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Notes on MRI, Part 1

Overview

Magnetic resonance imaging (MRI) — Imaging of magnetic moments that result from the
guantum mechanical property of nuclear spin. The average behavior of many spinsresultsin a
net magnetization of the tissue.

The spins possess a natural frequency that is proportional to the magnetic field. Thisis called the
Larmor relationship:

w=gB
Any magnetization that is transverse (perpendicular) to an applied magnetic field B will precess
around that B field at the Larmor frequency.

In MRI there are 3 kinds of magnetic fields:
1. Bo—the main magnetic field
2. B;—an RFfied that excitesthe spins
3. Gy, Gy, G, —the gradient fields that provide localization

The mgjor stepsin a 1D MRI experiment are (we'll do 2 and 3 acquisitions | ater):

1. Object to beimaged is placed into the main field, Bo. Subsequently, the object develops a
distribution of magnetization, my(x,y,2), that isto be imaged. This magnetization is aligned
with By (in the z-direction).
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2. A rotating RF magnetic field, By, is applied to tip the magnetization into the plane that is
transverse to Bo. Whilein this plane, the magnetization precesses about the main field at a
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frequency proportional to the strength of the main field (w = gB). This precessing

magneti zation creates a voltage in areceive coil, which is acquired for subsequent

processing.
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3. Gradient magnetic fields are applied to set-up a one-to-one correspondence between spatial
position and frequency. For example, if we apply an x gradient, Gy, the magnetic field
distribution is: B(X) = By + GxX, and thus:

W(X) = Wo + gGxX.
By performing Fourier analysis on the received signa we can localize the magnetization in

1D:
m(x) = @y, (X, ¥, 2)dydz :F{s(t)}| =20 i)/ .
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4. Following excitation, the magnetization in the transverse plane (x-y)decays away with time

t/T2

constant T2, e.g. m (t) =mye " “, and the z-component recovers with time constant T1, e.g.

t/T1l

). After this, the stepsis repeated many times.

mz(t) = mO(l_ e

/

NMR Physics
The physical basis of Nuclear Magnetic Resonance (NMR) centers around the concept of a

nuclear “spin,” its associated angular momentum and its magnetic moment.

What is nuclear spin? “Spin” isa purely quantum mechanical quantity with no direct classical
analogue (though we will talk about one anyway). We call it spin because this quantity give

nuclel anet angular momentum (it aso gives a nucleus its magnetic moment as well).

Consider a proton or hydrogen (*H) nucleus. Spin will give this nucleus a“spin angular
momentum,” s, and a magnetic moment, m which are related though a proportionality constant,
g, in the following equation:

m=gs
s and mare vector quantities and like many things in quantum mechanics, they can only take on

discrete values.

Thisanalogy is suspect, but I'll giveit anyway. The classical analogue to the nuclear spinisa
small charged sphere (representing a proton). The mass of the spinning particle give the angular
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momentum and the charge on the surface give the net magnetic moment. The net magnetic
moment can be viewed as a small magnetic dipole or bar magnet.

S,m m

What nuclel exhibit this magnetic moment (and thus are candidates for NMR)?

Nuclei with: odd number of protons
odd number of neutrons

odd number of both

Magnetic moments: 'H, 2H, *He, *'P, ®Na, Y0, °C, °F
No magnetic moment: “He, 1°0, 2C
Spin Physics

Before talking about spinsin amagnetic field, it is useful to review the behavior of atopin a
gravitational field. And before talking about that, let’s review the cross product operator.

Cross-product. We start with a brief introduction to the cross-product operator. Given 2 vectors,
A and B, the cross product can be written as:

A’ B = ABsnan
where f isthe unit vector perpendicular to A and B. The sign of 7 is determined by the “right

hand rule”
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AxB

Equations of motion for atop (gyroscope) in a gravitational field

In this drawing, the force generated by the mass of the top and the gravitational field (F = mg)
appears to be acting at the center of mass of the top, which islocated at position r, adistance r
from the tip of the top. The angular momentum of thetopisL (F, L, g, andr are all vector
guantities). The ssimplified equation of motion for this top, describes the torque on the angular
momentum:

T= (jj_I; =r’

Thetip of the angular momentum vector move at a speed given by:
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‘d—l“ = rmg cosa
dt

where a is the angle between the axis of the top and the direction of the gravitational field
(vertical axis). The direction the tip movesis perpendicular to the plane containing the axes of
both L and g (the top and gravitationa field). Thisis aways true and the thus as the position of
the top changes, so does the direction of movement. The locus of points traced out by the tip of

the L vector form acircle.

