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Dear EECS 556 Class – Thank you for your and participation in class.  Please accept 
my best wishes for an enjoyable summer. – Doug Noll 
 
Final Exam Scores: Median = 91, 1st quartile = 94, 3rd quartile = 85 
Overall Grade Ranges: 97 and up: A+; 91-96: A; 85-90: A-; 80-84: B+; 79 and below: B 
 
1.  Optimal deblurring and denoising. 

a. The superposition principle states: 
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We now column stack all quantities in (n,m) and we’ll get:    
  ),;(),()( lkphlkfpf

lk
blur ∑∑=  

and by letting q = k*M+1 (sorry – typo in the problem statement – should have been M 
not N), we get: 
  );()()( qphqfpf

q
blur ∑=  

which is just the matrix multiplication Hf where the elements of H are h(p;q), where q is 
the column index and p is the row index.  

b. I did the “brute force” method, but there are lots of more elegant ways.  See code. 
c. f is a zero-mean, unit variance point Bernoulli process: ),(),( mnmnR f δ= , so Kf is the 

identity matrix.  v is a white Gaussian process convolved by a rect function: 
)()(),( 3 mtrinmnRv δ= .  See code for implementation of Kv.  

                              
d. We implement gKHKHKHf 1111 ')'(ˆ −−−− += vfv .  See code. 

e. xyxB ωωω cos21),( +=  
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f. 1),( =yxfP ωω  and 22 )cos21()(),( yyxv nsdP ωωω +=  
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plots for results.  MSE for Part d. is better, but not by much. 

                           
h. After reducing the noise variance, we can see more substantial differences between the 

standard (Fourier) Wiener filter and the statistical MMSE estimator.   

                           
At low noise levels, the filter is doing mainly deblurring.  The statistical MMSE estimator 
is better because it properly models the spatially variant behavior at the edges of the 
object. The Wiener filter assumes circulant behavior or zeros in the case of zero padding 
– both assumptions are inaccurate. 

 
Code: 

% eecs 556, 2003, final exam, problem 1  
rand('state',0);randn('state',0); 
nx = 16; ny = 16; nsd = 1; 
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p=0.015; 
ff = ((rand(ny,nx) < p) - p)/sqrt(p*(1-p)); % the desired signal 
vv = nsd*randn(ny,nx); 
% add this 
vv = conv2(vv,ones([3 1]),'same');     % the noise 
blurff = conv2(ff,ones([1 3]),'same'); % the blurred signal 
gg = blurff + vv;                      % the measurement 
g1 = gg(:);                            % make image a vector 
 
% build burring matrix 
H = zeros([nx*ny nx*ny]); 
for lpx = 1:nx 
    for lpy = 1:ny 
        deltaim = zeros([nx ny]); 
        deltaim(lpx,lpy) = 1; 
        h = conv2(deltaim,ones([1 3]),'same'); 
        % The follow line will produce a circulant matrix with identical 
        % results as the Fourier method (if we also use a circulant Kv) 
        % h = real(ifft2(fftshift(fftshift(fft2(deltaim)).*B))); 
        matxind = lpx + (lpy-1)*nx; 
        H(:,matxind) = h(:); 
    end 
end 
       
% build arrays to calculate covariance matrix 
[xx yy] = ndgrid([-nx/2:nx/2-1],[-ny/2:ny/2-1]); 
x1 = xx(:);   
[x1a x1b] = ndgrid(x1); 
% the following array contains the difference between  
% the x-coordinates for the covariance elements 
xinddiff = (x1a - x1b);   
 
y1 = yy(:); 
[y1a y1b] = ndgrid(y1); 
% the following array contains the difference between  
% the x-coordinates for the covariance elements 
yinddiff = (y1a - y1b); 
 
% now calculate the covariance matrices  
% since the autocorrelation function is separable, we can do our 
% calculations on x and y to build the final covariance matrix 
kvx = (3-abs(xinddiff)); 
kvx = kvx.*(kvx > 0); 
kvy = (yinddiff == 0); 
kv = nsd^2*kvx.*kvy; 
kv2 = nsd^2*eye(nx*ny); 
kf = eye(nx*ny); 
 
fhat1d = inv(H'*inv(kv)*H+inv(kf))*H'*inv(kv)*g1; 
fhat = reshape(fhat1d,size(ff)); 
 
