.6 Proof of Corollary 5.4

Proof. It has been established that k is a universal kernel on PX × X . The rest of the argument
is standard and we only sketch it here for completeness. Let us denote Ê(f,N, n) the empirical
loss of a function f appearing in the LHS of (8) and in the optimization problem (3) defining the
estimator. By comparing the objective function in (3) taken at the minimizer f̂λ and at the null
function, we deduce that we must have

∥∥∥f̂λ∥∥∥ ≤ B`/λ. Denote j = min(N,nα). We apply the result

of Theorem 5.1 for Rj = B`/λj , δj = 1/j2. The assumptions on λj ensure that the RHS of the

main bound goes to 0 as j →∞. Since f̂λj ∈ Bk(Rj), we deduce that
∣∣∣Ê(f̂λj , N, n)− E(f̂λj ,∞)

∣∣∣
converges to zero in probability as j = min(N,nα) → ∞. Similarly, for any arbitrary function
f0 ∈ Hk,

∣∣∣Ê(f0, N, n)− E(f0,∞)
∣∣∣ converges to zero in probability since f0 ∈ Bk(Rj) for j big

enough (since Rj → ∞ as j → ∞). By comparing the objective in f̂λj and in f0, and using the
above bounds, we deduce

E(f̂λj ,∞) ≤ E(f0,∞) + λj ‖f0‖+ εj ,

where εj tends to 0 in probability. Since this is valid for any f0 ∈ Hk, we get

E(f̂λmin(N,nα) ,∞) P→ inf
f0∈Hk

E(f0,∞) = inf
f :PX×X→R

E(f,∞),

where the last equality is a consequence of the universality of k and the boundedness of `.
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