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Notes on the Fourier Transform

Definition. The continuous domain Fourier Transform (FT) relates afunction to its frequency
domain equivalent. The FT of afunction g(x) is defined by the Fourier integral:

¥ i S
G(s) = F{g(¥)} = Q, 9(x)e " *“dx
for x,sT A. Thereare avariety of existence criteriaand the FT doesn’t exist for all functions.

For example, the function g(x) = cos(1/x) has an infinite number of oscillationsas x ® 0and the
FT integral can’t be evaluated. However, if the FT exists, then thereisaninverse FT
relationship:

9(x) = FH{G(9)} = §), G(s)e ¥ ds

Uniqueness. Given the existence of theinverse FT, it follows that if the FT exists, it must be
unique. That is, for afunction forms aunique pair with its FT:

9(x) « G(s)

Caveat. An exception to the uniqueness property is a class of functions called null functions.
An exampleis the continuous function f(x) = {j" : This function and otherslike it have the

same Fourier transform as f(x) = 0: F(s) = 0. Thus, the uniqueness exists only for afunction plus
or minus arbitrary null functions. In practice, this caveat is not important and for the purposes of
this class we will assume that the FT is unique.

Symmetry Definitions. We first decompose some function g(x) in to even and odd components,
e(x) and o(x), respectively, as follows:
e(x)=3[9(x) +9(- X)]
o(X)=3[9(x) - (- ¥)]
thus,
9(x) = &(x) +o(x)
and
e(x) = €(- ) and o(x) = - o(x)
A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if:
Re{g(x)} = e(x) and Im{g(x)} = o(x)
thus,

9(x) = e(x) +io(x) = g* (- X)

Symmetry Properties of the FT. There are several related properties:

If g(x) isred, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-9) ).

If g(x) isread and even, G(s) isreal and even.

If g(x) isrea and odd, G(s) isimaginary and odd.

If g(x) isred, G(s) can be defined strictly by non-negative frequencies (s3 0).

If g(x) isimaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-9) ).

A wWN R



BME 483, Introduction to MRI FT Notes. 2

Proof of 1.
G(s) = (p(xe ' adx

= de(x) + 0(Xx)[cos2psx - isin2psx]dx (cosiseven,sinisodd)
= da(x) 00S 20SXdX + c‘y(x) 00S 2psXdx - i@(x)siansxdx- ic‘y(x)siansxdx

= deﬂ{x)dx+ é)((x)dx- ié)'l(x)dx- idaﬁ(x)dx

¥
=E(s)+0- ix0-i0(s) (cosisevenins,sinisoddiss, c‘ydd(x) =0)
¥

= E(s)- 10(s)
=E(-5) +iO(-9)

=G*(s) QED.

Comment. One interesting consequence of the symmetry propertiesisthat if g(x) isreal, the only
one-haf of the Fourier transform is necessary to specify the function — this follows from

property 1. above. More specificaly, g(x) is strictly determined by G(s) for all non-negative
frequencies ().

Comment on negative frequencies. Consider areal-valued signal —imagine a voltage on awire
or the sound pressure against your eardrum — the Fourier transform of these is completely
specified by the positive frequencies (since G(-s) = G*(s)). We can argue that we have the
concept of afrequency (oscillations/second), but it doesn’t realy make physical sense to talk
about positive or negative frequencies.. We could argue that the having positive and negative
frequencies is merely a mathematical convenience. Are there cases where negative frequencies
have meaning? Consider the bit in adrill —it can turn clockwise or counter clockwise and
different rotational rates. Here positive and negative frequencies have physical meaning (the
direction of rotation). Aswe shall see, the magnetic moment in NMR is a case where the sign
indicates the direction of precession.

Convolution Definition. The convolution operator is defined as:
¥
9(¥)* h(x) = CpXx)h(x- x)dx
¥
The convolution operator commutes:

¥ ¥
9(¥)* h(x) = CPX)h(x- x)dx = FP(x- x)h(x)dx =h(x)* g(x)
¥ ¥
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[**The delta function material isonly for completeness —not necessary for this class**]

Thedelta function, d(x). The deltafunction isamathematical construct that isinfinitely high
in amplitude, infinitely short in duration and has unity area:

409 =07 % and oy (=1
(X)_{O,Xl 0 O (¥)dx =
Most properties of d(x) are defined only in alimiting case (e.g. as a sequence of functions
g, (X) ® d(x)) or under an integral. Some properties of d(X) :
oy (¥)g(x)dx = g(0), with g(x) continuous at x = 0

O (x- @)g(x)dx = g(a), with g(x) continuous at x = a

Delta function properties. First two are technically only defined under the integral, but we'll
still talk about them.