TOP VIEW C

4 L

These relationship works out so that the top precesses around the gravitational field. It can be
shown that the precession frequency is:

W= (rmg)/L (units are radians per second)
Thus the top will precess around g at a rate proportional to the mass of the top, the strength of the
gravitational field, the distance from the tip to the center of mass and inversely proportional to
the angular momentum (which is related to the distribution of mass).

Classical description of a spin in a magnetic field.

Since the spin had angular momentum, it does not just snap to alignment with the field (like the
needle on acompass). Thisis much like atop in agravitational field — the gravitationa field
exerts atorque on the top causing it to precess rather than fall in the direction of the gravitational
fidd.

A spin (characterized by s and m) in amagnetic field B, behaves as follows:
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d _ ..
= B
dt J
The second expression follows from m= gs. For the case where mand B are perpendicular, then

the magnitude of dnidt (speed at which the tip of mmoves) is [gmB| = g1B.

|

m
P> Y
A/dm:grB dt

X
Given that the circumference of the circle here is 2pm the time for one cycle of precessionis
2pmgnB, and the frequency of precession isthus, f =gB/2p or w =gB. The latter is the most
important relationship in NMR and MRI. It isknown as the Lamor relationship:

The parameter gis the “gyromagnetic ratio” and is nuclei dependent. For protons (*H), g/2p =
42.58 MHz/T (4.258e7 T™ — | often use this notation for to mean 4.258 x10” T™).

A word about terminology. In MRI, the quantity, B, is usually called the “magnetic field
strength,” which engineerstraditionally call “magnetic flux density.” Units of flux density are
Telsa (T) = 10* Gauss (g) = Webbers (Wh)/m?, where Wb = Ampere-Henry (A H). The flux
density isrelated to a quantity, H, known as “magnetic field intensity” in the following
relationship:
B=mH

Where my is the permeability of free space (my = 4pe-7 H/m) and H has units of A/m. In any
substance other than free space (vacuum), we have to consider the magnetic susceptibility:

B=m(@Q+cnyH
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Where ¢, is the magnetic susceptibility (unitless) — the ability of a substance to produce an
internal magnetic field in response to an applied magnetic field. ¢, can be positive or negative
(paramagnetic or diamagnetic).

Some useful units conversions: W=J's (power), V=Wb/s, JT = Am? (magnetic moment), Am?/m®
= A/m (magnetization), kg m /(A% §%) = H/m (permesbility), Wb = A H = JA,
T = Wh/im? = AH/m? = J(A ).

Quantum mechanical (QM) description of a spin in a magnetic field.

With no applied magnetic field, al spins are in the same energy state (E=0). Their magnetic
moments are randomly oriented are do not form any coherent magnetization. When placed in an
applied magnetic field, the spin will tend to align with or opposite to the direction of applied
magnetic field. These two states are known as “spin up” and “spin down,” respectively. The
spin-up state (in aignment) is dightly preferred, and thus has alower energy level. The spin-
down state is at a higher energy. A spin-up nuclei can absorb energy and transition to a spin-
down and a spin-down nuclei can give up energy and transition to spin-up. These energy states
are similar to electron energies in a neon atom, except here there are only two possible energy
states.

B=0, DE=0 B0, DE=hgB

The energy difference between these states is determined by the strength of the applied magnetic
field, which will we will cal By, in the following relationship:

DE = ngB, = Aaw, = hf,
where gis the gyromagnetic ratio, h is Plank’s constant (h = 6.63e-34 Js=4.14e-15¢eV s) and
h=hl2p .
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If we inject energy into this system (excite the system) at a frequency fo, we should be able to
induce spin-flip transitions between the two energy states. Aswe shall see later, this system is
very selective to that specific energy level — higher and lower frequencies won’t work.
Excitation must be a this specific frequency in order to “resonate” with the nuclei  this
frequency selectivity is the origin of the term resonance in nuclear magnetic resonance.

The spin (and associated magnetic moment and angular momentum) is probabilistic in nature
(much in the same way that el ectrons surrounding the nucleus travel in probabilistic volumes (or
shells)). Thus, each spin doesn’t redlly align with the B, but rather exists in a probabilistic cone

and spin-up and spin-down implies that probabilistic cone faces up or down.

