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1 Introduction and notations

In this work the structure of the electromagnetic field in a lossy conducting medium
is studied in detail. The meaning of the complex angle of refraction is explained
in terms of real parameters involved in this problem. The concepts are illustrated
with a wave refracting from air into pure water at a frequency of 95 GHz and an
incidence angle of 60

�
. The approach is similar to that used to derive refraction

in many electromagnetic textbooks, such as Stratton [1], which has been cited in
many of the textbooks published since. Our results agree with his for the real an-
gle of the equiphase surface of the refracted fields, but we explore further subjects
including the instantaneous and time-averaged Poynting vectors.
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We consider medium 1 to be air (or some other lossless media) with a wave
number denoted by �������	� 
��
�������	� 
���
��������������������� 
����������

(1)

where
������� � 
������

, and medium 2 to be a lossy dielectric with complex wave
number denoted by ��� �!�	� 
�������!�#" 
��%$&��'�)(+*-, ��/.�!� 
��0
1�2������3 � ' ���� (+* , �� ����4�5���76 
��2�&89� '�2��(:* � ' '�2��;

(2)

where ���2�	�<� '�2�=(:* � ' '�2� � >��� $?� '�=(:* , �� . (3)

denotes the relative complex permittivity of the medium.
In the text that follows, a subscript of 1 will always denote a quantity associ-

ated with medium 1, and similarly, a subscript of 2 will always denote a quantity
associated with medium 2. Also, a single prime will denote the real part of a
quantity and a double prime will denote the imaginary part of a quantity. Thus, if@ is a complex quantity, @ � @ ' (:* @ ' ' .
2 Transverse Electric

Let the incident wave have an electric field perpendicular to the plane of incidence.
The field components of the incident, reflected and refracted waves can be written
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in the form ACB �!DFE�GIH BKJ�L2MONQPSRUTWVYX[ZU\^]2N�TWVY_�`�ab (4)c B � ���
DFE�G�d
�� 89e�f�gih B aj ( g�kmlFh B an ; H BKJ�LoMpNQPSRUTWVYX[ZU\9]2N0TWVq_�` (5)A � �<r E�GIH BKJ L MpNmPSRUTtsoX�uv\^]2N�TWs2_�` ab (6)c � � ����r E�G�d
�� 8�wxe�f�gih-� aj ( g�kmlyh-� an ; H BKJ�L2MONQPSR�TtsWX�uv\^]2N�TWs2_�` (7)A{z �<|FE�GIH BKJ�}�MONQPSRUTW~QX[ZU\^]2N�Tt~m_�` ab (8)c z � ����|FE�G�d
�� 89e�f�gih z aj ( g�kQlyh z an ; H BKJ�}�MpNQPSRUTW~qX[ZU\9]2N�Tt~m_�` (9)

At the boundary at @ ���
, the tangential components of

A
and

c
must be

continuous. Hence ����g�kmlFh B �5����g�kQlFh-��������g�kmlFh z
(10)

or, h B ��h-�g�kQlyh zg�kmlyh B � ������
������ Snell’s Law (11)

and DFE�G ( r E�Gx��|FE�G
(12)���ve�f�gih B�d
�� 8^DFE�G�w�r EvG ; � ���ie�f�gih B�d
�� |FE�G
(13)

or, DyEvGr E�G�� � ���� > � ���ie-f�gih z���ve�f�gih B�� |yEvG Fresnel’s Formula (14)

Fresnel’s formula can be presented in several different forms. Expressing the
ratio of

���������
in terms of

g�kQlFh z �)g�kQl	h B
, the amplitudes

DFEvG��0|FE�G
, and

r E�G
bear

the following ratios:DFE�G/��|FE�G���r E�G���g�kQl�8th B ( h z ; �i8^g�kQl�89h B ( h z ; w�g�kml�8th B w+h z ;�; ��g�kml�89h B w+h z ;
(15)
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If we introduce the wave impedances� ��� " 
����� (16)� ��� " 
����� (17)

then, under the assumption that

)���!
��

, we can state������ � " ������ � � �� � (18)

and Fresnel’s formula can be written in the formDyEvG��U|FE�G��Ur EvG���8 � �ie�f�gih B ( � �ve�f�gih z ; ��� � ��e-f�gih B �i8 � �ie-f�gih B w � ��e-f�gih z ;
(19)��8 � ����e�f�gih z ( � ����e�f�g�h B ; ��� � ���)e�f�gih z ��8 � ����e�f�gih z w � ���)e�f�gih B ;
(20)