Similarity (stretching) d(ax) = I?1” d(%)

Product/Sifting g(x)d(x- a) = g(a)d(x- a)

Sifting P(d(x- a)dx = g(a)

Convolution g(x)*d(x) =d(x)* g(x) = 9(x)
g(x)*d(x- a) =d(x- a)* g(x) = g(x- a)

Fourier Transform Theorems. There are many Fourier transform properties and theorems.
Thisisapartid list. Assumethat F{g(x)} =G(s), F{h(x)} = H(s)and that a and b are constants:

Linearity F{ag(x) +bh(x)} = aG(s) + bH(s)

Similarity (stretching) F{g(ax)} =ﬁ6(§)

Shift F{g(x- a)} =G(g)e
Convolution F{a(x)* h(x)} = G(s)H(s)
Product F{g(x)h(x)} =G(s)* H(s)
Complex Modulation F{g(x)e®¥} = G(s- s,)
Modul ation F{9(X) cos(2p5,X)} = 1[G(s- 5) + G(5+59)]

F{g()sin(2ps¥)} = 5[G(s- 5)- G(s+5y)]

Rayleigh’s Power dg(x)|2dx =dp(s)|2ds

Axis Reversa F{g(-x)} =G~ (9

Complex Conjugation F{g* (¥} =G*(-9)
Autocorrelation F{g(X)* g(- X)} =G(S)G* () = |G(S)|2
Reverse Relationships F{G(X)} =d(-9)
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Sampling Theory. When manipulating real objectsin a computer, we must first sample the
continuous domain object into a discretized version that the computer can handle. There are
numerous ways to think about the sampling, but we will consider the effect on the frequency
domain (s) of sampling uniformly in x. Consider asigna g(x), with FT G(s), which is sampled
with spacing Dx, e.g.: g«(n) = g(n Dx), where gs is adiscrete function. The FT of gsis

Gy(9)= @ Gls- nfy)
evaluated from - f./2£s£ f,/2, wherefs = 1/Dx, the sampling frequency. What this relationship
says is that the sampled spectrum is the original spectrum replicated with spacing fs and that only
frequencies less than f4/2 can be represented in the discrete domain signal. Any components that
lie outside of this spectral region (- f/2£s£ f /2) resultsin “adiasing” — the mis-assgnment of

spectral information.

A

Replicated
Spectra

 G(9) Original IS0
Spectrum

/2 / fo/2
Aliasing
The Whittaker-Shannon sampling theorem states that a band limited function with maximum
frequency smax can be fully represented by a discrete time equivalent provided the sampling
frequency satisfies the Nyquist sampling criterion:
fS = i 8 23m.’:lx
Dx
where fs is known as the Nyquist frequency. The reconstructed signal is given by:
¥
6(x) = Q 9(nDx)sind f(x- nDX)]
n=-¥
If the Nyquist criterion is met, then §(x) = g(x).
Info from all
19(x). gs(n) 1909 samples contribute
. e to this point
/ \_0_/"’_\\_( “~._
x= X
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Some common FT pairs:

FT Notes: 5

9() G(s)
1 d(s)

d(x) 1
c0S(2psyX) L[d(s- sp) +d(s+ )]
sin(2psyX) 5ld(s- ) - d(s+sp)]

1 1 __ bx
rect(x) _{O s ; (X) D
sinc( ) S)
: 2
trianglg(x) :{1'O|XI i:i sinc’(s)
e P¥ e Ps’

Units. If x has units of Q, then swill have units of “cyclesQ” or Q™. Please note that thisis not
an angular frequency with units of radians/Q, but just plain Q. Please also keep in mind that x
isthe index of variation — for example, we can have g(x) represent avelocity that variesas a
function of spatial location x. The function g(x) has units cm/s, but x has units cm.

Examples:
Time Temporal Frequency
Seconds (s) s?, Hz, cycles/s
Distance Spatial Frequency
cm cm’’, cycles/em
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Notes on the 2D Fourier Transform

Definition. The 2D Fourier Transform (FT) relates a function to its frequency domain
equivalent. The FT of afunction g(x,y) is defined by the 2D Fourier integral:
¥ ¥

G(u,v) = F{g(x, y)} = c‘)c‘p(x’ y)e-izp(xu+vy)dxdy

Thereisaso an inverse FT relationship:
¥ ¥

g(x,y) = F{Gu,V)} = OB (uv)e? M dudv

-¥-¥

Uniqueness. Given the existence of theinverse FT, it follows that if the FT exists, it must be
unique. That is, for afunction forms a unique pair with its FT:

g(xy) « G(u,v)

Symmetry Properties of the FT. If g(x,y) isred, then G(u,v) is Hermitian Symmetric, that is,
G(u,v) = G*(-u,~-v). If g(xy) isred and even, that is, g(x,y)=9(-x,-y), then G(u,v) isaso real and
even.