Spin-up Spin-down

The spin and magnetic moment exist in al directions simultaneously, but average behavior is

non-zero in only one of the directions:
(mo)=(my) =0 ({m,) =5 rg:f | =g
Question: What is the population distribution (of nuclei) in these two energy states and how

many more are in the lower state?

These are governed by thermal equilibrium condition, which are characterized by the Boltzmann
distribution. Letting N+ be the higher energy state (spin-down) and N- be the lower energy state,
Boltzmann dictates that:

N+ _
— g DE/KT
N -

where
k = Boltzmann’s constant (8.62e-5 eV/K or 1.38e-23 JK)
T = temperature (human body temperature = 310 K)
DE = 7g By
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In general, the exponent is extremely small and N+ and N- are nearly the same and
approximately %2 of the total number of nuclel. Using the first two terms of the Taylor series

expansion of the exponent, we get:

N + DE
»l- —
N - KT

DE DE

DN =(N-)- (N+)=—N+» —1N

(N-)- (N+) KT KT 2 7
DNzthO%NT

KT

Important! Please note that DN, then number of excess nuclei in lower vs. upper energy statesis
proportional to Bo. It isalso proportional to g These excess nuclei are the source of
magnetization for al MRI experiments. It follows then, that alarger magnetic field, Bo, will
generate larger magnetization to perform our imaging experiments and different nuclel will
develop differing amounts of magnetization depending on their concentration in the body (N+)

and their g.

What fraction are spin-up vs. spin-down? % » 7e-6 (for 310K, Bp=1T). Thatis, for every

million nucle in the spin-down state, there are about 1 million plus 7 extra nuclei in the spin-up
state.

How bigis Nt? Consider water — one gram of water contains 1/18 mole of water molecules and
1/9 mole of *H. Given Avogadro’s number (6.023e23), for 1 cc (1 gm) or water, Nt = 6.68e22.

Thus, for every cc of water (tissue ismostly water) at 1 T, DN » 2.2el7 (!).

Connection between QM and classical descriptions.

We cannot observe individua spins, only the ensemble average. Fortunately, it can be shown

that the ensemble average equations of motion is:

(S)=20)=a) &
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We now define two more quantities. The “net magnetic dipol€e’ is:
m=DN( )
And the “magnetization” is the magnetic dipole/unit volume:
M = m/dv
Since only the z-component of the spins shows a preferential direction, the net magnetic dipoleis
created in this direction:
Im| = DN (m,) = DN-1 g = DN (1.4e-26 J/T)

For, 1 g of water at 310K and 1 T, the net magnetic dipoleis

Im| = 3.1e-9 Am?
One gram of water occupies 1 cc (10° m®), thus the nuclear magnetization of water is:
IM| = 3.1e-3 A/m

Important! Thisis the nuclear magnetization. There are other things (notably electrons) that
lead to further magnetization of materials. It isthe 3 unpaired electrons (not the nucleus) iniron

and gadolinium that give these substances their very large magnetic properties.

Behavior of magnetization in the presence of applied magnetic fields
The main result is “Bloch Equation” (named for Felix Bloch, the Nobel laureate who co-
discovered MR in 1946):
™ _
dt
which says that the magnetization M will precess around a B field at frequency w = gB.

M~ B

Now consider M lying a plane perpendicular to the main magnetic field B, which has strength
Bo. Wefirst define a coordinate system in which the applied field is assumed to be in the z-
direction, thus B = Bok, where (i, j, k) are the unit-length vectorsin the (x, y, z) directions. For

this system, M will precessin the x-y plane at frequency woy = gBo as shown below:
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If we place asmall loop of wire near this precessing magnetization, we will induce avoltage in

the coail, v(t), a frequency, wy = gBo.

Induction of a voltage in a coil from magnetization precessing in the x-y planeis the basis of

signal reception in MRI.

Solutionsto the Bloch Equation:
M =[m,, m, mj] and let theinitial condition of M (0) = [my, O, O].

