EECS 556, Winter 2003 Final Exam Solutions 1

Dear EECS 556 Class — Thank you for your and participation in class. Please accept
my best wishes for an enjoyable summer. — Doug Noll

Final Exam Scores: Median = 91, 1stquartile = 94, 3w quartile = 85
Overall Grade Ranges: 97 and up: A+; 91-96: A; 85-90: A-; 80-84: B+; 79 and below: B

1. Optimal deblurring and denoising.
a. The superposition principle states:

e u
forur (M) = S f (nM)] = S[F(m)**d(nm)]=Sed & f(kd(n- k,m-1)g
Bk 1 9]
=8 & fkDYdn-km-n]=8& & fkh(nmk(l)
k | k |
We now column stack all quantitiesin (n,m) and we'll get:
[¢] [¢]
fauwr(P)=a a fkhh(pk,l)
k |
and by letting g = k*M+1 (sorry — typo in the problem statement — should have been M
not N), we get:
far (D) =@ F(@h(p;a)
q
which isjust the matrix multiplication Hf where the elements of H are h(p;q), where qis
the column index and p is the row index.
b. I did the “brute force’” method, but there are lots of more elegant ways. See code.
c. fisazero-mean, unit variance point Bernoulli process: R (n,m) =d(n,m), so K¢isthe

identity matrix. v isawhite Gaussian process convolved by arect function:
R, (n,m) =d(n)triz(m) . See code for implementation of K.

Kf
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d. Weimplement f = (H'K ;*H +K 1) *H'K ;'g. Seecode.
e B(wy,wy) =1+ 2coswy
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f. Pr(w,,wy) =1 and R, Wy,w,) = (nsd)®(L+2cosw,)?

g. H(w,w,)= Pr (Wy, Wy ) B(Wy Wy )

5 . See code for implementation and
Py (Wx’Wy)B (Wx’Wy) + I:)V(Wx’Wy)

plots for results. MSE for Part d. is better, but not by much.
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h. After reducing the noise variance, we can see more substantial differences between the
standard (Fourier) Wiener filter and the statistical MM SE estimator.
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At low noise levels, the filter is doing mainly deblurring. The statistical MM SE estimator
is better because it properly models the spatially variant behavior at the edges of the
object. The Wiener filter assumes circulant behavior or zeros in the case of zero padding
— both assumptions are inaccurate.

Code:

% eecs 556, 2003, final exam problem1
rand('state',0);randn('state',0);
nx = 16; ny = 16; nsd = 1;
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p=0. 015;
ff = ((rand(ny,nx) < p) - p)/sqrt(p*(1-p)); %the desired signal
vv = nsd*randn(ny, nx);

% add this

vv = conv2(vv,ones([3 1]), ' sanme'); % t he noi se

blurff = conv2(ff,ones([1 3]), ' sanme'); %the blurred signal
gg = blurff + vy; % t he measur enment

gl = gg(:); % nake i nmage a vector

% bui ld burring matrix
H = zeros([nx*ny nx*ny]);
for Ipx = 1:nx
for lpy = 1:ny
deltaim= zeros([nx ny]);
del tai m(l px, | py) = 1;
h = conv2(deltaimones([1 3]), ' same');
% The follow line will produce a circulant matrix with identical
%results as the Fourier nmethod (if we also use a circulant Kv)
%h =real (ifft2(fftshift(fftshift(fft2(deltaim).*B)));
mat xind = | px + (I py-1)*nx;
H(:, matxi nd) = h(:);
end
end

% build arrays to cal cul ate covariance matrix

[xx yy] = ndgrid([-nx/2:nx/2-1],[-ny/2:ny/2-1]);

x1 = xx(:);

[xla x1b] = ndgrid(x1);

% the following array contains the difference between
% the x-coordinates for the covariance el ements
xinddi ff = (xla - x1b);

yl =yy(:);

[yla ylb] = ndgrid(yl);

% the following array contains the difference between
% t he x-coordinates for the covariance el enents
yinddiff = (yla - ylb);

% now cal cul ate the covariance matrices

% since the autocorrelation function is separable, we can do our
% cal cul ations on x and y to build the final covariance matrix
kvx = (3-abs(xinddiff));

kvx kvx. *(kvx > 0);

kvy (yinddiff == 0);

kv = nsd”2*kvx. *kvy;

kv2 = nsd”2*eye(nx*ny);

kf = eye(nx*ny);

fhat1ld = inv(H *inv(kv)*H+inv(kf))*H *i nv(kv)*gl;
fhat = reshape(fhatld, size(ff));

= ones(nx, ny);

= [-nx/2: nx/ 2-1] ./ nx*2*pi ;

= nsd"2*((1 + 2*cos(wx)).”2)"' *ones(1, nx);