Sometimes it is convenient to use the transverse wave admittance defined by  BX¡ B¢ � w   �X¡ �¢ � e�f�gih B� � �<£¤�
(21)  zX¡ z¢ � e�f�gih z� � ��£i�
(22)

then (20) can be changed toDFE�G/�U|yEvG��Ur E�Gx�¥8t£�� ( £i� ; ����£¤� ��89£¤��w+£i� ;
(23)

So far the formulas are merely the formal solutions. In the first place, un-
less medium 2 is lossless ( , �¦���

, or
� ' '�2� �§�

), the angle
h z

is a complex angle.
The picture in Figure 1 is therefore only symbolic for a lossy medium when we
are dealing with a complex

h z
. In particular, we are going to show that

c z
is an

elliptically polarized field, not transverse to

A z
. The plane of polarization corre-

sponds to the plane of incidence, the ¨ – @ plane. For convenience, we introduce
the notations � X ���v��g�kmlyh B �����ig�kmlFh z

(24)� _ �����ie�f�gih z �5� '_ (:* � ' '_ ��©S� _ © H BKª
(25)���«� ������ �<� '� (:* � ' '� �¬©S���7©SH BK­
(26)
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The parameters
� '_

and
� ' '_

can be found by considering the relation8t����e�f�g�h z ; � ��� ���® > w¯g�kml � h z9° ��� �� w¯� �� g�kml � h B
(27)��� �� ® � '��(+* � ' '� w¯g�kml � h B±°
(28)

where again we assumed

=����
��

and thus
� �� ��� �� 8t� '��(+* � ' '�?;

. Hence,8W� '_ (²* � ' '_ ; � ��� �� ® � '� w�g�kQl � h B (:* � ' '� °
(29)

Separating the real and imaginary parts of (29) and solving for
� '_

and
� ' '_

, we
find � '_� ' '_ � �5���´³µ�¶ ® � '� w�g�kml � h B ° � ( � ' '� � � ® � '� w¯g�kQl � h B °� ·¸ �t¹o� (30)

Going back to the expression for
c z

we have, in terms of the new notations,  zX � � _ |FE�G�d
�� H BmMpJ�º�X[Z�J�»
_�`� � ©S� _ © |FE�GIH J�¼ ¼» _�d
�� � H BmMpJ�º�X[Z�J ¼» _�u%ª&`��½�E�GIH BmMO¾-u%ª&` � @´¿ �
(31)  z_ � � X |FE�G�d
�� H BQMKJ�º�X[Z�J�»2_�`� � � X |FE�GIH J ¼ ¼» _�d
�� � H BmMpJ º X[Z�J�¼» _�`��À�E�GIH BK¾ � @Á¿ � (32)

where Â �5� X ¨ w:� '_ @ , ½�E�Gx� ©�� _ ©S|yEvG�H J�¼ ¼» _�d
�� (33)À�E�Gx� � X |FE�G¤H J ¼ ¼» _�d
�� (34)

where we have arbitrarily chosen the phase of
|ÃE�G

to be zero. The equiphase
surface of both

  zX
and

  z_
correspond toÂ ��� X ¨ w:� '_ @ � constant (35)
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The normal to the surface makes an angle Ä with the vertical axis ( @ -axis) whereÅ0Æ l Ä � � X� '_ � � X© � _ ©oe-f�giÇ (36)

The constant amplitude surface corresponds to @ � constant, being parallel to
the interface. The instantaneous value of

  zX
and

  z_
at a station

8 ¨ � @ ; are given
by   zX 8^È ; ��½�E�GÉe-f�gÊ8±��È=w Â w+Ç ; (37)  z_ 8^È ; ��À�E�GÉe-f�g�8m��È=w Â ; (38)