The delta function, d(x, y). Thedeltafunction in two is equal the to product of two 1D delta
functions d(x,y) =d(x)d(y) . Inamanner similar to the 1D delta function, the 2D delta

function has the following definition:
¥,x=0and y=0
d(x,y) = _ and Ayl (%, y)dxdy =1
(xy)={ 0, otherwise Ot (x. y)axdly
Most properties of d(X,y) can be derived from the 1D deltafunction. Thereisalso a polar

coordinate version of the 2D delta function: d(x,y) =d(r)/pr.

Fourier Transform Theorems. Let a and b are non-zero constants.

Linearity
af (x,y) +bg(x,y) « aG(u,v) +bH (u,v)
Magnification
g(ax,by) « G335

Shift

g(x- a,y- b) « G(u,v)e—in(uavab)
Convolution

a(x, y)**h(x, y) = gogX,h)h(x- x,y- h)dxdh « G(u,v)H (u,v)

g(x, y)h(x,y) « G(u,v)**H(u,v)

Separability

9(xy) = 9x (¥) gy (¥) « G (U)Gy (V) = Fip ,{9x (X)} Fip ,{ 9y (V)}
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Sampling Theory in 2D. We now sample a 2D object and will consider the effect on the
frequency domain (u,v) of sampling uniformly inx andy. Consider asigna g(x,y), with FT
G(u,v), which is sampled with spacing Dx and Dy, e.g.: gs(n,m) = g(n Dx, m Dy), where gsisa
discrete function. The FT of gsis
¥
Gs(uv)= q G(u- 5-,v- %)

n,m=-¥

1 1.1 £v££. What this relationship saysis that the sampled

evaluated for - — £uf—;- —
2Dx 2Dx’ 2Dy

spectrum is the original spectrum replicated with spacing %/ and }/Dy (the sampling

frequencies) and that only frequencies less than one-half of these frequencies can be represented
in the discrete domain signal. Any components that lie outside of this spectral region will result
in“diasing” — the mis-assignment of spatial frequency information.

The Whittaker-Shannon sampling theorem in 2D states that a band limited function with
maximum frequencies Smaxx and Smaxy can be fully represented by a discrete time equivalent
provided the sampling frequency satisfies the Nyquist sampling criterion:

i3 2s andis 2s
Dx Dy

max, X max, y

Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by
uniqueness of the FT, the original signal can be reconstructed. The reconstructed image is given

by:
¥
G06y) = @ sinc(x2)sinc(X-5>)g(nDx, mDy)
n,m=-¥

If the Nyquist criterion is met, then §(x,y) = g(x,y). Thisis“sinc” interpolation in 2D.

Some common 2D FT pairs:
1« d(u,v)

d(xy) « 1
i2p (ua+vb)

d(x-ay-b)« €

e' pr2 - e' pXZe- py2 « e' pr 2 - e' puze' pV2

cos(2px) « L[d(u- D +d(u+Dd(v)
rect(y) « d(u)sinc(v)

rect(ax)rect(by) « ﬁsi nc(4)sinc(y)

circ(r) ={

Lr £1« Ji(2pr) _ .
— = linc(r))

Or>1
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Examples of Fourier Transforms:

2D datain Low gpatial freq High spatial freq
image domain data (image domain) data (image domain)

2D datain Low gpatial freq High spatial freq
Fourier domain data (Fourier domain) data (Fourier domain)
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g(x,y) = rect(xrec(y)
G(u,v) =
sinc(u)sinc(v)

scaling
(magnification)
property

scaling
(magnification)
property

shifting property

modul ation

Image Abs(Fourier)  Real(Fourier) Imag(Fourier)
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g(x,y) = sinc(x)sinc(y)
G(u,v) = rect(u)rect(v)

sampling pattern with Dx = Dy

In the Fourier transform we have the
replication pattern with spacing

1/Dx = 1/Dy

sampling pattern with Dx < Dy

In the Fourier transform we have the
replication pattern with spacing

1/Dx > 1/Dy

sampling pattern with Dx << Dy
Thishasaliasing inthey (v) direction

Image Data Fourier Data

10