Leti, j, and k be the unit vectorsin the x-, y- and z-directions. Thus:
B=Bok and M(0) =mpi
The Bloch equation then becomes:
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B = (mi+m,j+mk)” ik

%(mxi smyj+mk) =gBm,(° k) +eBym, (” k) +aBym, (K~ K)

=M, (-])+dB,m, (i) +0

This can be rewritten as a matrix differential equation:

dgnu§0 B, Ouem.au em(O)u émyu
a8 0= ggs 0 0%m,Yand §n =50l
enfg 80 O OgemH en(Og €0¢

We can start out by solving the last row of this equation:

dm
dt

To solve thefirst two lines, we define anew term, my, = my + i my:

2 =0 and m,(0)=0P m,(t) =0

=- Igsomxy

=-iw,m, and m, (0) =m,
The solution to this simple linear differential equation is:
m,, (t) = m,, (0)e ™" =me™" = my(cosw,t) - i sin(w,t))
and thus:

ém, (t)u émocos(w t)u
em , (3= & My sin(wt)g
Emz e & 0 EI
Here magnetization, my, precesses around By at frequency wo=gBo. The Bloch equations, have

the Larmor relationship built right in!
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The quantity, my, = m, + i m,, isatransformation the x-y components of M into the complex
plane. Thisallows usto have asmplified expression for the magnetization:

A

|y (imaginary)

M X (redl)

Now, let’s consider a non-constant B: B(t) = [Bo + DB(t)]k (the B field is still applied aong the

z-axis). Asbefore, M will still precess around B, but now the frequency of precession will vary
with time:

w(t) =dBo+ DB(1)]

:

B

f(9) y

X
The direction that the M points (the phase of M) is given by the time integral of the frequency
function:

f(t) = gtdBO +DB(t )]dt =w,t +gtc‘PB(t )dt

And thus,

€ t u
-ignot+gaDB(t )dt
0 a

m,, (t) =mee °

Rotating Frame of Reference
One of the more useful tools in simplifying MRI concepts is the rotating frame of reference.
Here we consider that our coordinate system for observation of the magnetization isrotating at a
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frequency, wo = gBo. In particular, the coordinate system is rotating about the z-axis in the same
direction that M rotates about B. The z coordinate does not change, but we now must define a
new x and y coordinate system. The “laboratory” frame of reference is the usual frame of
reference with coordinates (x, y, z). The “rotating” frame of reference has coordinates (X', y’, 2).

If we have magnetization precessing at Wy, it will appear to be stationary in the rotating frame of

reference.
Laboratory Frame Rotating Frame
A 7z A z
M -
y y
wo
é ‘){
X X'

Conceptually, we can think of this as being similar to riding on acarousdl. If we are on the
carousel, other objects on the carousel appear stationary, but to someone on the ground, the

objects are spinning by at Wearouss =Wo.

For arotation frame at wp, the coordinate axes are transformed in this way:

i'= i cos(w gt) - jSin(w,t)
i'= i sin(w, t) + j cosw t)

k'=k
Thus, when B = Bk, the apparent B in the rotating frame is:

Wframe Wo
Beff:(BO' g )k:(Bo'?)k:(Bo' Bo)k:O

The x-y components of the magnetization are then:
Miy.rat(t) = Me(t) exp(i wo t) = Mo
which is stationary. We now have a simple conversion of magnetization in the rotating frame
and the lab frame. If M =[my, my, m;] and Mot = [Myror, My rot, Mo, then
Myy.rot = Myrot + 1 Myrot = Myy €XP(i Wo t)
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Mot = My
Let’s now consider B(t) = [Bo + DB(t)]k. Here the magnetization in the rotation frame will
appear to be precessing at
Wiot(t) =dBo + DB(t)] —wo = gDB(t)

Thus, the apparent B in the rotating frame (Wfame=Wo) IS:
B, =B- "%k = (B, + DB(t) - B,)k = DB(t)k
g

The direction that the M pointsis given by the time integral of this frequency function:

t

fra () =9 oPB(t )k
0

And thus,

-igg oDB(t )l

mxy,rot (t) = moe £ ’
The Bloch equation can now be rewritten for use in the rotating frame:

M
M =M o
dt

where M can be derived from M 4 using:
My = Myy,rot €XP(-i Wo t)
My = Mg rot

" 6B,

Excitation
The preceding discusses the behavior of M when it is a plane perpendicular to B = Bok. That is,
the magnetization is the plane transverse to the main field. Earlier, we described placing the
spinsin amagnetic field and developing a magnetization in the same direction as B. So the
obvious questions is, how does one get the magnetization that points along the z-axisto liein the
plane perpendicular to this axis?