Pf = ones(nx,ny); 
wx = [-nx/2:nx/2-1]./nx*2*pi; 
Pv = nsd^2*((1 + 2*cos(wx)).^2)'*ones(1,nx); 
Pv2 = nsd^2*ones(nx,ny); 
B = ones(ny,1)*(1 + 2*cos(wx)); 
Hw = Pf.*B./(Pf.*(B.^2) + Pv); 
fhat2 = real(ifft2(fftshift(fftshift(fft2(gg)).*Hw))); 
 
mseor = mean(mean((gg-ff).^2)); 
msew = mean(mean((fhat-ff).^2)); 
msew2 = mean(mean((fhat2-ff).^2)); 
 
%diplay filtered results 
figure(1) 
clim = [min(min(gg)) max(max(gg))]; 
subplot(221); imagesc(ff,clim); colormap gray; colorbar; axis('image') 
title('Original Image') 
subplot(222); imagesc(gg,clim); colormap gray; colorbar; axis('image') 
title(sprintf('Original Image + Noise, MSE = %.2f',mseor)); 
subplot(223); imagesc(fhat,clim); colormap gray; colorbar; axis('image') 
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title(sprintf('Statistical MMSE Estimator, MSE = %.2f',msew)); 
subplot(224); imagesc(fhat2,clim); colormap gray; colorbar; axis('image') 
title(sprintf('Wiener Filtered Image (Fourier), MSE = %.2f',msew2)); 
 
figure(2) 
subplot(221); imagesc(H); colormap gray; colorbar; axis('image'); title('H') 
subplot(222); imagesc(kf); colormap gray; colorbar; axis('image'); title('Kf') 
subplot(223); imagesc(kv); colormap gray; colorbar; axis('image'); title('Kv, \sigma = 
1') 
subplot(224); imagesc(kv); colormap gray; colorbar; axis('image');  
axis([1 35 1 35]); title('Kv, \sigma = 1 - zoomed') 
 

 
2. Pyramid coding. 

a. See code. 
b. See code. 
c. Based on variance measures and on the fact that there are 16 times as many e0 pixels than 

f2 pixels, one might expect to assign 1.2668 for e0 and 3.7173 for f2.  Without variable 
length codewords, we stand no chance of meeting our desired bit rate of 1.5, but we may 
if the probabilities levels of e0 are very non-uniformly distributed and we use a variable 
length code.  It also looks like we are giving few levels than we’d like to give for f2 – 

132 7173.3 ≈ , if we were to use a uniform length code, but in general, our allocation 
scheme seems to be reasonable based on the variance measures. 

d. Huffman code for 8 levels {110, 10, 00, 1110, 11110, 111111, 111110, 01}.  Bit rate = 
2.5420 bits/symbol. 

e. H = 2.5154.  Our code came very close to meeting the entropy rate.  The uniform bit rate 
would be 3 bit/symbol.  There is some savings (15%), but not a huge savings. 

f. See code. 
g. See code. 
h. See code. 
i. Huffman code for 5 levels {0000, 001, 1, 01, 0001}.  Bit rate = 1.0573 bits/symbol. 
j. D = 128.58.  Overall bit rate = 1.2178 bits/symbol – we’ve met our target.  This approach 

was better than PCM, not as good as VQ (and we hadn’t even used variable length coding 
with VQ). 

k. Interestingly, D = MSE0.  MSE2 = 74.10.  There is apparently a rather complicated 
relationship between MSE0 and MSE2 and the final distortion.  In particular, the 
quantization errors of the higher stages only have an indirect effect on the final distortion.  
Shannon’s bit allocation scheme was derived from sum of error from each quantization 
level – this clearly does not apply to pyramid coding and thus, another system might be 
better (though Shannon’s rule isn’t a bad starting point).  
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Images: 

 
 
Code: 

% eecs 556, 2003, final exam, problem 2  
load hw7image; 
f0 = hw7image; 
f0(end+1,end+1)=0; 
% make filter  
a = .4; 
h1 = [(.25-a/2) .25 a .25 (.25-a/2)]; 
h = h1'*h1; 
f0l = conv2(f0,h,'same'); 
f1 = f0l(1:2:end,1:2:end); 
f1l = conv2(f1,h,'same'); 
f2 = f1l(1:2:end,1:2:end); 
 
% linear interp kernel 
h2 = [1 2 3 4 3 2 1]/4; 
hh = h2'*h2; 
% build estimate 
f0lhat = zeros(size(f0)); 
f0lhat(1:4:end,1:4:end) = f2; 
f0lhat = conv2(f0lhat,hh,'same'); 
e0 = f0 - f0lhat; 
 
subplot(421); imagesc(f0); colormap(gray); colorbar; title('f0'); 
subplot(422); imagesc(e0); colormap(gray); colorbar; title('e0'); 
subplot(423); imagesc(f2); colormap(gray); colorbar; title('f2'); 
 