They describe an elliptically polarized wave in ¨ – @ plane. The major axis of the
ellipse makes a tilt angle Ë with the vertical axis given byÅ�Æ l{� Ë � ��½�E�GIÀ�EvG½ �E�G w�À �E�G e-f�giÇ (39)� ��©S� _ ©�� X©S� _ © � w:� �X e-f�giÇ�� ��� '_ � X©S� _ © � w+� �X (40)

and a minor axis to major axis ratio of
Å�Æ l�Ì�� $ > w 6 > w�g�kQl � �ÍÌ . �)g�kmly�ÍÌ ,

where g�kmlF�ÍÌ�� ��½�E�G¤À�E�G½ �E�G ( À �E�G g�kmlFÇ (41)� ��� X � ' '_©S� _ © � ( � �X (42)

The magnetic field ellipse is shown in Figure 2.
The instantaneous Poynting vector associated with

A z
and

c z
are described

by Î X 8^È ; � ¡ z¢ 8ÏÈ ;   z_ 8^È ; (43)��Ð¤EvGÉe�f�g � 8Ï��È�w Â ; (44)� �� ÐIE�G�8 > ( e-f�gÊ8W�&��ÈÊw:� Â ;�; (45)

Î _ 8^È ; �Ñw ¡ z¢ 8^È ;   zX 8^È ; (46)��ÒÃE�G�e�f�gÊ8Ï��ÈÊw Â ; e-f�g�8Ï��ÈÊw Â w¯Ç ; (47)� �� ÒÃEvG�89e-f�giÇ ( e-f�gÊ8W�&��È�w+� Â w+Ç ;�; (48)
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where Ð¤EvG�� � X | �EvG H � J ¼ ¼» _�d
�� (49)ÒÃEvG�� w´©�� _ © | �E�G H � J ¼ ¼» _�d
�� (50)

The instantaneous Poynting vector Ó 8ÏÈ ; is composed of a time-average com-
ponent and a fluctuating component as follows: Ó 89È ; � Ó (:Ô 89È ; .

The time-average values of

Î X 8^È ;
and

Î _ 8^È ;
are therefore given by

Î X � �� Ð¤EvG (51)

Î _ � �� ÒÃE�G�e�f�giÇ (52)

The direction of Ó makes an angle Õ E�G with the vertical axis withÅ�Æ l Õ EvG�� ÐIE�GwCÒÃEvG�e-f�giÇ � � X©�� _ ©2e�f�g�Ç � � X� '_ (53)

which is the same as the angle Ä of the normal to the equiphase surface. The
fluctuating part of Ó 8^È ; is represented byÖ X 8^È ; � �� ÐIE�GÉe-f�gÊ8t�&��È=w¯� Â ; (54)Ö _ 8^È ; � �� Ò#E�G�e-f�gÊ8t�&��ÈÊw:� Â w+Ç ; (55)

Their locus is an ellipse which has the same shape as the ellipse of the magnetic
field vector except it has been rotated by 90

�
becauseÐ¤EvGÒ#E�G � wÃ� X©S� _ © � wCÀ�EvG½�E�G (56)

The locus of Ó 8^È ; is shown in Figure 3.

3 Transverse Magnetic

In the Transverse Magnetic case, where the magnetic field is perpendicular to the
plane of incidence, the field components of the incident, reflected and transmitted
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(refracted) waves arec B ��DyEv× ab H BKJ�LWMpNmPSRUTtVKX[ZU\9]2N�TtVY_�` (57)A{B � w{���
DFEv×� ��� 8^e-f�g�h B aj ( g�kmlyh B an ; H BKJ�L2MØNmPSR�TWVKX[ZU\^]2N�TWVY_�` (58)c � ��r Ev× ab H BpJ L MØNmPSR�TWstX�uv\9]2N�Tts2_�` (59)A � � ����r Ev×� ��� 8^e-f�gih-� aj w¯g�kmlyh-� an ; H BKJ�LoMpNQPSRUTWsoX�uv\^]2N�TWsW_�` (60)c z ��|yE%× ab H BpJ�}�MONmPSRUTt~QX[ZU\^]2N�TW~Q_�` (61)A z � w{����|FEv×� ��� 8^e-f�g�h z aj ( g�kmlyh z an ; H BpJ�}�MØNmPSR�TW~YX[ZU\^]2N�TW~Q_�` (62)

To satisfy the boundary condition at @ ���
, we again must have����g�kmlFh B �5����g�kQlFh-��������g�kmlFh z