Answer: RF excitation.
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RF (radiofrequency) magnetic fields are applied. These are rotating magnetic fields applied in
the plane transverse to Bok. Thisfield isusually called B1 (Bo is the “main magnetic field”). If
the frequency of the RF pulse is wge, then the applied RF field can be written as:

Bix = B1 cos(wrr t) and Bay = -B1 SIn(Wrr t)

Equivalently: B1y = B1 exp(-i Wrr 1)

Let'slook at a specia case, where wge = Wo. Here, the total applied B fidd is:
é B, cos(w ,t) u
- B, sin(w 0t)g
B, H

B(t) =

@D @D D

Again, in aframerotating at Wo, B1 ¢ Will appear stationary. Thus:

éBu
By (=50,
eoH
Which is constant: no time dependent variations, rotations, etc.
Laboratory Frame Rotating Frame
lz *z
Bo

B1 / ~
wo y By y’

X X’

Behavior of M in the presence of B;
Recall, we said that the Bloch equation, which describes the motion of M in the presence of aB
field, dictates that the magnetization will precess around the B field at frequency gB. Here,
again, isthe B field includes Bpand Ba:
é B, cos(w .t) v
B, sin(w ),
BO H

B(t) =

aD @, ®
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Asyou might guess, determining the motion of M in the case can be quite difficult. But
fortunately, we have atool to make this analysis easier: the rotating frame and the rotating frame
version of the Bloch equation:

M 0 O Ou
dtrot = M rot ’ gBeff = go O gBlgM rot
g0 -9B 0Oy

Also, let’s consider the magnetization starting in its equilibrium position occurs from placing the
object in the large magnetic field (aligned to the main magnetic field): M (0) = npk. The above
matrix differential equation can be solved in a manner very similar to the case for M precessing
around Bk, by creating m,, = m,;« + i m, and solving for the solution of these linked terms.
Since the By« is applied along the X’ axis, Mot Will precess around x’ in the z-y’ plane and will

precess at frequency w; = gB;. Thus:

é0u é 0 0
M(0)=200 M (t)=gmsin(w,t)
BM gm, cos(w, 1)
Rotating Frame Laboratory Frame
A 7 rz
W W
W1 i/_ \1

\/

Bueft y wo (v'?y y

If we go back to the lab frame, then motion of M is rather complex — simultaneoudly precessing
about B at wy and about Bok at wp. Using the relationships that related rotating frame to lab
frame we get:
Myy,rot = 1 Mo SIN(Wy t) = myy exp(i Wo t)
My = 1 Mg Sin(w t) exp(-1 Wy t)
And thus:
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em0 sin(w t) sin(w ,t) ¢ v
M(t) = Amo sin(w ,t) cos(w t)
g  mycosw,t) H
These equations for M trace out the path along the surface of a sphere that is spiraling downward
as shown above. It can be shown that thisM satisfies the Bloch equation:

am .
E =M g (Bok +Bl)

Usually, B1 is much smaller than By. Typical ranges of values. w; ~ 1 kHz and wp ~ 10’s to

100’ s of MHz, thus B; is about 5 orders of magnitude smaller than By.

Now, if we want the magnetization to end up in the transverse (x-y) plane, we can apply the B;
field for a period of time and then stop. If we have a constant B; for a period of time T, then we
want:
wiT = gBiT =p/2
This RF pulseis known as a p/2 or 90 degree pulse. Example — suppose
B1=02g=2e5T. Then
wy = gB1 = 2p(852) 5
For a90 degree pulse, T = 294 nrs.

We don't haveto just stop at 90 degrees indeed, we can stop at nearly any point along the way.
The angle between the z axis and the magnetization after the RF pulse, f, is called the “flip
angle” or “tip angle’ and is given by:

f =gBT

or for the general case of atime varying B4(t), we have:

é u
é U
é 0 U
é 2! pu
M o (£) = m, singg o8, (¢ ek 70
é & o U
é . L]
ém, coszg 3B, (t )dt =+ —u
A
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T

f =g Bt
0

AZ

f

\ 4

Biet y

Finally, we derive the Bloch equations, in the rotation frame for the general case of atime-
varying B; and anon-zero field in the z-direction:

é B, (t) cos(w ,t) u

B(t) = g B, (t) sin(w 0t)g
€ B,+DB §
which, in the rotation frameis:
éB, (t)u
Beff (t) = Z 0 3
gDB§
Here, the Bloch equation can be written as:
aM ¢ 0 gDB 0 wu
dtrot = M rot ’ gBeff = g' gDB O gBl(t)EM rot
g 0 -gB() O ¢

Later in the class we will work on solutions to this equation.