% variances and bit rates 
ve0 = var(e0(:)); 
vf2 = var(f2(:)); 
vm = (ve0^(16)*vf2).^(1/(16+1)); 
tmpbpp = 1.5*prod(size(f0))/(prod(size(e0))+prod(size(f2))); 
be0 = (tmpbpp + 0.5*log2(ve0/vm)) 
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bf2 = (tmpbpp + 0.5*log2(vf2/vm)) 
 
% quantize f2 
lf2 = 8; 
mnf = min(f2(:)); mxf = max(f2(:)); deltf = (mxf-mnf)/lf2+0.01; 
levelf2 = floor((f2-mnf)/deltf); 
f2hat = levelf2*deltf + deltf/2+mnf; 
msef2 = mean((f2(:)-f2hat(:)).^2); 
subplot(424); imagesc(f2hat); colormap(gray); colorbar;  
title(sprintf('f2hat, mse = %.2f',msef2)); 
 
% build estimate 
f0lhat2 = zeros(size(f0)); 
f0lhat2(1:4:end,1:4:end) = f2hat; 
f0lhat2 = conv2(f0lhat2,hh,'same'); 
e02 = f0 - f0lhat2; 
 
% quantize e0 
le0 = 5; 
mxf = max(abs(e02(:))); mnf = -mxf; deltf = (mxf-mnf)/le0+0.01; 
levele0 = floor((e02-mnf)/deltf); 
e0hat = levele0*deltf + deltf/2+mnf; 
msee0 = mean((e02(:)-e0hat(:)).^2); 
subplot(425); imagesc(e0hat); colormap(gray); colorbar;  
title(sprintf('e0hat, mse = %.2f',msee0)); 
 
% final estimate 
f0hat = f0lhat2 + e0hat; 
msef2 = mean((f0(:)-f0hat(:)).^2); 
subplot(426); imagesc(f0hat); colormap(gray); colorbar;  
title(sprintf('f0hat, mse = %.2f',msef2)); 
 
% find probs, entropy and bit rate 
for lp=1:lf2 
    pr(lp) = sum(levelf2(:) == (lp-1))./prod(size(f2)); 
end 
Hf2 = -sum(pr.*log2(pr)) 
lenf2 = [3 2 2 4 5 6 6 2]; 
Bbarf2 = sum(pr.*lenf2) 
 
for lp=1:le0 
    pre(lp) = sum(levele0(:) == (lp-1))./prod(size(e0)); 
end 
He0 = -sum(pre.*log2(pre)) 
lene0 = [4 3 1 2 4]; 
Bbare0 = sum(pre.*lene0) 
 
Bbartot = (Bbare0*prod(size(e0hat))+Bbarf2*prod(size(f2hat)))/prod(size(f0hat)) 

 
3. Coordinate transformations, Fourier transforms and sampling. 

a. First, recognize that 
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and xr and yr are rotated coodinates (e.g. shifts are in the rotated frame).  We know that 
rotations of the image domain lead to rotations in the Fourier domain and shifts in the 
image domain lead to phase shifts in the Fourier domain.  Thus, 
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°−=−= 45' θθ , aa −≠−= 3536.0' , and bb −≠= 0707.0' .  In the transformation 
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),,( baθT , the rotation happens first followed by translation.  One inverse would be to 
translate by –a and –b the rotate by –θ.  aa ≠'  and bb ≠'  because in implementing as 
another matrix in the form T, we do the operations as rotation then translation, so the 
inverse translations have to be projected through the –θ  rotation matrix:  
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c. We know from sampling theory that ),(),(
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d. To reconstruct the f from gs, we first can consider that the relationship between f and g is 
known and invertible.  Thus, we can consider what properties of g can be reconstructed 
and relate those back to f.  g can be reconstructed from gs if G(u,v) is non-zero only for 

d
u

2
1<  and 

d
v

2
1< .  Our conditions on f are then that F(u,v) must be non-zero only for 

d
vu

2
1sincos <− θθ  and 

d
uv

2
1sincos <+ θθ , as shown below.  This particular 

distribution does not allow reconstruction from fs.  To allow reconstruction from both gs 
and fs we would need to add these conditions: 

d
u

2
1<  and 

d
v

2
1<  (an octagonal shaped 

region).  To handle an arbitrary angle θ, the condition is dvu 2
122 <+ . 