(63)

and DFEv× ( r Ev×Ñ��|FEv×
(64)�v���� e�f�g�h B 8^DFEv×Ùw+r E%× ; � ������ e-f�g�h z |FEv× (65)

or DFEv×r Ev× � � ���� >«� �������������� e-f�gih ze�f�gih B�� |yE%× (66)� ���� >«� g�kmlyh zg�kmlyh B e�f�gih ze-f�gih B � |FEv× (67)

orDyE%×¬�U|FEv×��Ur Ev×¥��89g�kQlF��h B ( g�kmlC��h z ; ���)g�kQlF��h B ��89g�kmlF��h B w�g�kmlC��h z ;
(68)�<g�kml�89h B ( h z ; e�f�g�89h B w+h z ; �U�)g�kQlyh B e-f�g�h B ��g�kQl�8th B w¯h z ; e-f�gÊ8th B ( h z ;
(69)

Sometimes it is convenient to deal with the amplitudes of the electric field
even for this case. Denoting these amplitudes by

D���|
and

r
, thenD�� � �
DyE%×

(70)|�� � ��|FEv×
(71)rÙ� � ��r Ev×
(72)
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where � ��� " 
����� (73)� ��� " 
����� (74)

Then DÚ�U|Û��rÚ�<DFEv×¬� � �� � |yE%×��Ur Ev×
(75)

Since, for

����<
��

, � �� � � " ������ � ������ � g�kQlyh zg�kmlyh B (76)

we haveDÚ�U|¬�UrÚ�<g�kQl�8th B ( h z ; e�f�gÊ8th B w+h z ; ���)g�kQlyh z e�f�gih B ��g�kQl�8th B w+h z ; e-f�gÊ8th B ( h z ;
(77)� Å�Æ l�89h B ( h z ; � � Å0Æ l�8th B ( h z ;e-f�gÊ89h B w+h z ; w Å�Æ l�89h B w�h z ;e�f�gÊ8th B ( h z ; � � Å�Æ l�89h B w¯h z ; (78)

This form of Fresnel’s formula is due to Sommerfeld [2].
We now consider the structure of

A z
,
c z

, and Ó . The key formulas are  z¢ ��|yE%×�H BmMpJ�º�X[Z�J�»2_�`
(79)� $ |FEv×ÜH J�¼ ¼» _ . H BmMOJ º X[Z�J�¼» _�` (80)

where the same notations are used, ie.,� X ���v��g�kmlyh B �����ig�kmlFh z
(81)� _ �����ie�f�gih z �5� '_ (:* � ' '_ ��©S� _ © H BKª
(82)

Then, ¡ zX � >* � ���IÝ   z¢Ý @ � 3 wÃ� _ |FEv×ÜH J ¼ ¼» _� ��� 4 H BmMOJ�º�X[Z�J�¼» _�` (83)�<½�E%×�H BmMKJ�º�X[Z�J�¼» _�u%ª�Z�­W` ��½�Ev×ÜH BmMp¾-u%ª�Z�­W`
(84)¡ z_ � w >* � ���IÝ   z¢Ý ¨ � 3 wÃ� X |yE%×�H J ¼ ¼» _� ��� 4 H BmMOJ�º�X[Z�J�¼» _�` (85)�<À�E%×¦H BQMpJ�º�X[Z�J�¼» _�Z�­W` ��À�Ev×¦H BmMO¾&Z�­W`
(86)
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where ½�E%×¥� w´©�� _ © |FEv×�H J�¼ ¼» _�É© ����© (87)À�E%×¥� w{� X |FEv×ÜH J�¼ ¼» _�É© ����© (88)���	��© ����© H BK­
(89)

The polarization ratio and the phase difference of
¡ zX

and
¡ z_

are the same as
that of

  zX
and

  z_
given by (31) and (32). The locus of

A z
, therefore, has the same

shape and the same inclination as the ellipse for
c z

under the TE case, as shown
in Figure 4. The nature of Ó 8^È ; , however, is different in this case because of the
phase constant Þ due to

�0�
. The expressions for

Î X 8ÏÈ ;
and

Î _ 8ÏÈ ;
are

Î X 8±È ; �Ñw ¡ _ 8^È ;   ¢ 8^È ; ��ÐIEv×�e-f�g�8±��È�w Â ; e-f�gÊ8Ï��È�w Â ( Þ ;� �� ÐIEv×!ßàe�f�g Þ ( e�f�gÊ8W�?��È�w:� Â ( Þ ;
á (90)