So why do we have RF pulses? We cannot detect M if it is aigned along Bo.
It is not moving and thus does not induce voltage in a coil.
It is small relative to Bo.
Nuclear magnetization might be obscured by other magnetization (e.g. from electrons).
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When M isin the transverse plane, it induces a voltage in a coil at wp and the size of the

magnetization is proportional to the size of the magnetization, mo..

The process is goes by severa names:
RF pulses
Bl fields
Excitation

Transmission (vs. detection)

The resonance condition
What happensif wge @ Wo? We now have the rotating frame version of B, described as B1yy e =
B1 exp(-1 (Wrr - Wp) t), amore slowly rotating B; vector.

Rotating Frame

AZ

/7§=
=

y1
(WRF - Wo)

X

In this case, as M getstipped away from the z-axis B1 has moved relative the M and the axis of
rotation has now changed.

Top View

Rotating Frame

A

z
dM
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Under this condition, the M vector never gets far from the z-axis because the B; vector moves to

aposition that causes the changein M (e.g. dM) to move back towards the z-axis.

If excitation B, occurs at a frequency that resonates with the magnetization M, then M istipped
from the z-axis into the transverse plane where it can be observed.

How close must wgr be to wp?
If [Wre - Wo| < Wy, then excitation is effective.

If [Wge - Wo| >> wj, then no excitation occurs.

Comment. We' ve talked about tipping M into the transverse plane and making M precess faster
or slower depending on By + DB(t). All this was done using classical equations of motion.
Please keep in mind that in the quantum mechanical description, all that is going on is flipping of
the magnetization between energy states. Thisis done in a manner that preserves coherencesin
the magnetic dipoles to produce a net magnetization that behaves as described. Also bear in
mind that if the applied RF isnot at pE = ngB, , then the RF will be very inefficient at flipping
between energy states. Thisis another way to view the resonance condition requiring wge to be

close to wy.

Other RF pulses.
1. Small flip angle pulses. We described a 90 degree or p/2 pulse above. If theflip angleisless
than 90 degrees, is there still rotating magnetization that is detectable? Y es — the amount that

is observable is the component in the transverse plane. Consider aflip angle of f degrees.
The magnetization can be describes as follows:
My = 1 Mg sin(f ) exp(-i wo t)
m,= my cos(f )
where myy, is the detectable part.
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Laboratory Frame

2. 180 degree or p pulses. Herethe RF pulsesis applied for a duration and amplitude that leads

to aprecession angle, f, of 180 degrees. There are two variants of 180 degree pulses.

inversion and spin-echo pulses. In an inversion pulse, M starts aligned to the z axisand is

inverted to the -z axis. In an spin-echo pulse, M startsin the x’-y’ plane and is flipped
(around the axis of B;) to anew position in the x’-y’ plane. We'll talk more about both of

Inversion Pulse

Rotating Frame

AZ

A

Spin Echo Pulse

Rotating Frame

AZ

B1 y

Relaxation

@
ummmum‘

y

So far, we've manipulated M asif it were a constant length vector at al times—in practice, it is

not. There are thermal processes that will tend to bring M back to its equilibrium state (that isto

the Boltzmann distribution in the spin-up/down energy states).
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Consider the inversion pulse just described — the spin populations are all switched so that then
higher energy state has alarger population than the lower energy state. By spins giving up
energy (e.g. heat) into the surrounding molecular matrix, the spins will eventualy return to the

Boltzmann distribution.

In fact, there are two distinct processes going on:
1. Recovery of M back to mek (the thermal equilibrium state with the Boltzmann distribution).
2. Decay of myy.

“Tlrelaxation” or “spin-lattice relaxation.”

Thisis characterized by the growth of m, towards my with time constant T1. Examples:
Polarization the tissue when place in Bo.
Recovery from an inversion.
Recovery from any reduction in m, by RF excitation (including a 90 degree pulse which

would make m, = 0).