                                               
 
4. Wavelet transforms. 

a. We can quickly see that ATA = I, therefore, A is a unitary or orthogonal matrix, which 
has orthogonal rows and is energy preserving. 

b. See code. 
c. This is not energy preserving – observe that this is approximately a 2x2 2D Haar 

transform with basis functions [1 1] and [1 –1].  The energy preserving basis functions 

1/d 1/d 

u 

v F(u,v) 
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are [ ]11
2

1  and [ ]11
2

1 − .  Since we are doing the transform in both x and y, the 

output of haar2.m must be divided by 2.  See haar2new.m below. 
d. Basis functions, by region: 

a. ax(0) and ay(0) 
b. ax(1) and ay(0) 
c. ax(0) and ay(1) 
d. ax(1) and ay(1) 
e. ax(2) and by(0), ax(3) and by(0), ax(2) and by(1), ax(3) and by(1) 
f. ay(2) and bx(0), ay(3) and bx(0), ay(2) and bx(1), ay(3) and bx(1) 
g. ax(2) and ay(2), ax(3) and ay(2), ax(2) and ay(3), ax(3) and ay(3) 

where [ ]00)0(
2

1
2

1=db  and [ ]
2

1
2

100)1( =db .  We can see these visually 

in the following figure.  This was generated by running “ihaar2.m” from part f. on a 4x4 
delta function image with the delta function moved to all 16 possible locations specified 
by a-g.  This is close, but not exactly a 4x4 2D Haar transform. 

 
e. They are all orthogonal, as can be readily seen from the above figure.  It is true that the b 

bases are not orthogonal with ad(0) and ad(1), but the b bases are always in combination 
with a bases in the orthogonal direction so the 2D bases are orthogonal. 

f. “haar2new.m” implements a 2x2 2D Haar transform.  It turns out that the inverse 
transform is exactly the same for the 2x2 case, e.g. AT=A.  The real challenge here is just 
the reordering of the transformed image pixels.  See code and “ihaar2.m”. 
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Images: 

 
Code: 

% 2D wavelet problem 
load hw7image; 
h1 = haar2new(hw7image); 
[a b] = size(h1); 
h1(1:a/2,1:b/2) = haar2new(h1(1:a/2,1:b/2)); 
 
subplot(221); imagesc(hw7image); colormap gray;  
title(sprintf('House, Energy = %g',sum(hw7image(:).^2))); 
subplot(222); imagesc(h1); colormap gray;  
title(sprintf('2-level Haar decomp, Energy = %g',sum(h1(:).^2))); 
 
h2 = h1; 
h2(1:a/2,1:b/2) = ihaar2(h1(1:a/2,1:b/2)); 
h2 = ihaar2(h2); 
subplot(223); imagesc(h2); colormap gray;  
title(sprintf('Inverse Haar, MSE = %g',sum((hw7image(:)-h2(:)).^2))); 
 
 
function imout = haar2(im) 
subimLL = (im(1:2:end,1:2:end) + im(2:2:end,1:2:end) + im(1:2:end,2:2:end) + 
im(2:2:end,2:2:end)); 
subimHL = (im(1:2:end,1:2:end) - im(2:2:end,1:2:end) + im(1:2:end,2:2:end) - 
im(2:2:end,2:2:end)); 
subimLH = (im(1:2:end,1:2:end) + im(2:2:end,1:2:end) - im(1:2:end,2:2:end) - 
im(2:2:end,2:2:end)); 
subimHH = (im(1:2:end,1:2:end) - im(2:2:end,1:2:end) - im(1:2:end,2:2:end) + 
im(2:2:end,2:2:end)); 
imout = [subimLL subimLH; subimHL subimHH]./2;  % added divide by 2 
 
 
function imout = ihaar2(im) 
[a b] = size(im); imout = zeros([a b]); 
subimLL = im(1:a/2,1:b/2); 
subimHL = im(a/2+1:a,1:b/2); 
subimLH = im(1:a/2,b/2+1:b); 
subimHH = im(a/2+1:a,b/2+1:b); 
imout(1:2:end,1:2:end) = (subimLL + subimHL + subimLH + subimHH)/2; 
imout(2:2:end,1:2:end) = (subimLL - subimHL + subimLH - subimHH)/2; 
imout(1:2:end,2:2:end) = (subimLL + subimHL - subimLH - subimHH)/2; 
imout(2:2:end,2:2:end) = (subimLL - subimHL - subimLH + subimHH)/2; 