2 = nsd”2*ones(nx, ny);

= ones(ny,1)*(1 + 2*cos(wx));

Hv = Pf.*B./(Pf.*(B.*2) + Pv);

fhat2 = real (ifft2(fftshift(fftshift(fft2(gg)).*Hw)));

mseor = mean(nmean((gg-ff)."2));
msew = nmean(nean((fhat-ff).~2));
msew?2 = nmean(nmean((fhat2-ff).”2));

%liplay filtered results

figure(l)

clim= [mn(mn(gg)) max(max(gg))];

subpl ot (221); inmagesc(ff,clin); colormap gray; colorbar; axis('imge')
title('Original |mage')

subpl ot (222); inagesc(gg,clinm); colormap gray; colorbar; axis('imge')
title(sprintf('Original Image + Noi se, MSE = % 2f' , nseor));

subpl ot (223); inagesc(fhat,clim; colormap gray; colorbar; axis('inage')
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title(sprintf('Statistical MVSE Esti mator, MSE = % 2f', nsew))
subpl ot (224); inagesc(fhat2,clim; colormap gray; colorbar; axis('inage')
title(sprintf('Wener Filtered Inage (Fourier), MSE = % 2f', nsew2))

figure(2)

subpl ot (221); inmagesc(H); colormap gray; colorbar; axis('imge'); title('H)
subpl ot (222); inmagesc(kf); colormap gray; colorbar; axis('image'); title('Kf")
subpl ot (223); inmagesc(kv); colormap gray; colorbar; axis('image'); title('Kv, \sigm =
1)

subpl ot (224); inagesc(kv); colormap gray; colorbar; axis('imge')

axis([1 35 1 35]); title('Kv, \signa = 1 - zooned')

2. Pyramid coding.

a

b.

C.

@

T o

See code.

See code.

Based on variance measures and on the fact that there are 16 times as many €0 pixels than
f2 pixels, one might expect to assign 1.2668 for €0 and 3.7173 for f2. Without variable
length codewords, we stand no chance of meeting our desired bit rate of 1.5, but we may
if the probabilities levels of €0 are very non-uniformly distributed and we use a variable
length code. It also looks like we are giving few levels than we' d like to give for f2 —

237173 1, 13, if we were to use a uniform length code, but in general, our allocation
scheme seems to be reasonable based on the variance measures.

Huffman code for 8 levels { 110, 10, 00, 1110, 11110, 111111, 111110, 01}. Bitrate=
2.5420 bits/symbol.

H = 2.5154. Our code came very close to meeting the entropy rate. The uniform bit rate
would be 3 bit/symbol. There is some savings (15%), but not a huge savings.

See code.

See code.

See code.

Huffman code for 5 levels {0000, 001, 1, 01, 0001}. Bit rate = 1.0573 bits/'symbol.

D =128.58. Overdll bit rate = 1.2178 bits/symbol —we' ve met our target. This approach
was better than PCM, not as good as VQ (and we hadn’t even used variable length coding
with VQ).

Interestingly, D = MSEy,. MSE; = 74.10. Thereis apparently arather complicated
relationship between MSE; and MSE; and the final distortion. In particular, the
guantization errors of the higher stages only have an indirect effect on the final distortion.
Shannon’ s bit allocation scheme was derived from sum of error from each quantization
level —this clearly does not apply to pyramid coding and thus, another system might be
better (though Shannon’s ruleisn’t a bad starting point).
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Code:

% eecs 556, 2003, final exam problem?2

| oad hw7i mage;

f0 = hw7i mage;
f0(end+1, end+1) =0;
% make filter

a = .4;

hi = [(.25-a/2) .25 a .25 (.25-a/2)];

h = h1' *h1;

fol = conv2(fO,h,' sane');
f1 = f0l(1:2:end, 1:2: end);
f1l = conv2(fl,h, sane');
f2 = f11 (1: 2: end, 1: 2: end) ;

% linear interp kernel

h2 =12 3432 1]/4

hh = h2' *h2;

% build estimte

fOl hat = zeros(size(f0));

fOl hat (1: 4: end, 1: 4: end) = f2;

fOl hat = conv2(fOl hat, hh,' same');
e0 = f0O - fOl hat;

subpl ot (421); inagesc(f0); col ormap(gray);
subpl ot (422); inagesc(e0); col ormap(gray);
subpl ot (423); inagesc(f2); colormap(gray);

% variances and bit rates

ve0 = var(e0(:));

vi2 = var(f2(:));

vm = (veO"(16)*vf2)."(1/(16+1));
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f2hat, mse = 75.10
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fOhat, mse = 128.58

col or bar;
col or bar;
col or bar;

title('f0");
title('e0);
title('f2");

tnpbpp = 1. 5*prod(size(f0))/(prod(size(e0))+prod(size(f2)));

be0 = (tnpbpp + 0.5*1 0g2(ve0/vm))
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bf2 = (tnmpbpp + 0.5*l og2(vf2/vm)