Thisis governed by the differential equation:
dmz — (mz B mO)

dt T1

(This differential equation comes from relationship that dN, the number of state changesin
interval dt, is proportional to the number of spins not in equilibrium, (N — DN), where DN

corresponds to the equilibrium magnetization, my.)

The genera solution to the differential equationis:

my(t) = m+ (M4(0) — mp)e’™

Specific cases:
1. After a90 degree pulse:
my(0) =0; my(t) = mo (L - &™)
2. After aninversion pulse:
my(0) = -mo; my(t) = mo (1 - 26"™)
3. After ana pulse
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my(0) = mp cosa; my(t) = mp (1 — (1- cos a)e-t/Tl)

Recovery mechanism
Spin gives up energy into the surrounding molecular matrix as heat
Transitions from higher (spin-down) energy states to lower (spin-up) energy states (quantum
mechanical view)

Spontaneous E state transitions are rare — usually these transitions need to be stimulated by
something - in most cases, thisis afluctuating magnetic field. Asnuclei tumble and move
around, their local magnetic environment is always changing as electrons and other nuclel come
in close proximity to the spin of interest.

If the duration of these interactions has a frequency content near wo, then the probability of a

trangition is increased.

Correlation time. The correlation time, t ., describes the average length of time for an interaction
between a nuclear spin and an external pertubation of the magnetic field. If 1/t., the approximate
frequency content of the interaction, is close to wo, then the probability of atrangitionis
increased.

Examples:

a Water-water interaction - t ~ 10*2 sand thus L/t . >> wo. Poor efficiency at stimulating
trangitionsresulting inlong T1's.

b. We can help the process along by adding ions to the water (ions have unpaired electrons with
large magnetic moments (an electron has a magnetic moment that is 700x larger than that of
anucleus). This skews the magnetic field over amuch larger region increasing the efficiency
of smulating an transitions. Thus, adding ions to water usualy resultsin a shorter T1.

c. Extreme case— very large (macroscopic) pertubations of magnetic field. Suppose we have a
large source of magnetic susceptibility that skews the field over a much larger region (e.g.,
liketheironin alarge blood clot). Since the field pertubation is so large, the amount of field
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fluctuation it can induceis at too low a frequency to stimulate E state transitions (T1
relaxation).

Water-ion Interactions Water-Macro Susceptibility
Interactions

tom /W
Water-water | nteractions c~1/%o

o \I
tevery large
tcvery small

— f—
O‘\/\/\/\M
o

Large Susceptibilty Source

In genera, T1 properties result from a complex interaction of different mechanisms with
different kinds of spin motion. Here are some factors that influence T1.:

1. Viscosity —affectstc

2. Temperature- affectst.

3. State (solid, liquid, gas) — affectst ¢

4. lonic content — affectst.

5. B — affects w.

More examples:
d. Tissueswith restricted diffusion of *H have longer affectst's, which makes 1/t closer to
Wo, which resultsin afaster (shorter) T1's (e.g. white matter, fat)

e. Solids—very long T1's— no motion of nuclei

“T2relaxation” or “spin-spin relaxation.”
This is characterized by the decay of m,, towards O with time constant T2.

Thisis governed by the differential equation:
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dmxy,rot - mxy,rot
dt T2

(This differential equation comes from relationship that dN, the change in the number of exicited

ininterval dt, is proportional to the number of spinsin the excited state, N.)

The genera solution to the differential equationis:
t/T2

My rot(t) = My rot(0)€
Specific cases:
1. After a90 degree pulse:
Meyrot(0) = Mo; Myyar(t) = Mo €772
2. After aninversion pulse:
Myy,rot(0) = 0; Myyrat(t) = O
3. After ana pulse:

My rot(0) = My SN a; My r(t) = My sina €™

Decay Mechanisms

1. The T1 component — the approach to thermal equilibrium reduces myy.

2. Phase incoherence — remember that the observable magnetization, M, is the ensemble
average of al nuclei —if the little mis get out of phase with respect to each other we get
reduced signal.