Î _ 8±È ; � ¡ X 8ÏÈ ;   ¢ 8^È ; ��ÒÃEv×�e-f�g�8Ï��ÈÊw Â ; e-f�gÊ8±��È=w Â w+Ç ( Þ ;� �� Ò#Ev×<ß�e�f�gÊ8tÇxw Þ ;¤( e�f�gÊ8W�?��È�w:� Â w+Ç ( Þ ;
á (91)

where ÐIEv×Ñ� � X | �E%× H � J ¼ ¼» _�É© ����© (92)ÒÃE%×¥� w´©�� _ © | �Ev× H � J ¼ ¼» _�É© ����© (93)

The average values of

Î X 8^È ;
and

Î _ 8ÏÈ ;
are therefore given by

Î X � �� ÐIEv×�e-f�g Þ (94)

Î _ � �� Ò#Ev×�e-f�g=89Ç�w Þ ; (95)

The direction of Ó makes an angle Õ Ev× with the vertical axis withÅ�Æ l Õ E%×Ñ� Ð¤E%×�e�f�g ÞwCÒÃE%×¯e�f�gÊ8tÇxw Þ ; � � X e-f�g Þ© � _ ©oe-f�gÊ89Çxw Þ ; � Å0Æ l Õ E�G> ( Å�Æ lyÇ Å0Æ l Þ (96)

which demonstrates that Õ Ev× â� Õ E�G as given by (53). It is, therefore, not the
same as the direction of the normal to the equiphase surface. In fact, Õ Ev× is less
than Õ E�G . The fluctuating part of Ó 8ÏÈ ; is expressed byÖ X 8^È ; � �� Ð¤E%×�e�f�gÊ8W�?��È=w:� Â ( Þ ; (97)Ö _ 8^È ; � �� ÒÃEv×+e�f�gÊ8W�?��È�w:� Â w¯Ç ( Þ ; (98)
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Its locus is an ellipse which has the same shape as the one for the TE case
because ÐIEv×ÒÃEv× � Ð¤EvGÒ#E�G � w{� X©S� _ © (99)

It also has the same inclination because the phase difference between Ö X 8ÏÈ ; andÖ _ 8±È ; is still
Ç

. The locus of the TM Poynting vector is shown in Figure 5.

4 Application to the Air-Water Interface

For a given material, such as water, the complex dielectric constant is a function
of frequency. Figure 6 shows the complex dielectric constant of pure water at
7
�
C from 1 GHz through 10 THz, as given by Ulaby, Moore and Fung [3]. The

real part of the dielectric ranges from more than 84 to less than 5; the imaginary
part ranges from essentially zero to more than 40; and Þ is higher than 60

�
from

30 GHz to 80 GHz.
This common material produces a dramatic difference in the directions of

power flow between TE and TM polarizations. For an incidence angle of 60
�
,

the various angles associated with refraction given in the previous sections are
shown in Figure 7. The difference in direction between TE and TM power flow is
as great as 8

�
. The ratio of the minor axis to the major axis of the ellipse is higher

than 0.125 from 91 GHz to 182 GHz.
It is interesting to note thatÅ�Æ l�8 Õ E�G ( Õ E%× ; � ��� '_ � X w:� X � ' '_ Å�Æ l Þ©�� _ © � w:� �X w+� ' '_ 8W� '_ Å�Æ l Þ ( � ' '_ ; (100)

which, when compared to (40), shows that Ë�ã �� 8 Õ EvG ( Õ Ev× ; when
� ' '_�ä � '_

,
which is nearly always except for the case of total internal reflection, which cor-
responds to the condition

� ' '_æå � '_
, or, equivalently,

� '��ç g�kml � h B
. For incidence

from air onto water, this approximation is valid to better than a fraction of an arc
second over all frequencies and incidence angles.

5 Conclusion

The complex angle of refraction does not represent the ‘direction’ of propagation
of the refracted wave in a lossy medium. The direction of Ó is a more meaningful
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measure of the direction of propagation. When

A
is perpendicular to the plane of

incidence, the direction of Ó is the same as the direction of the normal to equiphase
front. When

c
is perpendicular to the plane of incidence, the direction of Ó is

different from the direction of the normal to equiphase front. In both cases the
corresponding

c
and

A
are elliptically polarized in the plane of incidence.
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