% quantize f2

1f2 = 8;

mf = mn(f2(:)); mxf = max(f2(:)); deltf = (mxf-mf)/If2+0.01;
level f2 = floor((f2-mf)/deltf);

f2hat = level f2*deltf + deltf/2+mf;

msef2 = mean((f2(:)-f2hat(:))."2);

subpl ot (424); inagesc(f2hat); col ormap(gray); colorbar;
title(sprintf('f2hat, mse = % 2f', nsef2));

% build estimte

fOl hat2 = zeros(size(f0));

fOl hat 2(1: 4: end, 1: 4: end) = f2hat;
fOl hat2 = conv2(fO0l hat 2, hh, "' sanme');
e02 = f0 - fOl hat2;

% quanti ze e0

le0 = 5;

mxf = max(abs(e02(:))); mf = -nxf; deltf = (mxf-mf)/l e0+0. 01;
level e0 = floor((e02-mf)/deltf);

eOhat = | evel eO*del tf + deltf/2+mf;

msee0 = nmean((e02(:)-eOhat(:))."2);

subpl ot (425); inagesc(eOhat); col ormap(gray); colorbar;
title(sprintf('eOhat, mse = % 2f', nsee0));

% final estimte

fOhat = fOl hat2 + eOhat;

msef2 = mean((fO(:)-fOhat(:))."2);

subpl ot (426); inagesc(fOhat); col ormap(gray); colorbar;
title(sprintf('fOhat, nmse = % 2f', nsef2));

% find probs, entropy and bit rate
for Ip=1l:1f2
pr(lp) = sun(level f2(:) == (Ip-1))./prod(size(f2));
end
Hf 2 = -sum(pr.*l og2(pr))
lenf2 = [322 456 6 2];
Bbarf2 = sum(pr.*I enf2)

for Ip=1l:1e0
pre(lp) = sun(leveleO(:) == (lp-1))./prod(size(e0));
end
HeO = -sum(pre.*log2(pre))
lene0 = [4 3 1 2 4];
Bbare0 = sun(pre.*l ene0)

Bbart ot = (BbareO*prod(size(eOhat))+Bbarf2*prod(size(f2hat)))/prod(size(fOhat))

3. Coordinate transformations, Fourier transforms and sampling.

: : éx'u eXU éau _ eX u_ ead _€co sin l‘J
a First, recognizethat ¢ =R, Ll "a+a. g Where R, =@ > a
ey eyu g3u & 0 33 & snq cosqq

and x, and y; are rotated coodinates (e.g. shifts are in the rotated frame). We know that
rotations of the image domain lead to rotations in the Fourier domain and shiftsin the
image domain lead to phase shiftsin the Fourier domain. Thus,
G(u,v) = F(ucosg +vsnq,vcosq - usinq)exp(in(a(ucosq +vsin))+v(vcosq - usnQ)))
or G(u) = F(Rqu)exp(iZp[a bJR,U).

écosq - sng (- acosq +bsinq)g

b. T(g'a',b) =T'1(q,a,b) = gsinq cosq (-asng- bcosq)g, which for

g0 0 1 g

g'=-q=-45°, a=-0.3536! -a,and b'=0.0707 ! -b. Inthetransformation
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T(q,a,b), the rotation happens first followed by trandation. One inverse would be to
trandate by —a and -b therotateby —q. a'*t a and b't b because in implementing as
another matrix in the form T, we do the operations as rotation then trandation, so the
inverse trandations have to be projected through the —q rotation matrix:

éx- au _ exu écosq - sinqué ad _ exu é acosq +bsinqu

0~ é é. e q- é é
ybH -q U Ue.bg -q U

éyu éing cosq (& eyu e—aan bcosqu
We know from sampling theory that Fq(u,v) =8 & F(u- E’V' E) and
k |

Gs(uv)=a a Gu-&v-1
k |

o_lx

o o é-'l - u
=4 & F(Rqe du)exp(uao[a b]Rqe i
koI ev- ev-
To reconstruct the f from gs, weflrst can consider that the reI ationship between f and g is
known and invertible. Thus, we can consider what properties of g can be reconstructed
and rel ate those back tof. g can be reconstructed from gs if G(u,v) is non-zero only for

lul < 5 ad v < 5 - Our conditions on f are then that F(u,v) must be nor-zero only for

|ucosq vsing| < g and lveosg +using| < =, as shown below. This particular

distribution does not allow reconstruction from fS To alow reconstructlon from both gs
and fs we would need to add these conditions: |u] < == 5 and v < (an octagonal shaped

region). To handle an arbitrary angle g, the conditionis v'u +v2 < 2—1d :

F(u,v)

4. Wavelet transforms.

a

b.