The phase for aspinis:

t
fraat)=9 ODB(t )dt
0

where DB(t) represents the time varying, random field fluctuations generated by other nuclei,
electrons, ions, and larger sources of magnetic field susceptibility. The signal is then the average

across al spins.

s =g mye'’ =« dr

Examples:
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a. Spinsare tumbling rapidly in a homogeneous media. Then ., (t) @pBt @0 for &l spins.
That is, the integral over time gives the time average of DB(t) which isnearly 0. In this case,
thereisvery little field induced dephasing and thus, T2 ~ T1. (e.g. distilled water)

b. If large paramagnetic ions are present, then f . varies much more from spin to spin and the
signal decays much more rapidly. Here T2 << T1. (e.g. water doped with ions)

c. Solids—thereisvirtually no tumbling which leads to a fixed relationship with the DB’s.
Here there are other mechanisms that can lead to T2 relaxation in addition to accumulation of
phase from DB. In general, solids have T2’ s that are very small. Most solids ¢

imaged with normal MRI techniques because the T2' s are so small (e.g. nsregime).

In most biological tissues, T2 << T1, usually by an order of magnitude.

Full Bloch Equation with T1 and T2
The full Bloch equation with TLand T2 is:

emu éemu  éB,u éemu ¢ 0
de i e u egu e 0l e 4 ol
dté va & vu “éva e vay e T,

ém.g émsH 8B4 80gH ° &m - my

Pulsed NMR Experiments
The vast mgjority of MRI experiments use repeated pulsing of the spin system. Following each
RF pulse the transverse signa behaves according to:
Ol&:-(iw(ﬁi)m and m,(0) =m,
dt T, v

and thus:

mxy (t) — moe Iwote-t/TZ

This decaying oscillating signal is often known as the free induction decay (“free” no
interference from other RF pulses, “induction” Bloch’s origina term for precession around By,
and “decay” for, well, T2 decay). Since different biological tissues may have differe

often useful to select an observation time following the RF pulse. This observation timeis

known as the “echo time” or TE. Looking in the rotating frame at this observation time we get:
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TE/T2

mxy,rot (TE) = moe_

A long TE resultsin T2-weighted images. In T2-weighted images, tissues with long T2's appear
bright while tissues with short T2's are dark (their signal has completely decayed away).

As described previoudy, the zcomponent of the magnetization recovers after a 90 degree
excitation pulse according to:

myt) = mo (1- ™)
The time between excitation pulsesis referred to as the “repetition time” or TR. If TR isnot
long compared to T1, then all of the magnetization will not have recovered an the initial

magnetization available to rotate into the transverse plane will not be my, but will bemy (1 - €
TRITl)

A short TR results in T1-weighted images. In T1-weighted images, tissues with short T1's
appear bright while tissues with long T1's are dark (very little magnetization has recovered for

the next excitation pulse).

Finaly, we note that different tissues have differing concentrations of hydrogen, the my is
proportional to the hydrogen density, r. The signa intensity, for a particular tissue this thus a

function of tissue parametersr, T1, and T2, and imaging parameters TE and TR:

TR/Tl) -TE/T2

sgnal intensity p r (1- € e

Typical T1's, T2 sand r’sfor Brain Tissues

T1 T2 Rel. density
Distilled water 3s 3s 1.0
Cerebro Spinal Fluid 3s 300 ms 1.0
Gray matter 12s 60-80 ms .98
White matter 800 ms 45 ms .80
Fat 150 ms 35ms 1.0
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- ™ 4
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Steady State M agnetization for a pulses
The above description of signal intensity holds for 90 degree RF pulses. Occasionaly, itis
desirable to use ashort TR (10 to 100 ms). This meansthat signal intensity would be very small
for all tissues. Inthese cases, it is useful to use an RF pulse with a“tip angle” or “flip angle”’ less
than 90 degrees. Here, we can examine what happens to the z magnetization before and after an
a degree pulse:

m, = m, CoSa

The z magnetization recovers according to T1 for a period of time TR:

-TRIT1

m,(TR) = m, + (M, - my)e

Under steady state conditions, m,(TR) = m, , and thus:

m; = [me™™ + m (- €™™)]cosa

which can be solved to yield:



Noll (2000) MRI Notes 1: page 31

1_ e—TR/Tl
m = cosa
- = Mo 1- cosa xe ™™
1_ e—TR/Tl
m, =m,

1- cosa xe ™™

The transverse component following an a degree pulseis.

1 . e-TR/Tl

=m,Sna =m, sna
My = M 1- cosa xe ™™™

Signal Intensity vs. Flip Angle
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The above relationship can be differentiated to yield the optimal a (in terms of maximal signal):
a o = arccode ™)

Thisis known as the “Ernst Angle” (in recognition of Nobel Laureate, Richard Ernst).