C.

We can quickly seethat ATA = |, therefore, A isaunitary or orthogonal matrix, which
has orthogonal rows and is energy preserving.

See code.

Thisis not energy preserving — observe that thisis approximately a 2x2 2D Haar
transform with basis functions[1 1] and [1 —1]. The energy preserving basis functions
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are %[1 1] and %[1 - 1]. Since we are doing the transform in both x and y, the

output of haar2.m must be divided by 2. See haar2new.m below.
d. Basisfunctions, by region:
a ax(0) and a,(0)
b. ay(1) and a,(0)
c. a(0) and a,(1)
d. ax(1) and a,(1)
e. a(2) and by(0), ax(3) and by(0), ax(2) and by(1), ax(3) and by(1)
f. ay(2) and by(0), a,(3) and by(0), a,(2) and by(1), a,(3) and by(1)
9. a(2) and ay(2), ax(3) and ay(2), ax(2) and &,(3), ax(3) and a,(3)

Wherebd(O):[% + 0 0| and by =[0 0 + ﬁj We can see these visually

in the following figure. Thiswas generated by running “ihaar2.m” from part f. on a 4x4
delta function image with the delta function moved to all 16 possible locations specified
by ag. Thisisclose, but not exactly a4x4 2D Haar transform.

el

a
.
c
;
f,1
i
.3
u

e. They are all orthogonal, as can be readily seen from the above figure. It istrue that the b
bases are not orthogonal with a4(0) and a4(1), but the b bases are dways in combination
with a bases in the orthogonal direction so the 2D bases are orthogonal.

f. “haarZnew.m” implements a 2x2 2D Haar transform. It turns out that the inverse
transform is exactly the same for the 2x2 case, e.g. AT=A. Theredl challenge hereisjust
the reordering of the transformed image pixels. See code and “ihaar2.m”.
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Images:

House, Energy = 6.83683e+009 2-level Haar decomp, Energy = 6.83683e+009

200 400 600

Inverse Haar, MSE =0

Code:

% 2D wavel et probl em

| oad hw7i mage;

hl = haar 2new( hw7i nage) ;

[a b] = size(hl);

h1(1:a/2,1:b/2) = haar2new(hl(1l:a/2,1:b/2));

subpl ot (221); inagesc(hw7i mage); colormap gray;
title(sprintf('House, Energy = %', sum(hw7i mage(:)."2)));

subpl ot (222); inmagesc(hl); colormap gray;

title(sprintf('2-1evel Haar deconp, Energy = %', sum(hl(:).”"2)));

h2 = hi1;

h2(1:a/2,1:b/2) = ihaar2(hl(1l:a/2,1:b/2));

h2 = ihaar2(h2);

subpl ot (223); inmagesc(h2); colormp gray;

title(sprintf('lnverse Haar, MSE = %', sun({(hw7i mage(:)-h2(:))."2)));

function imout = haar2(im

subimLL = (im(1:2:end, 1:2:end) + im(2:2:end, 1:2:end) + in(1:2:end,2:2:end)
im2:2:end, 2:2: end));

subimHL = (im(1:2:end, 1:2:end) - im(2:2:end, 1:2:end) + in(1l:2:end,2:2:end)
im2:2:end, 2:2: end));

subi mLH = (i m(1:2:end, 1: 2: end) + im(2:2:end, 1:2:end) - in(1l:2:end,2:2:end)
im2:2:end, 2:2: end));

subimHH = (i m(1: 2:end, 1: 2: end) - im(2:2:end, 1:2:end) - in(1l:2:end,2:2:end)
im2:2:end, 2:2: end));

i mout = [subinmL subinmlH, subinHL subinmHH ./2; % added divide by 2

function imout = ihaar2(im
[a b] = size(im; inout = zeros([a b]);

subimLL = im(1:a/2,1:b/2);

subimHL = im(a/2+1:a, 1: b/ 2);

subimLH = im(1:al/ 2, b/ 2+1: b);

subi mHH = i m(a/ 2+1: a, b/ 2+1: b);

i mout (1: 2: end, 1: 2: end) = (subinlLL + subinmHL + subi nLH + subi mHH)/ 2;
i mout (2: 2: end, 1: 2: end) = (subinlLL - subinmHL + subinliH - subi mHH)/ 2;
i mout (1: 2: end, 2: 2: end) = (subinlLL + subinmHL - subinliH - subi mHH)/ 2;
i mout (2: 2: end, 2: 2: end) = (subinlLL - subinmHL - subinliH + subi mHH)/ 2;



